Available online at www.sciencedirect.com

@ APPLIED
SCIENCE DIRECT"® NLATHENLATICS
AND
i . OMPUTATION
ELSEVIER Applied Mathematics and Computation 176 (2006) 516-530

www.elsevier.com/locate/amc

A new Godelian argument for hypercomputing minds based
on the busy beaver problem *

Selmer Bringsjord *, Owen Kellett, Andrew Shilliday, Joshua Taylor,
Bram van Heuveln, Yingrui Yang, Jeffrey Baumes, Kyle Ross

Department of Cognitive Science, Department of Computer Science, Rensselaer AI and Reasoning (RAIR) Laboratory,
Rensselaer Polytechnic Institute ( RPI), Troy, NY 12180, USA




Available online at www.sciencedirect.com

@ APPLIED
SCIENCE DIRECT® MATHEN!.AIICS
AND
: COMPUTATION
ELSEVIER Applied Mathematics and Computation 176 (2006) 516-530

www.elsevier.com/locate/amc

A new Godelian argument for hypercomputing minds based
on the busy beaver problem *

Selmer Bringsjord *, Owen Kellett, Andrew Shilliday, Joshua Taylor,
Bram van Heuveln, Yingrui Yang, Jeffrey Baumes, Kyle Ross

Department of Cognitive Science, Department of Computer Science, Rensselaer Al and Reasoning ( RAIR) Laboratory,
Rensselaer Polytechnic Institute (RPI), Troy, NY 12180, USA

Abstract

Do human persons hypercompute? Or, as the doctrine of computationalism holds, are they information processors at or
below the Turing Limit? If the former, given the essence of hypercomputation. persons must in some real way be capable of
infinitary information processing. Using as a springboard Gdédel's little-known assertion that the human mind has a power
“converging to infinity”, and as an anchoring problem Rado’s [T. Rado, On non-computable functions, Bell System Tech-
nical Journal 41 (1963) 877-884] Turing-uncomputable “busy beaver” (or ) function, we present in this short paper a new
argument that, in fact, human persons can hypercompute. The argument is intended to be formidable. not conclusive: it
brings Gdédel’s intuition to a greater level of precision, and places it within a sensible case against computationalism.
© 2005 Elsevier Inc. All rights reserved.

1. Introduction

It is safe to say that human minds are information processors of some sort.' The question is: What sort? Are
we operating at or below the level of Turing machines (=at or below the so-called Turing Limit), or above?

“ My co-authors. all researchers with me in the Rensselaer Al and Reasoning (RAIR) Laboratory, made contributions to, if you will, the
busy beaver “substrate™ of the present paper. While the argument given herein (Section 6) is mine (i.e., Bringsjord’s), a lot of formal
analysis and software engineering has gone into e R AIR Lab’s attack on the busy beaver problem, and this attack forms the general
context of my argument. Special thanks are due to Owen Kellett, whose tireless, ingenious pursuit of (in the quadruple. implicit-halt,
contiguous format) £%7) and beyond still presses on. (For cognoscenti: The B superscript is explained later.) (The pursuit is chronicled at
http://www.cs.rpi.edu/~kelleo/busybeaver.) Applied research on the busy beaver problem, which, again, forms the context for this paper,
is supported by a grant from the National Science Foundation. Special thanks are due to Yingrui Yang for insights regarding Godel's
thought, and Hao Wang’s thought about that thought. We are also greatly indebted to two anonymous referee’s for a number of learned
comments and trenchant objections, and for a remarkably careful reading of our text.

" Corresponding author.

E-mail address: selmer@rpi.edu (S. Bringsjord).
URL: http://www.rpi.edu/~brings (S. Bringsjord).

! Contemporary cognitive psychology, cognitive science, and cognitive neuroscience—all are predicated on the view that the human

mind is an embodied information processor. For a nice survey that brings this point across clearly, see [23].

0096-3003/$ - see front matter © 2005 Elsevier Inc. All rights reserved.
doi:10.1016/j.amc.2005.09.071
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Bringsjord has given a book-length specification and defense of supermentalism, the view that human per-
sons are capable of hypercomputing [15]. In addition, with Konstantine Arkoudas, he has given a purported
modal proof for the very same view [13]. None of this prior work takes account of Gédel's intuition, repeat-
edly communicated to Hao Wang, that human minds ‘“‘converge to infinity” in their power, and for this reason
surpass the reach of ordinary Turing machines.” The purpose of this paper is to flesh out and defend this intu-
ition; doing so leads to a new and perhaps not uninteresting argument for the view that human persons can
hypercompute, that is, that they are hypercomputers. This argument is intended to be formidable, not conclu-
sive: it brings Godel’s intuition to a greater level of precision, and places it within a sensible case against com-
putationalism. In short, while the Gédelian argument at the heart of this paper rests in part on research that
falls squarely within logic and computer science, the argument itself is just that: a deductive argument, not a
proof.

The plan for the paper is as follows. In the following section, we clarify the view to be overthrown herein,
viz., that minds are ordinary (=Turing machine-equivalent) computing machines. In Section 3, we briefly take
note of the fact that the essence of hypercomputation consists in some way of exploiting the power of the infi-
nite. In the following section, 4, we recount and summarize Gédel’s intuitive-and-never-formalized view that
the “states” of the human mind “converge to infinity”’—a rather cryptic view he repeatedly discussed, in per-
sistently vague terms, with Hao Wang. Section 5 is devoted to setting the context for the argument intended to
formalize Godel’s intuitive view; this context is based on the so-called uncomputable “busy beaver” (or X)
problem in computer science. In Section 6, we give our Gédelian argument, in the form of an indirect proof.
In Section 7, we rebut a series of objections to our argument. The final section is a short conclusion.

