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Abstract

This chapter is an esemplastic systematization of declarative computational cognitive modeling, a field
that cuts across cognitive modeling based on cognitive architectures (such as ACT-R, Soar, and Clar-
ion), human-level artificial intelligence (AI), logic itself, and psychology of reasoning (especially of the
computational kind). The hallmarks of declarative computational cognitive modeling are the following
two intertwined constraints: (1) The central units of information used in the approach are (at least in
significant part) declarative in nature, and the central process carried out over these units is inference.
(2) The approach to modeling the mind is top-down, rather than bottom-up. (These two points are inter-
connected because once one commits to (1), (2) becomes quite unavoidable, since bottom-up processing
in the brain, as reflected in relevant formalisms (e.g., artificial neural networks), is based on units of infor-
mation that are numerical, not declarative.) The systematization of declarative computational cognitive
modeling is achieved by using formal logic, and hence declarative computational cognitive modeling, from
the formal perspective, becomes logic-based computational cognitive modeling (LCCM).

The chapter covers some prior research that falls under LCCM; this research has been carried out by
such thinkers as Johnson-Laird, Langley, Rips, Simon, and Sun. The material that follows is introductory
in nature, and self-contained; it assumes only a modicum of previous exposure to discrete mathematics
and computability theory. The key formal elements of LCCM are (a) a generalization of the concept
of a logical system, central to mathematical logic, and (b) computing in such systems in the declarative
programming paradigm, via logic-based computer programs, which are generalized versions of logic pro-
grams from mathematical logic and computer science. In LCCM, a (logic-based) computational cognitive
model of some (or all) human cognition amounts to the execution of a logic-based computer program PL

in the context of a logical system selected from a family F of such systems. LCCM is designed to meet
a number of challenges facing those wishing to devise computational simulations of human cognition.
Three such challenges are discussed in the present chapter: the need to model and simulate sophisticated
human reasoning (of the three, the one emphasized herein); the need to formulate a transparently unified
theory of cognition; and the apparent need to achieve significant rigor in the computational simulation
of human cognition — rigor which, in LCCM, emerges naturally from providing a formal syntax and
semantics that precisely determines the structure and meaning of a logical system used to represent some
part of human cognition, and determines as well the meaning of a computational cognitive model, or
simulation, on the strength of the fact that the meaning of a logic-based computer program is easily
made precise. The gain in precision offered by LCCM enables this field to be, like physics, mathematics,
logic, and computer science, theorem-guided. Many regard such guidance to be desirable.

∗Special thanks are due to my friend and colleague Konstantine Arkoudas for myriad suggestions, and for implemented
systems that help make declarative computational cognitive modeling a concrete, rigorous reality.
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1 Introduction

1.1 What is Logic-Based Computational Cognitive Modeling — In a Word?

This chapter is an esemplastic systematization of a particular approach to modeling the mind: declarative
computational cognitive modeling. (In light of the fact that if an agent knows p, p must be a proposition
or declarative statement, sometimes the term ‘knowledge-based’ is used in place of ‘declarative.’ Some
writers even use the dangerously equivocal term ‘symbolic.’) Naturally enough, the basic units of such
modeling are declarative in nature, or propositional: they are formal objects naturally associated with
those particular sentences or expressions in natural languages (like English, German, Chinese) that are
declarative statements (as opposed to expressions in the imperative or inquisitive mode) naturally taking
values such as true, false, unknown, probable (sometimes to particular numerical degrees), and so on.
The basic process over such units is inference, which may be deductive, inductive, probabilistic, abductive,
or analogical. Because the basic units of declarative computational cognitive modeling are declarative, a
hallmark of declarative computational cognitive modeling is a top-down, rather than bottom-up, approach.
As Brachman & Levesque (2004) put it, when speaking of declarative computational cognitive modeling
within the field of artificial intelligence:

It is at the very core of a radical idea about how to understand intelligence: instead of trying to understand
or build brains from the bottom up, we try to understand or build intelligent behavior from the top down.
In particular, we ask what an agent would need to know in order to behave intelligently, and what
computational mechanisms could allow this knowledge to be made available to the agent as required.
(Brachman & Levesque 2004, p. iv)

The top-down approach is unavoidable, because, as reflected in relevant formalisms commonly associated
with bottom-up approaches (e.g., artificial neural networks), the basic units in bottom-up processing are
numerical, not declarative. The systematization of declarative computational cognitive modeling, which is
the overarching purpose of the present chapter, is achieved by using formal logic, and hence declarative
computational cognitive modeling, from the formal perspective, becomes logic-based computational cogni-
tive modeling, sometimes abbreviated below to ease exposition as ‘LCCM.’ Correspondingly, to decrease
verbosity and repetition of the phrase, ‘computational cognitive modeling’ will sometimes be abbreviated
below as ‘CCM.’

Logic-based computational cognitive modeling is an interdisciplinary field that cuts across: cognitive
modeling based on cognitive architectures (such as ACT-R, Soar, Clarion, Polyscheme, etc.), logic itself,
and computational psychology of reasoning. In addition, LCCM has a sister in logic-based human-level
artificial intelligence (AI), and, being computational in nature, it inevitably draws heavily from computer
science, which is itself, as has been explained (e.g., in Halpern, Harper, Immerman, Kolaitis, Vardi &
Vianu 2001), based on formal logic. Specifically, and unsurprisingly, the declarative programming paradigm
is naturally associated with declarative computational cognitive modeling. This paradigm, specifically as it
applies to LCCM, will be explained later.