2. Clarifying computationalism, the view to be overthrown

The view to be overthrown by the Godelian argument articulated in this paper is the doctrine of computa-
tionalism. Propelled by the writings of innumerable thinkers (this touches but the tip of a mammoth iceberg of
relevant writing: [5,10,19,20,25-27,29,36,39,44.47,48]), computationalism has reached every corner of, and
indeed energizes the bulk of, contemporary Al and cognitive science. The view has also touched nearly every
major college and university in the world; even the popular media have, on a global scale, preached the com-
putational conception of mind. Despite all this, despite the fact that computationalism has achieved the status
of a Kuhnian paradigm, the fact is that the doctrine is maddeningly vague. Myriad one-sentence versions of
this doctrine float about; e.g.,

e Thinking is computing.

e Cognition is computation.

» People are computers (perhaps with sensors and effectors).

e People are Turing machines (perhaps with sensors and effectors).
e People are finite automata (perhaps with sensors and effectors).
e People are neural nets (perhaps with sensors and effectors).

e Cognition is the computation of Turing-computable functions.
.

As long as the doctrine remains vague, how can we rationally hope to determine the truth-value of com-
putationalism on the basis, at least in part, of formal analysis and reasoning? The only solution is that we
must idealize the concepts of minds and machines to provide, as Shapiro [45] puts it, an “interface” between

2 This intuition is not directly related to the idea that Gédel’s first incompleteness theorem implies the falsity of computationalism. Godel
[21] himself, in his Gibbs lecture (1951), and in correspondence, did make remarks revealing that he believed his incompleteness results,
when conjoined with certain plausible propositions, do imply that minds can exceed standard computing machines—but the present paper
is concerned with an altogether different question.
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mathematical results and the doctrine of computationalism. Without such an idealization, we should probably
simply close up shop and agree with George Boolos’ pessimistic comment that .. .it is certainly not obvious
what it means to say that the human mind, or even the mind of some human being, is a finite machine, e.g., a
Turing machine” [7, p. 293].

Fortunately, the idealization is not hard to come by. In fact, it has already been firmly established on the
machine side. Theoretical computer science provides us with a precise conceptual apparatus for making sense
of ‘computer’ and ‘computation’. For example, we can identify ‘computer’ with Turing machine (or, for that
matter, with Register machine, abaci, etc.), and ‘computation’ with Turing machine computation. (And, as we
do below, we can turn to logic/mathematics for models of ‘hypercomputer’ and ‘hypercomputation’.) This
familiar identification allows us to rigorously refer to machines that never run out of memory or working
space, and that infallibly obey instructions.

What about persons, or minds? What are we to take them to be? Here, of course, there is no convenient
formalism to appeal to. However, it is clear that we must assume, for starters, that persons or minds can
be quantified over along with Turing machines, and that they can viewed as entities capable of taking in inputs
and returning outputs that reflect problem solving over these inputs. It is also clear from contemporary cog-
nitive science, as we pointed out above, that the mind is some sort kind of information-processing device.
Textbook after textbook and paper after paper in psychology, cognitive science, and cognitive neuroscience
makes this plain as day (e.g., see, in addition to Goldstein’s text: [3.4,50].

Here, then, is how we can encapsulate computationalism so that some careful reasoning can be carried out:
given that p ranges over persons, and m over Turing machines, we simply say’:

(€] Yp3Imp = m.

In addition, we can modify proposition % so that it carries some complexity information: Letting # be a func-
tion which, when applied to a Turing machine, simply returns the number of its states combined with the num-
ber of transitions used, we can say that computationalism is committed not only to the view that every person
is some Turing machine, but that every person is some Turing machine whose complexity is at or below some
threshold k; i.e.,

(€] VYpam(p = mA#(m) < k).

3. The essence of hypercomputation: harnessing the infinite

As the papers in this volume make clear, we now understand well that there are information-processing
machines that can exceed the Turing Limit (e.g., they can solve the halting problem); such machines just
are not standard TMs and the like (and of course there is ongoing debate as to whether these machines
can be artifacts). There are in fact now many such machines in the literature. Indeed. just as there are an infi-
nite number of mathematical devices equivalent to Turing machines (first-order theorem provers, Register
machines, the /-calculus, abaci, etc.; many of these are discussed in the context of an attempt to define stan-
dard computation in Bringsjord [11]), there are an infinite number of devices beyond the Turing Limit. While
Burgin [16] is correct that the first fleshed-out account of such a machine (trial-and-error machines, as Kugel
[30] aptly calls them) appears to have been provided at the same time by Putnam [40] and Gold [22], and while
we agree with his claim [16] that his own more powerful inductive TMs (ITMs), introduced in 1983, have the
distinct advantage of giving results in finite time, today’s infinite time TMs (ITTMs) [24] can trace their lineage

3 Some may desire to interpret the ‘are’ in ‘People are (standard) TMs' not as the ‘are’ of ‘=", but rather as some concept of
“instantiation” (or “realization”), so that people instantiate (or realize) TMs. This will simply lead to a mere syntactic variant of the
argument we give in Section 6. This is so in light of the fact that, for all instantiated standard TMs, it is impossible that they hypercompute.
(After all, theorems establishing that abstract, mathematically defined information-processing devices are unable to X entail that when
these devices are built (i.e., instantiated), they cannot X. For example, we know that no instantiated standard Turing machine can solve the
halting problem.)
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back to seminal theoreticians working well before 1965.* ITTMs result from extending the operation of TMs
to infinite ordinal time, and produce a “supertask theory of computability and decidability” Hamkins and
Lewis [24, p. 567]. This should come as no surprise, because supertasks have long been discussed in theoretical
treatments of computation. Intuitive supertask machines are called Zeus machines® (ZMs) by Boolos and Jef-
frey [8].° The simple point we want to make here is just that the mark of hypercomputers is that they find a
way to somehow harness the power of the infinite. This should be completely uncontroversial, and this brute
fact is something that Godel clearly anticipated. Nothing, by the way, makes the “harnessing the infinite”
mark of hypercomputation clearer than the aforementioned Zeus machines.

Zeus machines are based on the character Zeus, described by Boolos and Jeffrey [8]. Zeus is a superhuman
creature who can enumerate N, the natural numbers, in a finite amount of time, in 1 s, in fact. He pulls this off
by giving the first entry, 0, in § s, the second entry, 1, in 1 s, the third entry in i s, the fourth in L s, etc., so that,
when a second is done he has completely enumerated the natural numbers. Obviously, it is easy to adapt this
scheme so as to produce a Zeus machine that can solve the halting problem: just imagine a machine which,
when simulating an arbitrary Turing machine m operating on input «, does each step faster and faster. ..
(There are countably many Turing machines, and those that do not halt are trapped in an unending sequence
of the same cardinality as N.) If, during this simulation, the Zeus machine finds that  halts on u, then a | is
returned; otherwise 0 is given.

It would take space we do not have, but would be exceptionally easy, to show, for each formalized hyper-
computing paradigm, that it exploits the infinite in some manner. For those coming from the perspective of
logic, rather than computation, the same point can be made about logics: those logics corresponding to hyper-
computation are infinitary logics. The simplest such logic is ,9",,,1..,.7

4. Gaidel on minds exceeding (Turing) machines by “converging to infinity”

As a significant number of readers will know, there is a rather extensive literature devoted to considering
whether or not /%" fails in light of G&del’s first incompleteness theorem (full references are provided in [13]).
Thinkers central to this debate, as is widely known, include Lucas [32,33] and, more recently, Penrose [37,38].

* E.g., in 1927 Hermann Weyl considered a machine able to complete

an infinite sequence of distinct acts of decision within a finite time; say, by supplying the first result after 1 min, the second after
another } min, the third { min later than the second, etc. In this way, it would be possible. . . to achieve a traversal of all natural
numbers and thereby a sure yes-or-no decision regarding any existential question about natural numbers. Weyl [54, p. 42].

Actually, Bertrand Russell seems to be have been the first to grasp the essence of ITTMs/Zeus machines. In a lecture in Boston in 1914 he
said about Zeno's paradox involving the race-course: “If half the course takes half a minute, and the next quarter takes a quarter of a
minute, and so on, the whole course will take a minute™ Russell [42, pp. 172-173]. And later, when lampooning finitism as championed
by Ambrose, Russell wrote:

Ambrose says it is logically impossible [for a man] to run through the whole expansion of n. I should have said it was medically
impossible. ...The opinion that the phrase ‘after an infinite number of operations’ is self-contradictory, seems scarcely correct.
Might not a man’s skill increase so fast that he performed each operation in half the time required for its predecessor? In that case,
the whole infinite series would take only twice as long as the first operation. Russell [43, pp. 143-144].

% Sometimes also called ‘Zeno’ machines, especially in the past.

% We thus leave aside discussion of other hypercomputational machines, such as: analog chaotic neural nets [46), artificial neural nets
allowed to have irrational numbers for coefficients; and dial machines [12]; etc.

7 The basic idea behind %,,, is straightforward. This system allows for infinite disjunctions and conjunctions, and hence allows for
infinitely long derivations, where these disjunctions, conjunctions, and proofs are no longer than the size of the set of natural numbers. (We
use e to denote the “size” of the set of natural numbers: the niceties of cardinal numbers need not detain us here.) Here is one simple
formula in #,, ., which is such that any interpretation that satisfies it is finite (something that cannot be expressed in ordinary first-order
logic):

V3x|...flx,, Ywyv=x V...Vvy=x,).

n<w

It is a well-known fact that the proposition captured by this formula cannot be captured by a formula in a system at or below Turing
machines.
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This literature includes some of Gddel's own thoughts on the matter: Godel [21] himself, in his Gibbs lecture
(1951), and in correspondence, indicated that by his lights his incompleteness results do imply, when accom-
panied by some reasonable propositions, that minds can exceed standard computing machines. But the impor-
tant point at the moment is simply this: the present paper is not concerned with these notions.® We are
concerned, specifically, with Godel’s contention that the human mind can unendingly generate new ideas, tech-
niques, representation schemes, and so on, and can in virtue of these inventions enter mental states that, in
number, converge to infinity. Indeed, G6del seems to have been of the opinion that the human mind in fact
enters an infinite number of distinct states. Turing explicitly argued for the view that the human mind is capa-
ble of only a finite number of distinct states (see Wang [52, pp. 92-93]), and though Gddel rejected this argu-
ment because it presupposed a materialist conception of mind (Turing assumed that the mind equals brain;
Godel wrote and said on many occasions that while the brain is fundamentally a finite digital computer,
the mind includes non-physical powers and parts.), he also specifically wrote that “there is no reason why
the number of states of the mind should not converge to infinity in the course of its development” Wang
[52, pp. 325-326]. Here’s the full quote:

It would be a result of great interest to prove that the shortest decision procedure requires a long time to
decide comparatively short propositions. More specifically, it may be possible to prove: For every decidable
system and every decision procedure for it, there exists some formula of length less than 200 whose shortest
proof is longer than 10%°. Such a result would actually mean that machines cannot replace the human mind,
which can give short proofs by giving a new idea. Wang [53, p. 187].