1.2 Absence of Advocacy in this Chapter

The present chapter is entirely free of advocacy; its purpose has nothing to do with supporting one group of
practitioners in computational cognitive modeling over another, or one paradigm for computational cognitive
modeling over another, or one particular cognitive architecture over others. Logic-based computational
cognitive modeling, as set out herein, is not intended to be a description of the day-to-day practice of all
cognitive modelers operating under the umbrella of declarative computational cognitive modeling. Such
practice is dizzyingly heterogeneous. Logic-based computational cognitive modeling, as explicated herein, is
directly analogous to the systematization of mathematics provided by many decades of formal exposition in
books authored by Bourbaki1 — exposition that shows, formally speaking, that discovery and confirmation

1A group allonym for the mathematicians who authored a collection of eight painstakingly rigorous, detailed books showing
that all the archival results of mathematics, when pursued with a desire to divine and specify the underlying structure of these
results, is fundamentally a derivation from axiomatic set theory using the logical system known as first-order logic, which is LI

in the family F of systems introduced and explained in the present chapter. An overview of the Bourbaki oeuvre would defeat
its very purpose: Interested readers can start with the first volume: (Bourbaki 2004).
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in mathematics consists, fundamentally, in the derivation and use of theorems all extractable from a small set
of axioms (e.g., the Zermelo-Fraenkel axioms for set theory). The parallel in the present chapter is that all
declarative computational cognitive modeling, formally speaking, is fundamentally the use of logical systems
(as defined below) and logic-based computer programs (as also defined below) to model the human mind.

That all the archival products produced in mathematics are now known to consist, fundamentally and
formally, of precise reasoning over a set of axioms of set theory is perfectly consistent with the fact that
some mathematicians, in their day-to-day practice, exploit diagrams and sketches, whereas others have an
exclusively linguistic orientation. Both groups are united, however, by the underlying formal structures that
they are using and exploring. Likewise, in contemporary declarative computational cognitive modeling, one
researcher may in daily practice use production rules, and another first-order logic, and another graphs to
record probability distributions across declarative statements, and another semantic models, and yet another
semantic networks, but they are all united by the fact that the structures and processes they produce, are
all and only, at bottom, the formal structures explicated in this chapter. In a search for ultimate rigor
and generality in the area of computational cognitive modeling that is declarative in nature, logic-based
computational cognitive modeling marks the arrival at the desired destination.

The absence of advocacy characterizing the present chapter is seen also in the fact that the purpose
of this chapter is certainly not to introduce a new competitor to extant, mature computational cognitive
architectures such as Soar (Rosenbloom, Laird & Newell 1993), ACT-R (Anderson 1993, Anderson & Lebiere
1998, Anderson & Lebiere 2003), Clarion (Sun 2001), Icarus (Langley, McKusick, Allen, Iba & Thompson
1991), SNePS (Shapiro & Rapaport 1987), and Polyscheme (Cassimatis 2002, Cassimatis, Trafton, Schultz &
Bugajska 2004), nor to declarative computational simulations of parts of human cognition, such as PSYCOP
(Rips 1994), and programs written by Johnson-Laird and others to simulate various aspects of so-called
mental models-based reasoning (a review is provided in Bucciarelli & Johnson-Laird 1999). These systems
are all pitched at a level well above LCCM. Rather, again, the purpose of the present effort is to describe,
systematically, what underlies the declarative approach to computational cognitive modeling exemplified by
(at least significant parts of) these computational cognitive architectures and simulations, which partake,
at least in part, of declarative representations and reasoning over these representations. In fact, the formal
umbrella used for the systematization is such as to offer a way to understand and rationalize all computational
cognitive architectures that are declarative; that is, that are, at least in part, rule-based, explicitly logic-
based, predicate-and-argument-based, propositional, production-rule-based, and so on. The ancient roots
of this kind of work, as we shall shortly see, run back to Aristotle. Though his theory of the syllogism
was invented before the modern notion of a logical system, we can easily see that this theory, formally and
foundationally speaking, is a (simple) logical system, and that LCCM, as set out in this chapter, therefore
underpins Aristotle’s declarative modeling. A parallel situation obtains between the content of this chapter
and the specific architectures of today. Of course, some architectures overtly use some logic-based elements
(e.g., Icarus and Polyscheme), and the present chapter thus directly provides a formal generalization of
parts of such architectures.2

The formal foundations of declarative computational cognitive modeling, as will be seen, are remarkably
simple: they rest only on a generalization of (a) the concept of logical system, used in mathematical logic,
and (b) the notions of reasoning and computing in such systems, by way of logic-based computer programs.
A computational simulation of some human cognition amounts to the execution of such a program in the
context of certain selected parameters, where these parameters determine which logical system is operative.
All of this will be explained in due course.

1.3 The Ancient Roots of LCCM

Declarative computational cognitive modeling is the oldest paradigm for modeling the mind. As shown in
the standard timelines on such matters, over 300 years BC, and hence many, many centuries before the
arrival of such things as probability theory and artificial neural networks, logic and logic alone was being
used to model and predict human cognition. For example, consider the following argument:

2Another overtly logic-based computational cognitive architecture is the Rensselaer Advanced Synthetic Character Architec-
ture for Living Systems, or just RASCALS, used in the Rensselaer AI & Reasoning Lab to build advanced synthetic characters
for education and entertainment, such as the character known simply as ‘E.’ A summary of some of the research and engineer-
ing associated with RASCALS and E is found in (Bringsjord, Khemlani, Arkoudas, McEvoy, Destefano & Daigle 2005). The
challenge of building advanced synthetic characters in these domains is discussed in this paper as well.
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(1) All professors are pusillanimous people.
(2) All pusillanimous people are proud.

∴ (3) All professors are proud.

The symbol ‘∴’, often read as ‘therefore,’ says that statement (3) can be logically inferred from statements
(1) and (2); or in other words that, if statements (1) and (2) are true, then (3) must be true as well. Is
that so? The odds are exceedingly good that you will see the answer is “Yes.” The cognition that consists
in your assimilating this argument, declaring it valid, and — were you requested to do so — providing a
proof to justify your response, was modeled and predicted by Aristotle.3 To use today’s well-understood
concept, which will soon turn out to be central to the present chapter, Aristotle’s modeling was expressed
in a primitive logical system. This system was the theory of the syllogism, according to which the schema

(1∗) All As are Bs.
(2∗) All Bs are Cs.

∴ (3∗) All As are Cs.

is deductively valid, no matter what classes are denoted by A, B, and C. According to Aristotle, if you
were now to be presented with an instantiation of this schema different from the one given about professors
(e.g., if A = ‘pigeons,’ B = ‘pongid,’ C = ‘smart’) you would respond that it, too, is a valid inference (and
you would of course be correct again). The remarkable thing about your response in the second case is that
you will grasp the logical validity of the inference in question, despite the fact that, necessarily, no pigeons
are pongid. In other words, Aristotle discovered that certain context-independent structures describe and
predict human thinking: you don’t assent to the second argument because you know the meaning of ‘pigeon’
and ‘pongid,’ but rather because you grasp that the abstract structure of the argument is what makes it
a valid inference. Because computation was in its infancy 300 BC, and the concept of a general-purpose
programmable computer would have to wait until logic made enough progress to give birth to it, it was far
from clear to Aristotle how the schemas in his logical system were computational in nature, but in essence he
had indeed presented a series of parameterized functions for computing the composite function from triples
of formulas in the formal language he invented, to the set {valid, invalid.} If the function is s, then since
the formulas are all and only of four types, viz.,

English: All As are Bs. No As are Bs. Some As are Bs. Some As are non-Bs.
Abbreviation: All AB No AB I AB O AB̄

we can say that s returns valid on the triple (All AB, All BC, All AC), with substitutions for A−C. For
another example, notice that s returns valid on the triple (I AB, All BC, I AC). Later, an invalid triple
will turn out to be relevant to modern-day research in psychology of reasoning (section 3.1.4).

Today, using modern experimental design and statistical analysis for the behavioral sciences, a large
amount of data has been accumulated in support of large parts of Aristotle’s model (e.g., see Newstead &
Evans 1995). However, there are two serious problems with the theory of the syllogism. These two problems
are in fact the main drivers that have brought LCCM to the level of maturity it enjoys today, and explaining
the solution to them forms the heart of the present chapter, as will soon be seen. They are:

Problem 1 Some humans don’t reason in normatively correct fashion. Tied to the ancient theory at hand, some
human subjects fail to reason in conformity to valid syllogisms (i.e., to s), and in fact sometimes reason in
conformity to provably invalid syllogisms. Aristotle, and his successors in the LCCM paradigm all the way up
to and including Piaget (who held that in the course of normal development humans would acquire a capacity
to think not only in accordance with the theory of the syllogism, but with the much more expressive, powerful,
and complicated modern logical system known as first-order logic (Inhelder & Piaget 1958)), failed to realize
this. The realization came when, in the 20th century AC, Wason and Johnson-Laird showed that normatively
correct thinking is in surprisingly short supply among humans (see, e.g., Wason 1966), as can be seen when
clever stimuli are devised and presented. (We visit such stimuli later, in section 3.1.4. They are syllogisms
which, by s, are classified as invalid, and yet many humans report that they are valid.)

Problem 2 The theory of the syllogism was agreed by the relevant thinkers, even at the time of Aristotle, to be
at best a model of only a smidgeon of the parts of human cognition that are obvious targets for declarative
modeling (e.g., the specification of proofs, as routinely carried out by mathematicians). The specific evidence

3Aristotle’s work on logic, including the theory of the syllogism, can be found in his Organon, the collection of his stunningly
seminal logical treatises. This collection, and Aristotle’s other main writings, are available in (McKeon 1941).
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that gave rise to this agreement consisted of the brute fact that only a tiny part of Euclid’s seminal logical
and mathematical reasoning, published in his Elements, could be modeled as syllogistic reasoning.4 Today,
courtesy of modern logic, LCCM can model all that Euclid did — and more, as shall be seen.

1.4 LCCM’s Brother: Logic-Based Human-Level AI

As stated at the outset, logic-based computational cognitive modeling cuts across a number of fields, draws
deeply from computer science, and has, in logic-based human-level AI, a sister field. The purpose of the
present chapter is to present and explain LCCM itself, not to characterize in depth the fields with which
it intersects, draws from, or parallels. (That said, some of these fields, in what follows, will to a degree
be explored. For example, in the course of explaining LCCM, the reader will learn quite a bit about logic
in and of itself.) Nonetheless, in the case of its sister, it does make sense to say a few words, because the
comparison sheds some light on logic-based computational cognitive modeling itself.

AI is the field devoted to building intelligent agents that map percepts (perceived information about the
agent’s environment) to actions that cause changes in the agent’s environment, in the service of goals desired
by the agent (Russell & Norvig 2002). This definition is consistent with attempts to build agents having
no more intelligence than, say, an insect. (Some famous AI engineers have in fact strived to build robotic
insects. Brooks 1991 is an example.) Human-level AI, as you can no doubt surmise, is AI focused not on
insects, but on intelligent agents capable of human-level behavior. Recently a recrudescence of this form of
AI has begun, as a number of writings confirm (e.g., see Cassimatis 2006, Nilsson 1995, Nilsson 2005, Brooks,
Breazeal, Marjanovic, Scassellati & Williamson 1999). Of the authors just cited, Nilsson avowedly pursues
logic-based human-level AI, while Brooks avowedly does not; Cassimatis straddles both camps.

How are logic-based computational cognitive modeling and human-level logic-based AI related? How
similar are they? What makes them different? The encapsulated answer is straightforward: The two
fields are largely based upon the same formalisms, both exploit the power of general-purpose programmable
computing machines to process symbolic data, but LCCM targets computational simulations of human
cognition, whereas human-level logic-based AI, as you might expect, strives to build beings that, at least
behaviorally speaking, can pass for humans. While it’s conceivable that both fields might well be on the
same exact path (one that leads to building a computational system indistinguishable from a human), LCCM
insists that the engineered system, at some suitably selected level of description, operate as a human does.
Human-level AI would be content with artifacts that seem human, but “under the hood” really aren’t. As
to shared formalisms, interested readers are directed to treatments of logic-based AI that introduce the
relevant technical material (summarized e.g. in Bringsjord & Ferrucci 1998a, Bringsjord & Ferrucci 1998b,
Nilsson 1991). The present chapter provides more modern, systematic, and comprehensive treatment of the
underlying formal content than provided in these publications.