How are we to understand this? The basic idea would appear to be that as human minds develop through
time over generations, they invent new concepts and techniques, which in turn allow previously resistant prob-
lems to be solved. There seems to be no upward bound whatsoever to this ascension. Godel’s examples in sup-
port of this view were invariably from mathematical logic. As Wang reports: “He appeals to our forming
stronger and stronger axioms of infinity in set theory, and of defining computable well-orderings of integers
that represent larger and larger ordinal numbers” Wang [53, p. 184]. We are inclined to say that the recent
proof of Fermatt’s Last Theorem makes for an example Gddel would find congenial. We are also inclined
to say that the formal development of hypercomputation is itself a case in point. Unfortunately, these exam-
ples are too indeterminate to be directly helpful in the present paper, in no small part because the gradual
improvement through time, in and deriving from these examples, is hard to track. What we need is a problem,
and corresponding intellectual toil, that conforms to a demonstrably incremental climb onwards and upwards.
The busy beaver, or X, problem fits the bill perfectly, and to it we now turn.

5. Setting the context: the busy beaver problem
5.1. The problem defined

The “busy beaver” or X function is a mapping from N to N such that: Z(n) is the largest number of con-
tiguous 1’s that an n-state Turing machine with alphabet {0, 1} can write on its initially blank tape, just before
halting with its read/write head on the leftmost 1, where a sequence

m times

e e,
11...11

is regarded simply as m.” Rado [41] proved this function to be Turing-uncomputable long ago: a nice contem-
porary version of the proof (which is by the way not based on diagonalization) is given in [8]. Nonetheless, the
busy beaver problem is the challenge of determining Z(n) for ever larger values of n.

Of course, there are varying definitions of Turing machines. The formalism we prefer is the quadruple tran-
sition, implicit halt state one. In this scheme, each transition consists of four things: the state the machine is in,

8 More generally, this paper is not concerned with any number of the many other points of intersection between computation,
hypercomputation, and the mind—a cluster that [49), in the present issue of this journal, does a very nice job summarizing.

° As we explain below, there are a number of variations in the exact format for the function. E.g., one can drop the conditions that the
output I's be contiguous.
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Table 1
Distribution of tree normalized machines for £%n)
Category n=2 n= n=4 n=35 n=6
Standard Halt 6 80 2264 103,095 6,640,133
Non-standard Halt 2 76 3844 271,497 24911,677
Back-tracker 23 865 49,481 4,008,364 403,910,416
Subset loop 0 0 146 11,013 2,582,783
Simple loop 5 130 5605 381736 48,492,276
Christmas tree 0 2 156 13,987 2,166,668
Leaning Christmas Tree 0 0 0 69 23,129
2-sweep Christmas Tree 0 0 23 2356 419,598
3-Sweep Christmas Tree 0 0 0 470 77,740
4-Sweep Christmas Tree 0 0 0 76 17,345
5-Sweep Christmas Tree 0 0 0 0 2156
6-Sweep Christmas Tree 0 0 0 0 1352
7-Sweep Christmas Tree 0 0 0 0 345
8-Sweep Christmas Tree 0 0 0 0 65
Counter 0 0 0 113 25,678
Holdout 0 0 0 98 42,166
Total 36 1153 61,519 479,2874 489,313,527
- g

the symbol it is scanning, the action it is to perform (move right or left, or write a symbol), and the new state it
is to enter. To make it clear that this is the specific scheme we are talking about, we write Z®, where the B is in
honor of the excellent presentation in [8].

5.2. RAIR lab approach hitherto; records

With assistance provided by the United States’ National Science Foundation, and in an effort whose soft-
ware engineering has been led by Kellett, our laboratory has been successful at marching upwards in a fashion
Gaodel apparently envisioned. While a number of new world records have been set in TM models other than B,
we give here only the results for this scheme (see Table 1, which we now proceed to explain).

Consider for a moment the approach that must be used to establish the results and records for Z5(n) defined
in Table 1. Inspired by the impressive effort reported in [31,9,34,35], we have defined the following algorithm
as a solution to XZ%(n):

1. Using a tree normalized approach,'® enumerate a set S of n-state Turing machines that behaviorally rep-
resents the entire set.

. For each member ¢ of S:
(a) Classify r as either a non-halter, or a halter.
(b) If ¢ is a halter, run ¢ to completion on an infinite bi-directional tape of all 0’s. If the resulting tape sat-

isfies the conditions specified in Section 5.1, add ¢ to our candidate set C.
3. Return the productivity of the most productive machine in C (i.e., the machine that produces the most con-
tiguous 1’s on the tape).

[

Clearly, the task in item 2a is menacing. While we cannot hope to define a computational algorithm to com-
pute this task (as this would be a solution to the halting problem below the Turing Limit), we can still strive to
prove that a particular machine does not halt on an individual basis by demonstrating that its behavior follows
an infinite, repeatable pattern.

% Our enumeration technique utilizes specific tree normalization filters adapted from the aforementioned works. The machines are
enumerated using a tree-based approach and the filters specify conditions which allow us to prune machines and even entire subtrees from
the overall tree, because they are proven behaviorally equivalent to either some other machine already in the tree, or, one that will be
generated. Further discussion is beyond the scope of this paper, but for a complete description of the specific filters used, please refer to
http://www.cs.rpi.edu/~kelleo.busybeaver.
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This technique, pioneered in [31], and expanded upon in [9,34], had previously produced a number of
proven non-halter detection strategies and behaviors. Each of these behaviors encompass some subset of
non-halting Turing machines within the scope of all non-halting Turing machines relevant to X B(n). The clas-
sifications range from Turing machines that can be proven non-halters by working backwards from their
required halting conditions, to simple recurrence patterns, to even machines that mimic an abstraction of bin-
ary counters.