1.5 Different Levels of Description

This chapter is based upon an ecumenical conception of what it is to computationally model human thinking,
particularly human reasoning over declarative content. (Because of space constraints, the exposition herein
leaves aside psychology of decision making, despite the fact this discipline is highly declarative, as revealed
by the fact that seminal experiments in the field present subjects with declarative statements to be reasoned
over, in order for decisions to be expressed. For exemplars, see the experiments carried out by Kahneman
and Tversky to establish the so-called “framing effect.” Nice coverage is provided in (Kahneman & Tversky
2000).) To explain, consider the structure of the kind of experiments traditionally used in psychology of
reasoning.5 Let S be some stimulus in some experiment involving a person (subject) P , and specifically
assume that S is constituted by a list L of declarative statements, a query (or ‘stem,’ to use the argot of
psychometrics) Q, and possibly a single declarative statement D to which Q refers. (If there is no D in S,
then Q is simply: “What logically follows from L?”) The last ingredient is simply a request for a justification.
For example, one might present to P a stimulus such as the following.

4These issues are nicely chronicled by Glymour (1992).
5For a more thorough treatment of this structure, see (Bringsjord & Yang 2003). For prominent use of this structure in

psychology of reasoning, one can read nearly any experiment-based work in that field. For an example of the structure in action,
on a topic that bears directly on the present chapter, see e.g. (Johnson-Laird, Legrenzi, Girotto & Legrenzi 2000).
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Consider L. Q = Does the following proposition logically follow from L? D. Please provide a justification
for your answer.

Now suppose that P gives a verdict (“Yes” or “No”), and provides justification J . In order to achieve a
computational simulation of P in this context, given the inclusive orientation of this chapter, it suffices to
produce a computer program that takes in S, produces the relevant verdict (e.g., the verdict given by the
vast majority of subjects, the normatively correct verdict, etc.), and gives a proof or argument that matches
the justification given. (This is not easy to do, because humans often give justifications, especially when
erroneous, that depart considerably from established machine reasoning patterns.) The proof or argument
itself, in the logic-based paradigm, constitutes the algorithm for transforming the stimulus in question into
the output. Put in a way connected to traditional accounts of levels of description found in cognitive science,
logic-based computational cognitive models are intended to be successful at Marr’s (1982) algorithmic level,
or Pylyshyn’s (1984) symbolic level. In addition, please note that it is perfectly acceptable that justification
be articulated by subjects on the basis of introspection, as long as established empirical techniques are used,
such as verbal protocol analysis (Ericsson & Simon 1984). In the sequel, when we consider a series of specific
puzzles as stimuli (in section 3.1), we suppress, in the interests of space, and consistent with the formal
orientation of the present chapter, details concerning the normatively correct and incorrect justifications
typically provided by subjects.

1.6 The Three Challenges, Briefly

Logic-based computational cognitive modeling addresses a number of challenges to the overall aim of com-
putationally modeling human cognition. Three of them are discussed in this chapter, with emphasis falling
on the first. The exposition that follows revolves around these three challenges to computational cognitive
modeling. They are:

(C1) Human reasoning, though — in its primitive forms — uncovered and charted through decades of
research in psychology of reasoning and psychology of decision making, and — in its more mature
forms — through advances in the closely connected fields of logic, formal philosophy, mathematics,
(parts of) economics, and computer science (the so-called formal sciences6), has for the most part
not been modeled and computationally simulated in declarative computational cognitive modeling,
as evidenced, for example, by what has been modeled in the declarative computational cognitive
architectures associated with LCCM.

(C2) While a number of computational cognitive architectures have been developed in the striving for
Newell’s (Newell 1973, Newell 1990) original dream of providing a unified computational account of
human cognition, the core underlying mechanisms that they each individually offer (e.g., production
rules, representation and reasoning in the propositional or predicate calculus, Bayesian networks,
artificial neural networks) seem to be insufficiently powerful for the task, for either of two rea-
sons: Either the core mechanism, while logic-based, is insufficiently expressive to model the kind
of sophisticated human reasoning referred to in (C1) (as happens, e.g., if the core mechanism for
representation and reasoning is at the level of the propositional calculus or first-order logic); or the
core mechanism, by its very nature, cannot directly model the high-level human reasoning referred to
in (C1) (as happens in the case of neural networks and others non-declarative mechanisms). What is
needed is a core mechanism that is transparently able to range from high-level reasoning and meta-
reasoning, down to perception of, and action on, the external environment. This mechanism would
constitute the comprehensive “logico-mathematical language” Ron Sun (2001) has said is missing in
computational cognitive modeling.

(C3) The languages that most computational cognitive architectures (whether declarative or not) use for
writing simulations do not have a clear and precise syntax and semantics, and the field of com-
putational cognitive modeling is (with a few exceptions) bereft of theorems that could guide and
inform the field. (Of course, some computational cognitive modelers may not want to be guided by
theorems, as those in computer science and physics are. This issue is addressed later.) This adds
another degree of vagueness to a field that is already quite nebulous by the standards of established,
rigorous, theorem-based sciences (such as physics, (parts of) economics, computer science, mathe-
matics, and logic itself). By contrast, models in logic-based computational cognitive modeling are
not only fully declarative, but their meaning is mathematically precise by virtue of the formal syntax
and semantics that is part and parcel of the logical systems on which they are based. In addition,
LCCM is guided by theorems, and the promise of new ones in the future.
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1.7 Structure of the Chapter

This chapter has the following structure. In the next section, (2), the context for logic-based computational
cognitive modeling is set by taking note of the overarching goal of this field: the computational modeling of
human personhood. In section 3, the three challenges (C1)–(C3) are described in more detail (again, emphasis
is on (C1)). In section 4, the logico-mathematical foundation for LCCM is presented: a straightforward
generalization of the concept of a logical system, as used in mathematical logic. As is explained (section
4.1), depending upon what aspect of human cognition is to be modeled and simulated, the appropriate
logical system is selected. As to computation, that is handled by logic-based computer programs. Once
the cognitive modeler has selected the appropriate logical system, a logic-based program relative to that
selection is written, and of course executed. The execution produces a computational simulation of the
cognition under scrutiny.7

Using the logico-mathematical foundation for logic-based computational cognitive modeling, the next
section (5) explains how LCCM addresses the three aforementioned challenges.

In the penultimate section (6), the future and limitations of computational cognitive modeling are briefly
discussed, in the context of what has been presented in this chapter.

The chapter ends with a brief conclusion, in which it is pointed out that while this chapter has introduced
the reader to a frontier (modeling human cognition in unified fashion through logical systems and correspond-
ing computer programs), logic requires issuance of the reminder that no argument has been presented in
support of the claim that that frontier should be explored. In particular, this chapter is agnostic on whether
one gains something by seeking to unify phenomena that can be separately formalized and modeled.

2 The Goal of CCM/LCCM

The goal of computational cognitive modeling (and by immediate implication, the goal of declarative com-
putational cognitive modeling and systematization thereof in LCCM) is to understand the kind of cognition
distinctive of human persons by modeling this cognition in information processing systems of some sort.8

But how is one to understand ‘human cognition,’ pre-analytically? In other words, what is the field of
computational cognitive modeling’s provisional account of what it means to be creatures like us? Or to put
the point in its simplest form: What are modelers seeking to model?

Clearly, no computational cognitive model is provided by merely noting the particular DNA structure of
humans. When it is said that x is human just in case x has a particular genetic code, the perspective is not
that of computational cognitive modeling. Likewise, our minds aren’t modeled by charting the physiology
of our brains. (After all, computational cognitive modeling is committed to the dogma that simulations can
be produced in silicon-based substrates, not carbon-based ones.) Rather, computational cognitive modelers
are asking what it means to be a human being, from the psychological, and indeed specifically the cognitive,
perspective. That is, the question is: What does it mean to be a human person? For ambitious AI, the
CCM’s sister, the centrality of personhood is plain in the relevant literature. For example, here is the more
than two-decade-old objective for AI announced by Charniak and McDermott (1985):

The ultimate goal of AI, which we are very far from achieving, is to build a person, or, more humbly, an
animal. (Charniak & McDermott 1985, p. 7)

One definition of human personhood has been proposed, defended, and employed by Bringsjord (1997,
2000). This definition is a fairly standard one; for example, it generally coincides with one given by Dennett
(1978), and by others as well, for example Chisholm (1978, ?). In addition, this definition is in line with
the capacities covered, chapter by chapter and topic by topic, in surveys of cognitive psychology (e.g., see

7Human cognition over an interval of time may well shift between different logical systems, but in the interests of space this
possibility is ignored in the present chapter. Such “fluid” logic-based processing will in the near future almost certainly be a
very exciting and fertile area for LCCM and its relative, logic-based human-level AI.

8This chapter is confined to information processing systems that are no more powerful than Turing machines (= systems
at or below the ‘Turing Limit’). So-called hypercomputers (Bringsjord & Zenzen 2003) (a) are bona-fide machines (they are
without question information-processing systems); (b) might be physically realizable; and (c) could, according to some authors,
be profitably employed in modeling human cognition. For coverage of the mathematics of information processing above the
Turing Limit, see, e.g., (Siegelmann 1995, Siegelmann & Sontag 1994, Siegelmann 1999, Bringsjord & Zenzen 2003, Hamkins &
Lewis 2000).
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Goldstein 2005, Ashcraft 1994). This definition essentially amounts to the view that x is a person if and
only if x has the capacity

1. to “will,” to make choices and decisions, set plans and projects — autonomously;

2. for consciousness, for experiencing pain and sorrow and happiness, and a thousand other emotions — love,
passion, gratitude, and so on;

3. for self-consciousness, for being aware of his/her states of mind, inclinations, preferences, etc., and for grasping
the concept of him/herself;

4. to communicate through a language;

5. to know things and believe things, and to believe things about what others believe (second-order beliefs), and
to believe things about what others believe about one’s beliefs (third-order beliefs), and so on;

6. to desire not only particular objects and events, but also changes in his or her character;

7. to reason (for example, in the fashion exhibited in the writing and reading/studying of this very chapter).

Given this list, which as you can see is indeed psychologically oriented, CCM and LCCM are fields
devoted to capturing these seven capacities in computation.9 This position on the ultimate objective of
LCCM and CCM meshes seamlessly with a recent account of what CCM is shooting for given by Anderson
& Lebiere (2003), who, instead of defining personhood, give an operational equivalent of this definition by
describing “Newell’s Program,” an attempt to build computational simulations of human-level intelligence,
where that intelligence is cashed out in the form of a list of abilities that correspond to those on the list just
given. For example, part of Newell’s Program is to build a computational simulation of natural-language
communication at the normal, adult level. This is attribute 4 on the list above. As Anderson & Lebiere
(2003) concede, CCM (whether or not logic-based in nature) is finding it rather difficult to mechanically
simulate this attribute.

Attribute 4 isn’t the only sticking point. An even more challenging problem is consciousness, the rep-
resentation of which in third-person machine terms remains elusive (Yang & Bringsjord 2003, Bringsjord
1998a, Bringsjord 2001, Bringsjord 1995, Bringsjord 1999).

In this chapter, as the reader by now realizes, the emphasis is on attribute 7. Some of the other attributes
are ones LCCM can apparently handle, as shown elsewhere. For example, the simulation of attribute 5 in
accordance with the LCCM paradigm would seem attainable in light of the fact that this attribute, from the
standpoint of AI, has been partially attained via the formalization and implementation given in (Arkoudas
& Bringsjord 2005).

3 Three Challenges Facing Computational Cognitive Modeling

In this section a more detailed account of the three aforementioned challenges is provided. In accordance with
the plan laid down above, once these problems have been presented, the reader will be in position to proceed
to the next section, a description of logic-based computational cognitive modeling, and an explanation of
how it is that this sub-field promises to meet the trio. Again, emphasis is decidedly on Challenge 1.