As a case in point, let us examine one of these patterns: so-called “Christmas Trees”, discussed in [9,34].
For purposes of this discussion. consider the following notation used to represent the contents of a tape:

0" (U] XX [v]0"

Here, 0* denotes an infinite sequence of 0’s that caps each end of the tape. Additionally, [U], [X], and [V] rep-
resent some arbitrary sequence of characters on the tape while the subscripted ‘s’ indicates that the machine is
in state ‘s’ with its read/write head at the leftmost character of the [V] character sequence.

With this in mind, we can describe the Christmas Tree pattern in the context of the transformations that it
makes on the tape. Machines exhibiting this behavior are classified as non-halters due to a repeatable back and
forth sweeping motion which they exhibit on the tape. Observably, the pattern of the most basic form of
Christmas Trees is quite easy to recognize. The machine establishes two end components on the tape and
one middle component. As the read/write head sweeps back and forth across the tape, additional copies of
the middle component are inserted, while maintaining the integrity of the end components at the end of each
sweep.

Fig. 1 displays a partial execution of a four-state Christmas Tree machine which is representative of one
sweep back and forth across the tape. As can be seen, at the beginning of this execution, the machine has
established three middle or [X] components capped by the [U] and [V] end components on each side. As
the read/write head sweeps back and forth across the tape, it methodically converts the [X] components into
[ Y] components and then into [Z] components on the return sweep. At the completion of the sweep, the tape is
left in the state: 0°[U’](Z][Z][Z][V”]0" which can be shown to be equivalent to 0*[UJXJXTX]X][VJ0*. Thus
each successive sweep across the tape performs similar transformations, adding an additional [X] component
in an infinite pattern.''

In light of these behavioral patterns, which by mathematical induction can be proved to guarantee non-
haltingness, we can now modify our basic algorithm designed to solve X B(n):

1. Using a tree normalized approach, enumerate a set S of n-state Turing machines that behaviorally repre-
sents the entire set.

2. For each member 7 of S:
(a) Attempt to show that 7 exhibits one of the defined non-halting behaviors.
(b) If the attempt fails, run ¢ to a predetermined step limit on an infinite bi-directional tape of all 0’s.
(c) If ¢ halts before or at this step limit, add it to our candidate set C if the resulting tape satisfies the con-

ditions specified in Section 5.1.

(d) If it has not halted after the step limit has been reached, add it to our holdout set H.

3. Examine each machine in H and define new non-halting behaviors and detection techniques. Include these
new behaviors in the next successive iteration of the algorithm until the size of H is reduced to 0.

4. Return the productivity of the most productive machine in C (i.e., the machine that produces the most con-
tiguous 1's on the tape).

Utilizing this strategy, our laboratory has been able to extend the work done in [31,9,34] by defining several
additional non-halt behaviors to add to the already established set. (These are candidates for what Gédel calls
“new ideas”.) These include behaviors such as multi-sweep Christmas Trees, leaning Christmas Trees, and
modified binary counters. With the inclusion of these additional behaviors, we have explicitly confirmed

' We do not include the specifics of the transformations that can be explicitly shown to be in an infinite pattern, since the Christmas Tree
pattern is only one of several non-halting behaviors that have been defined. We again refer the reader to http://www.cs.rpi.edu/~kelleo/
busybeaver for a complete discussion on each of the non-halting behaviors that have been developed, including our own.
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\V]

State
State 3
o State 0 =O*[U][X][X][Xq][V’]0*
1111111010 State 3
1111111010 State 3
State 0 = O*[UJXIIXIIYIIV']0*
1111101010 State 3
1111101010 State 3
10 State 0 =0*[UI[X:41[Y][Y][V']O*
1110101010 State 3
1110101010 State 3
' State 0 = 0*[U JIYIIYI[YIIV]IO
1010101010 State
1010101010 State
01010101010 State
11010101010 State
11010101010 State
11010101010 State
11110101010 State
0[10] State 2 =0 U][YIIYI[YI[V']O*
11110101010 State 0
11111101010 State 1

= 0*[UILXIXIEX]V§10*

H ONKFOWW

State 2 = OfUZILYIIYIIV']I0*
11111101010 State 0
11111111010 State 1
E State 2 = OUZIZILYIIV']0*
11111111010 State 0
11111111110 State 1
I State 2 = 0U1ZIZIZILV']0*

11111111110 State 0
11111111111  State 1
state 2 =0*[U]Z]Z]Z][V",]0*

Fig. 1. Christmas Tree execution.

the values of XB(n) up through n = 4 by classifying each of the machines in the relevant set S as either a halter,
or a non-halter displaying one of the non-halting behaviors. For n = 5 and n = 6, the number of holdouts have
been reduced to 98 and 42,166, respectively. Soon these will all be classified as halters or non-halters; for if
need be, because the number of machines is so small, we can resort to manual machine-by-machine examina-
tion. Our results are summarized in Table 1.

At the present time, additional non-halt behaviors are being defined based on the holdouts for Z B(5) and
b2t B( 6). In fact, each of the 98 holdouts for # = 5 has been individually manually examined and assigned to one
of several new non-halt behaviors in development. These include additional counter variations (base-3 coun-
ters, alternating counters, resetting counters), several Christmas Tree variations (nested Christmas Trees,
uneven Christmas Trees, partial sweep Christmas Trees), as well as combination behaviors (Christmas Trees
with nested binary counting behavior).'> We declare with extreme confidence that all 98 of these holdouts will

2 A more thorough description of each of these behaviors can again be found on the RAIR Lab’s Busy Beaver website.
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soon be automatically proven non-halters as well: the case of 5, and then 6, will soon enough be determined
by—to speak in Godel’s confessedly dramatic terms—the ever ascending human mind.