3.1 Challenge 1 (C1): CCM Data from Psychology of Reasoning

At least for the most part, computational cognitive architectures have not been designed in the light of what
psychology of reasoning has taught us over many productive decades of empirical research, stretching back to
Piaget. In addition, whereas computer science and AI have been driven by the powerful use of logic (Halpern
et al. 2001), which is after all the science of reasoning, computational cognitive modeling, whether or not of
the declarative type, has largely ignored powerful human reasoning. (Notice that it is said: powerful human
reasoning. Such reasoning is normatively correct, and sometimes produces significant, publication-worthy
results. When the reasoning in question is not powerful, it should be noted that Ron Sun’s (2001) Clarion
cognitive architecture, discussed separately below, has been used to model some human reasoning.) For
example, there is no denying that while computer science has produced software capable of discovering non-
trivial proofs, no such thing can be accomplished by any computational cognitive architecture. The situation

9Where ‘computation’ as used here covers standard Turing-level computation, and only possibly hyper-computation above
the Turing Limit as well. See note 8.
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is even more odd given that other parts — arguably all other parts — of cognitive psychology have been
viewed as offering guidance and constraints to and on computational cognitive modeling.

The first challenge, (C1), is now expressed as a series of desiderata that any acceptable computational
cognitive architecture would need to satisfy. Some of these desiderata come in the form of specific puzzles
expressed in accordance with the experimental structure set out in section 1, where the challenge is to model
the cognition (both normatively correct and incorrect) catalyzed by the attempt to solve these puzzles. The
section ends with answers to two questions that will occur to a number of readers having some familiarity
with psychology of reasoning and computational cognitive modeling.

3.1.1 Desideratum #1: Modeling System 1 vs System 2 Cognition

In an wide-ranging paper in Behavioral and Brain Sciences, Stanovich & West (2000) explain that there are
two dichotomous systems for thinking at play in the human mind: what they call System 1 and System 2.10

Reasoning performed on the basis of System 1 thinking is bound to concrete contexts and is prone to error;
reasoning on the basis of System 2 cognition “abstracts complex situations into canonical representations
that are stripped of context” (Stanovich & West 2000, p. 662), and when such reasoning is mastered, the
human is armed with powerful techniques that can be used to handle the increasingly abstract challenges
of the modern, symbol-driven marketplace. But before considering these challenges, it’s wise to get a better
handle on System 1 versus System 2 reasoning.

Psychologists have devised many tasks to illuminate the distinction between System 1 and System 2
(without always realizing, it must be granted, that that was what they were doing). One such problem is
the Wason Selection Task (Wason 1966), which runs as follows. (This problem is gradually heading toward
ubiquity in the quasi-popular literature on deductive reasoning; e.g., see (Devlin 2000).) Suppose that you
are dealt four cards out of a larger deck, where each card in the deck has a digit from 1 to 9 on one side,
and a capital Roman letter on the other. Here is what appears to you when the four cards are dealt out on
a table in front of you:

E K 4 7

Now, your task is to pick just the card or cards you would turn over to try your best at determining whether
the following rule is true:

(R1) If a card has a vowel on one side, then it has an even number on the other side.

Less than 5% of the educated adult population can solve this problem (but, predictably, trained mathe-
maticians and logicians are rarely fooled; it would indeed by well nigh impossible for them to be fooled
by an accurate symbolization of the problem). This result has been repeatedly replicated over the past 15
years, with subjects ranging from 7th grade students to illustrious members of the Academy; see (Bringsjord,
Bringsjord & Noel 1998). About 30% of subjects do turn over the E card, but that isn’t enough: the 7 card
must be turned over as well. The reason why is as follows. The rule in question is a so-called conditional,
that is, a proposition having an if-then form, which is often symbolized as φ → ψ, where the Greek letters
here are variables ranging over formulas from some logical system in the family F introduced below. As
the truth-tables routinely taught to young math students make clear (e.g., see Chapter 1 of Bumby, Klutch,
Collins & Egbers 1995), a conditional is false if and only if its antecedent, φ, is true, while its consequent, ψ,
is false; it’s true in the remaining three permutations. So, if the E card has an odd number on the other side,
(R1) is overthrown. However, if the 7 card has a vowel on the other side, this too would be a case sufficient
to refute (R1). The other cards are entirely irrelevant, and flipping them serves no purpose whatsoever, and
is thus profligate.

This is the abstract, context-independent version of the task. But now let’s see what happens when some
System 1 context-dependent reasoning is triggered in you, for there is incontrovertible evidence that if the
task in question is concretized, System 1 reasoning can get the job done.11 For example, suppose one changes
rule (R1) to this rule:

10Though sometimes given a different name, the dichotomy is affirmed by many psychologists of reasoning, as the commentary
following (Stanovich & West 2000) reveals.

11A nice discussion can be found, e.g., in (Ashcraft 1994).
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(R2) If an envelope is sealed for mailing, it must carry a 20 cent stamp on it.

And now suppose one presents four envelopes to you (keeping in mind that these envelopes, like our cards,
have a front and back, only one side of which will be visible if the envelopes are “dealt” out onto a table in
front of you), viz.,

sealed envelope unsealed envelope env. w/ 20 cent stamp env. w/ 15 cent stamp

Suppose as well that you are told something analogous to what subjects were told in the abstract version
of the task, namely, that they should turn over just those envelopes needed to check whether (R2) is being
followed. Suddenly the results are quite different: Most subjects choose the sealed envelope (to see if it has
a 20 cent stamp on the other side), and this time they choose the envelope with the 15 cent stamp (to see if
it is sealed for mailing!). Such is the power of domain dependent reasoning flowing from System 1.

The challenge to logic-based computational cognitive modeling will be to model both types of human
reasoning. This challenge will be met if both normatively correct and incorrect responses to the stimuli
(puzzles) used in psychology of reasoning are modeled. Prior research that can be plausibly viewed as
setting out and tackling aspects of both System 1 and System 2 cognition is hard to find. One exception,
to some degree, is Ron Sun’s (2001) exploration of implicit versus explicit cognition. His exploration is
discussed below (section 4.2.3).