Thus, the search continues. By incorporating the formal behaviors found from the Z®(5) holdouts, we hope
to use these behaviors to significantly reduce the £®(6) holdout set and continue to adapt, combine, and for-
mulate new behaviors for the remaining holdouts. (These new behaviors will certainly be defined in new rep-
resentation schemes. For an example, see our reply to Objection #3, in Section 7.) Considering this, we see no
reason why the above algorithm cannot be sustained, and applied to X B N,z B(S). and beyond. Specifically, we

have every reason to believe that once n is cracked, lessons learneg in that solution can be used to bootstrap up
ton+ 1.

We turn now to the argument itself.

6. The new Godelian argument

First, note that, for generality, we drop the subscript B from X®. Then here we go:

Proof. The argument is at its core a reductio. The following constitutes the argument’s premises:

s There exists a human person who has determined the productivity of the initial segment of Turing machines
(such people are in the RAIR Lab):

(1) 3p(D(p, Z(1))A- - - AD(p, Z(6))).

e There is a natural number at and beyond which Turing machines of size less than or equal to k fail (with
respect to determining productivity):

(2) InVm(#(m) < k — ~D(m, Z(n)) A =D(m, Z(n+ 1)) A =D(m, Z(n + 2))...).
e If a person can determine the productivity for n, he/she can determine it for n + 1:
(3) VnVp(D(p, Z(n)) — D(p, Z(n + 1))).
Now, to generate absurdity, suppose that computationalism holds, i.e., reiterating from above:
(€] VpIm(p = mA#(m) < k).

Next, suppose that p* is an arbitrary person who determines the initial segment of the busy beaver prob-
lem, i.e.

[(P)](D(p*, Z(1)) A -+ A D(px, Z(6)).

By universal elimination on (%') we have:

(4) Im(p* = mA#(m) < k).
Next, we make the supposition, with m* as arbitrary, that

(5) (p* = m*A#(m*) < k)
and likewise the supposition, with n* arbitrary, that

(6) Vm(#(m) < k — ~D(m, Z(n*)) A =D(m,Z(n* + 1)) A=D(m,Z(n* +2)...)
from which it follows by universal elimination that

(7) (#(m*) < k — -D(m*, Z(n*)) A =D(m*, Z(n* + 1)) A=D(m*, Z(n* +2)...).
From (5) and (7) we can infer

~D(m*, Z(n*)) A ~D(m*, Z(n* + 1)) A =D(m", E(n" +2)...)

but by identity elimination and induction using (3), (5), and (p), we can deduce VnD(m*, X(n))—contra-
diction. It follows that since (i) (as we have repeatedly noted) human persons are (or at least encompass)
information processors somewhere in the Arithmetic Hierarchy, and (ii) (as we have also earlier noted)
if persons are ordinary Turing machines they have a certain fixed size k, human persons are
hypercomputers. [
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We have described this reasoning as a proof, and indeed in one sense it is,'> but again, as we admitted at the
outset, actually it is an argument—a provably valid chain of reasoning with plausible, rather than invulnera-
ble, premises.'* There are two reasons why this is so: (i) the key concept of “determining” is far from fully
formal; (ii) the premises are not unproblematic. We now briefly discuss these two issues in turn.

Obviously, the relation D is central to the argument. We say that D(x, X(n)) abbreviates ‘x determines the
value of X(n),” but concede that ‘determines’ cannot be completely specified by a set of necessary and sufficient
conditions. However, the concept can be sufficiently characterized for present purposes, as follows. First, note
that D(x, Z(n)) makes reference to one particular natural number 1, the number of states of the particular set
of Turing machines in question. (For each », there is only a finite set of n-state TMs.) D does not refer to the
overall busy beaver problem, for to solve that problem is of course to determine productivity for every natural
number. Note that in our case, as a matter of brute fact, we have determined the productivity of 6, 5, ..., 1.
And notice specifically that in this case computational resources have been used; this should be clear from our
earlier summary of our progress on attacking the busy beaver problem (Section 5). So determining can include
getting help from standard computation—but it must be standard: it would not be permissible to consult a
hypercomputational device, or an oracle, and it clearly would not suffice to simply guess the answer. In short,
to determine a value some genuine problem solving must take place. In addition, accompanying justification,
in the form of a proof, must be provided (which is in keeping with Godel’s emphasis on humanity’s progress in
finding proofs, and with our approach to verifying our progress on the busy beaver problem: see our reply to
Objection #3 in Section 7).

Though, as we have said, the second reason we have managed to articulate not a proof, but rather a rig-
orous argument, is that premises are problematic, the trio of propositions in question is strong: Premise (1) is
an empirical fact. Premise (2) is indisputable, as it is merely a weaker proposition than that the busy beaver
function is uncomputable. Premise (3) represents Godel’s intuitive view, fleshed out in connection to the busy
beaver problem. The idea is really quite simple: if humans are smart enough to determine Z®(n), they will even-
tually (perhaps after 100 years, perhaps after 1000, perhaps after 1,000,000,000, etc.) be smart enough to deter-
mine X%n + 1): they will invent some new technique for economically representing the behavior of n + 1
machines, and for detecting in that representation when activity will eventually cease, and when it will not:
there will remain no holdouts. Though we are not claiming that premise (3) is unassailable, it seems to us
remarkable that one would maintain its denial: that is, that one would maintain that it is impossible, however
long the analysis takes, to move from success on n to success on n + 1. Godel, we strongly suspect, was moved,
at bottom, by the same perception of absurdity.'”

Skeptics will of course remain, but they need to take account of the fact that, while (3) may not be unas-
sailable, a variant would seem to be, viz., that if humans are smart enough to determine X B(n), it is then math-
ematically possible that they determine XB(n + 1). Notice that this does not hold with respect to Turing
machines: when we say that a Turing machine m of size k, as a matter of proof, must fail to determine the
productivity of » and its successors, we are by implication saying that it is mathematically impossible that
m determine the productivity of n and its successors. (Every theorem t is such that, using the necessity
operator of modal logic [28,17], Ot; and if some machine m cannot X, then, where the diamond can be read

3 If given as input to a mechanical proof checker it comes back as verified; or, if the conclusion is negated and given to a standard
resolution-based ATP along with the premises, a contradiction is returned.

4 Let us leave aside the historical fact that some venerated proofs of today (e.g., from Cantor) were rejected when first shared with
mathematicians and logicians.

'3 1t should also be noted that if anything can count as evidence in favor of (3), it surely must be that, as a matter of empirical fact, our
race continues to climb from » to n + 1. This is not ironclad evidence, but it is evidence. Remember, though we know that no standard
Turing machine can continue indefinitely, the question on the table is whether persons are such machines themselves—and so it is not
acceptable to reject the mounting evidence in the human sphere simply because we know ahead of time that every Turing machine will
eventually get stuck.
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‘possibly,’ —~&mXs.)'® If one were to develop these ideas, it would require a parallel of the find of careful inves-
tigation undertaken in [13]; such investigation will have to wait for another paper built atop the present one.
We turn now to setting out and rebutting five objections to our argument.

7. Objections
We set out and rebut five objections in this section.
7.1. Objection #1; reply

The first objection can be expressed as follows: “The third premise in your argument is in the spirit of say-
ing that given enough time, humans can solve anything. This premise is shown to be false by parody, because
this assertion resembles the claim that the human record for the 100 m run will converge to 0 s, since we (the
human race) achieve a new record with each passing year. The point is that solving the busy beaver problem
for input up to 6, as you have done (after much research and development), does not tell us much about the
limits of the human mind”.

In reply, first, note that our argument most assuredly does not even flirt with the notion that given enough
time, humans can solve anything. Problems unsolvable by infinite time Turing machines, for example, are
problems that, for all we say in the paper, are unsolvable by human persons, period. The premise in question
says only that if the human race gets to n in the X problem, it can get to n + 1. The formal reasoning over this
premise that is part and parcel of our argument would in fact be obviated if we made the naive, blanket claim
this objection ascribes to us.

Second. there is here an acute disanalogy, since we know that it is physically impossible that a human
(under standard conditions: e.g., the human’s body cannot be replaced in significant part by a robotic one,
etc.) run a 100 m race in, say, 1 s (let alone zero!). But we do not know that it is impossible for a human being
to always be able to move to the next increment in the X challenge. What we do know is that no computing
machine at the Turing Limit or below can always move up one increment 7 + 1 from success on a prior .

Third, Machlin and Stout [34] point out that Rado himself pronounced, at a symposium in the same year
that his proof of the uncomputabiliy of the arbitrary case was published, that four-state machines were
“entirely hopeless”. Given that we have now passed beyond the hopeless, and see further progress on the hori-
zon, the busy beaver problem is in point of fact telling us that our race’s reach is beyond where some rather
smart people figured it would stop.

7.2. Objection #2; reply

The second objection runs as follows: “The usual proof of the uncomputability of the busy beaver function
shows that any program of size j must fail to compute the right value for some aj, where « is a very small con-
stant, say 8. In other words, any program of size j can only work for inputs <8;. Now, the number of possible
human brain states may be something like 219" 'Sg the theorem in question only implies that humans will get
stuck billions of orders of magnitude past were current research on computing the function stands”.

This counter-argument is ambiguous between two possible interpretations, both of which are fallacious.
One possibility is this reasoning:

16 The point here is not the same as saying that there is no proof that human mental power coincides with processing at and below the

level of standard Turing machines. The point is simply that when a standard Turing machine is unable, as a matter of proof, to X, then we
can say, using the box operator of modal logic (assuming, say, the system KT45), it is logically necessarily the case that (=0J) that TM
cannot X. Things appear to be quite different in the case of human persons: it seems odd to maintain that it's logically necessary that
persons cannot X, where X relates to some Turing-uncomputable task. After all, where is the contradiction that can be derived from
supposing that humans can X? (If X-ing is logically impossible, then a contradiction must be derivable from supposing that X-ing
happens).
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Interpretation 1
(1) Any program (at or below the Turing Limit) of size j can only determine the Z value of %/ and less, for
some constant o.
(2) The human brain is of size j.
.-(3) Persons are unable to determine the X value of any number greater than 2.

This argument is formally invalid, as can be immediately seen when it is represented in elementary logic.
The fact is, proposition (3) does not follow from (1) and (2). Interpretation 2 corresponds to the argument
resulting from the addition of two key premises, viz.,

(4) The human brain is a program at or below the Turing Limit.
(5) Persons are brains.

SRR R

Now, it must be agreed that {(1), (2). (4), (5)} F (3); this is Interpretation 2. But we nonetheless still have
fallacious reasoning: we have petitio principii, for the simple reason that the (4) and (5) pair is precisely what is
at issue. Any counter-argument that takes as premises this pair is circular reasoning, since, again, the purpose
of the present inquiry is to see if we can provide a rigorous case for Godels rejection of this conjoined pair, in
favor of the view that persons operate beyond the Turing Limit."”

7.3. Objection #3; reply

The third objection: “There is a hidden assumption behind the reasoning you put forth: that once we have
recorded an answer for X(m), for a certain input m (5, say), we will never change it. History has shown this
assumption to be perilous, because humans are far from immune to errors”.