3.1.2 Desideratum #2: Modeling Mental Logic-, Mental Models-, and Mental Metalogic-
Based Reasoning

There is another thing the data in psychology of reasoning implies: While sometimes (logically untrained and
trained) humans reason by explicitly manipulating linguistic entities (e.g., formulas, as when humans con-
struct line-by-line linguistic proofs in proof construction environments like Barwise & Etchemendy (1999)’s
Fitch; natural deduction of this linguistic variety is explained below, in section 4.1), they also sometimes
reason by imagining and manipulating “mental models,” non-linguistic entities capturing possible situations,
and they sometimes reason in a fashion that involves both mental logic, mental models, and meta-reasoning
over the structures posited in these two theories. This meta-reasoning uses rules of inference that at once
range over formulas and mental models, and are obviously rules that cannot be independently modeled in
simulations based either exclusively on mental logic theory, or exclusively on mental models theory.

The first kind of reasoning is explained, explored, and defended by proponents of the theory known as
mental logic (Rips 1994, Braine 1990, Yang, Braine & O’Brien 1998, Braine 1998b, Braine 1998a). Mental
logic has its roots in Piaget, who held (at least at one point in his intellectual life12) that humans naturally
acquire the ability to reason at the level of the proof theory of first-order logic (Inhelder & Piaget 1958,
Bringsjord et al. 1998). Quintessential cases of this kind of reasoning include giving a proof that from (say)
‘If Gooker is a sequaat, then Peeves is a rooloy’ and ‘Gooker is a sequaat’ one can infer ‘Peeves is a rooloy’
by the rule (modus ponens, or — to use the term introduced below — conditional elimination):

If φ then ψ, φ
ψ

Note that with respect to arguments such as these, it would seem rather odd to say that those who produce
them have a mental model of anything. (In connection with quoted description of mental models just below,
it seems counter-intuitive to say that reasoners who reason correctly about the Peeves problem have in
mind some kind of mental model of the world.) They surely seem to be working just from the surface-level
pattern of the linguistic expressions in question. In fact, that is the justification they customarily give when
confronted by stimuli of this sort.

The second type of reasoning has been discovered, explained, and defended by Johnson-Laird (1983),
who characterizes mental models in their contribution to the present volume like this:

12Toward the end of his life, Piaget came to believe that this level of reasoning required the right sort of environmental
conditions — a sort that many youth aren’t lucky enough to receive. Piaget, also later in his life, held that there is a stage
of development beyond the capacity to reason at the level of first-order proof theory. This level is one reached by logicians,
mathematicians, and the like, who can meta-reason over various systems of formal operations, and in fact create such systems.
This level is also a level at the core of the theory known as mental metalogic, discussed briefly just below.
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The theory of mental models postulates that when individuals understand discourse, they construct
models of the possibilities consistent with the discourse. Each mental model represents a possibility.
A frequent misunderstanding is that mental models are images. In fact, they are more akin to three-
dimensional models of the world of the sort that underlie the phenomena of mental rotation [as introduced,
e.g., by (Metzler & Shepard 1982)].

The third sort of reasoning is explained and explored in a third theory known as mental meta-logic (Yang &
Bringsjord forthcoming, Rinella, Bringsjord & Yang 2001, Yang & Bringsjord 2001, Yang & Bringsjord 2006).
According to mental meta-logic, human reasoners, both trained and untrained, often reason in ways that, at
once, invoke representations and inference of the sort posited in mental logic and mental models, and also
meta-inferential rules that manipulate these rules and these models.

Desideratum #2 is that both LCCM and CCM should provide the machinery for mechanizing human
reasoning in all three of these modes.

The remaining desiderata each consist in the need to model human reasoning stimulated by a particular
puzzle. Each of these puzzles, note, conforms exactly to the structure of experiments set out in section 1.
Each of the variables (L,Q,D, etc.) in this structure can be directly instantiated by the specifics in each of
the puzzles. Note as well that the puzzles are selected so as to ensure that the modeling of human reasoning
in question will entail that the first two desiderata are satisfied.

3.1.3 Desideratum #3: Puzzle 1: The King-Ace Puzzle

The third desideratum is to model human reasoning triggered by the following puzzle, a slight variant13 of
a puzzle introduced by Johnson-Laird (1997).

Assume that the following is true:

’If there is a king in the hand, then there is an ace in the hand,’ or ’If there is not a king in the hand,
then there is an ace in the hand,’ — but not both of these if-thens are true.

What can you infer from this assumption? Please provide a careful justification for your answer.

Subjects (logically untrained) almost invariably respond with: “That there is an ace in the hand.” This
response is entirely incorrect. In point of fact, what one can infer is that there is not an ace in the hand.
Later, the reader will see exactly why this is the correct answer. The challenge to CCM and LCCM in the
case of this second desideratum is to provide a mechanical simulation of both the normatively correct and
normatively incorrect responses to this puzzle, and the justification of those responses.

3.1.4 Desideratum #4: Puzzle 2: The Wine Drinker Puzzle

Now let us consider an interesting puzzle devised by Johnson-Laird & Savary (1995) that relates directly to
Aristotle’s theory of the syllogism:

Suppose:

• All the Frenchmen in the restaurant are gourmets.

• Some of the gourmets are wine drinkers.

Does it follow that some of the Frenchmen are wine drinkers? Please provide a careful justification for
your answer.

The vast majority of (logically untrained) subjects respond in the affirmative. Yet, the correct answer
is “No.” Some subjects (some of whom are logically untrained, but the vast majority of which have had
significant formal training) respond in the negative, and offer a disproof, i.e., a proof that ‘Frenchmen are wine
drinkers’ does not follow from the two suppositions. The disproof includes an example (following standard
terminology in mathematical logic, a countermodel) in which the premises are true but the conclusion false,
and the point that such an example establishes a negative answer to the wine drinker query.

The requirement to be met by both CCM and LCCM is that computational simulations of both types of
responses be provided.

13The variation arises from disambiguating Johnson-Laird’s ‘s or else s′’ as ‘either s or s′, but not both.’
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3.1.5 Desideratum #5 Puzzle 3: The Wise Man Puzzle (WMP)

Now to the next puzzle:

Suppose there are three wise men who are told by their king that at least one of them has a white spot
on his forehead; actually, all three have white spots on their foreheads. You are to assume that each
wise man can see the others’ foreheads but not his own, and thus each knows whether the others have
white spots. Suppose you are told that the first wise man says, “I do not know whether I have a white
spot,” and that the second wise man then says, “I also do not know whether I have a white spot.” Now
consider the following questions:

(1) Does the third wise man now know whether or not he has a white spot?