There are two reasons why this objection fails. First, it seems to imply that, in general, humans cannot trust
the output given them by ordinary computing machines. But why should work on the busy beaver problem be
held to standards higher than those in play in other domains? Every time we use a calculator to do anything
more intricate than what we can do mentally we are trusting that the computation in question is correct. The
second reason why the third objection fails is that our research on the busy beaver can be recast to fall within
the declarative approach, which produces proofs for every result recorded. In this approach, we first re-rep-

i resent Turing machines in declarative fashion, using one of the standard routes toward proving the undecid-
ability of first-order logic (e.g., see the undecidability proof in [8]). This produces, for each TM m, a set of
formulae A U ¢, such that A" ¢} iff m halts (started on the O-filled tape). We then add formulae correspond-
ing to repetitive behavior. E.g., using the denotational proof language Athena [1] we can say:

Can the machine enter a state in which it will read
what’s under the read head, write the same symbol, stay
in the same place, and transition to the same state?

(define WillLoop
(exists ?t ?q ?x %c
(and (Transition ?q ?x ?x Stay ?q)
(InState 2t 2q)
(ReadingCell ?t ?c)
(Contents ?t ?c¢ ?x))))
Using Athena’s proof-search constructs, we then write theorem-proving procedures that utilize state-of-the-

art systems such as Vampire [51] in order to analyze the Turing machines in question. A representation of the
problem in logic immediately raises the level of trust we are justified in having in the results obtained with help

17 Either because human brains are information processors operating above the Turing Limit (—(4)), or because persons are not brains
(=(5))-
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from a computer [2].18 In fact, the idea is to record a value for Z(m) only if that value is accompanied by a
(machine- and human-) checkable proof that that value is in fact correct.

7.4. Objection #4; reply

The fourth objection: “There is some confusion of a specific person with all of humanity, past, present, and
future. The relevant claim in your argument, premise (3), refers to individual persons, since you're quantifying
over the set of persons (as a sort), and yet in your further justification after presenting that argument, you refer
to humanity (‘If humans. .. will eventually. .. after 1,000,000,000 [years]...").”

We do indeed shift freely between individual persons, and humanity, but this is harmless, and accords with
what Godel apparently had in mind. It is harmless because just as there are no restrictions on time and energy
when we consider what a standard Turing machine can compute (2 nice discussion of this well-known fact,
which enlivens computability theory, is provided in [8]), there are likewise no restrictions with respect to time
and energy when we are talking, in the present context, about a particular person.‘9 So we could talk of one
idealized. immortal person “‘converging to infinity” in cognitive power, or—following Godel directly—the
race itself “‘converging to infinity’” as generation after generation ascends in mental power. Either way, pre-
mise (3) suitably encapsulates the basic idea that, so to speak, each rung on the ladder can be reached from
the one just beneath it 20 In addition. we are free to ignore the fact that some persons alive today have insuf-
ficient cognitive power to even grasp the 2 function. We can ignore this fact, again, because we are speaking of
persons in the ideal case. Put concretely, quantification in the argument over persons is thus quantification
over those persons able to fully grasp the challenge, and attack it with full cognitive power. This is really stan-
dard practice, when you think about it. For example, when we say that humankind was smart enough to puta
man on the Moon, we are fully aware of the fact that, actually, only a relatively small percentage of humans
were cognitively equipped (because of the right training, the right nutrition, genes, and so on) to be members
of a team able to pull this feat off.

7.5. Objection #5; reply

The fifth and final objection is expressed as follows: “There is in your case against computationalism a hid-
den assumption that people are unaffected by nature. But one can affirm computationalism (€/%’), while still
allowing humans to solve problems beyond the reach of standard Turing machines—because they can solve
such problems by virtue of external hypercomputational effects. After all, historically, many scientific break-
throughs happen serendipitously™.

It may well be that hypercomputation takes place in nature (for a defense see [18]), but surely we do not yet
know how to harness such naturally occurring phenomena [14]. In light of this situation, it would indeed have
to be serendipitous if naturally occurring hypercomputation affects some human project in a favorable man-
ner. However, luck is not part of problem solving; this can be seen by consulting accounts of problem solving
viewed as an area within cognitive psychology (e.g., see [3,23]), or accounts of problem solving in the form of
means-ends (or goal) analysis popular in logic and artificial intelligence (e.g., see the traditional account of
goal analysis in [6]). Reflective of the fact that problem solving includes only what the agent in question
can receive at least some credit for, the key relation D in our argument, as we have said earlier, excludes luck.

18 This approach also raises the possibility of automating the inductive proofs that show some particular repetitive behavior does in fact
guarantee non-haltingness (these proofs are currently done by hand). We are currently considering this possibility.

19 15 addition, just as in computability theory we consider machines working on and on without being impeded by natural events, so too
we are considering people who work on and on, despite the fact that we know it is physically possible that the entire race become extinct
(because of some cataclysmic event).

20 The generation-to-generation approach does assume that there is a way to manage the ongoing project, and that that way is itself
computable. But there are myriad existence proofs of the fact that such multi-generation management can be pulled off, and is
straightforwardly mechanical. Lying closest to home is the existence proof based on the busy beaver work carried out thus far by homo
sapiens, since here we are as a group in 2005 working as a natural extension of minds that have unfortunately passed away. And then,
further afield, there are myriad confirming cases. E.g., NASA routinely runs projects that provide confirmation, as in, at present, a manned
mission to Mars.
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8. Conclusion

Our purpose herein was to articulate a new, credible case against ¥’ and %, and hence for the view that
human persons hypercompute, on the basis of Gdodel’s intuition regarding the ever-ascending human mind.
We did not take on the onus of proving that Godel is right. So, not everyone will be persuaded by the case
we have presented. But one thing should be indisputable even at this point in the dialectic we hope to have
started: With the advent of hypercomputation, and an increase in the level of our race’s understanding of this
mode of information processing beyond the Turing Limit, there arises the great and irresistable question as to
whether or not, as information processors ourselves, we are above this limit.
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