(2) If so, what does he know, that he has one or doesn’t have one?

(3) And, if so, that is, if the third wise man does know one way or the other, provide a detailed account
(showing all work, all notes, etc.; use scrap paper as necessary) of the reasoning that produces his
knowledge.

In the case of this puzzle, only the challenge of modeling the (or at least a) normatively correct response
will be explicitly considered.14

3.1.6 Desideratum #6 Puzzle 4: Infinitary DeMorgan

Here is the next puzzle:

Consider a disjunction as big as the natural numbers,15 i.e.,

(1) φ1 ∨ φ2 ∨ φ3 ∨ . . . ∨ φn, φn+1 ∨ . . . .

Suppose that (1) is true. Now suppose you also know that

(2) φ4,599,223,811

is false. What can you now conclude must be the case from (1) and (2)? Why?

As in the puzzle that immediately precedes this one, only concern for modeling the normatively correct
answer will be present herein, which of course is from (1) and (2) it can be immediately deduced that

φ1 ∨ φ2 ∨ . . . ∨ φ4,599,223,810 ∨ φ4,599,223,812 ∨ φ4,599,223,813 ∨ . . . .

3.2 Challenge 2 (C2): Unify Cognition via a Comprehensive Theoretical Lan-
guage

The original dream of the founders of the field of computational cognitive modeling (a dream shared by the
founders of modern-day AI) was to provide a core unifying representation scheme, and mechanical processes
over this scheme, so as to cover all of human cognition. In the case of Soar and ACT-R, the core representation
and process is intended to be essentially the same: chaining in a production system. Other computational
cognitive architectures include different core processes. For example, in Clarion, core processing includes
a sub-declarative dimension, carried out in artificial neural networks.

The second problem LCCM addresses is that the core processes at the heart of these and other in-progress
cognitive architectures certainly don’t seem well-suited to range across the entire gamut of human cognition.
For example, while one can certainly easily enough imagine rapid-fire processing of production rules to cover
simple rule-based thinking, it really does boggle the mind to think of formalizing, say, Gödel’s declarative
cognition in discovering and specifying his famous incompleteness results in the form of production rules. As
the attempt to meet the first challenge will reveal later (see section 4.2.1), lots of cognition that seems to call

14There is insufficient space to fully explain why this is. In short, WMP is rather more difficult than the simple puzzles
that have dominated psychology of reasoning, and this makes it somewhat difficult to see incorrect answers as systematically
incorrect. The students that succeed can produce, in one form or another (i.e., in terminology introduced later, one token or
another), the proof that cracks WMP. But the students who fail often fail for myriad reasons.

15It would be inappropriate in a chapter that doesn’t presuppose knowledge of transfinite numbers to be more precise about
“bigness” in the present context. It suffices to note that there is a rather obvious bijection holding between the disjuncts and
the natural numbers.
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for declarative modeling, specifically calls for logical systems much more expressive than those at the level
of production rules. As will be seen, logical systems at the level of merely the propositional and predicate
calculi (i.e., the logical systems LPC and LI , resp.) suffice to formalize production rules and systems.

It can be explained with a bit more precision why it is that non-declarative cognitive architectures cannot
transparently offer schemes that cut across the full range of human cognition — from high-level cognition
(including meta-cognition, and meta-meta-cognition, . . ., as reflected in attribute 5 on the goal list of section
2) to perception of, and actions that affect the, external environment. In the area of high-level cognition,
the modeling challenge can be expressed by the puzzles listed above in our description of Challenge 1: How
could one write down a production system that represents the declarative statements given in the above
puzzles? More precisely (and to return to the abstract structure presented in section 1): We know that
each puzzle presents the subject with n declarative statements in English: s1, s2, . . . , sn. Furthermore, it is
known that many subjects, when giving normatively correct responses to the puzzles in question, reason over
representations of each si. Let’s denote these representations by rep(si). The challenge, then, is to provide
a computational simulation based on processing over rep(s1), rep(s2), . . . , rep(sn). Notice that the challenge
is not to provide a simulation that simply produces the desired verdict (often, as seen above, either a “Yes”
or a “No”). In addition, a justification that explicitly contains each rep(si) must be provided. Since, for
example, production rules don’t include modal operators, and rep(si) must include such operators in the
case of WMP, it is seen that the challenge is very serious, even within declarative computational cognitive
modeling. If one turns to artificial neural network-based computational cognitive architectures, what single,
determinate representation in such a network corresponds to rep(s2), which after all some subjects (as shall
be seen later) explicitly write down on scrap paper, and manipulate in accordance with certain explicit rules
of inference? And this is only the start of the challenge to non-logic-based computational cognitive modeling,
for there is the specific process of reasoning that the human subjects in question go through to provide the
needed proofs. How could that work in a neural network? Again, even if in principle this is possible, LCCM
solves these puzzle in a transparent way, as is shown below. Given this, if LCCM can also be seen to clearly
allow models of low-level interaction with the environment (what is later called external perception and
action), then it would certainly appear that (C2) is met by LCCM.

To sum up, one can view (C2) as the search for the “unified theoretical language” Ron Sun correctly says
is rather hard to come by:

[I]t is admittedly highly desirable to develop a single, completely unified theoretical language, as a
means of expressing fundamental theories of the mind and its various manifestations, components, and
phenomena. In place of the classical formalism—symbolic computation, we would certainly like to see a
new logico-mathematical formalism that is (1) more analyzable (e.g., in the form of mathematical entities,
as opposed to computer programs, which are notoriously difficult to analyze), (2) more inclusive (for
example, being able to include both symbols and numeric values, and both serial and parallel processing),
and (3) properly constrained (that is, being able to express exactly what needs to be expressed). However,
thus far, there is no such a single unified formalism in sight. (Sun 2001, p. 248)

LCCM, as defined herein, would seem to be the formalism Sun is looking for. On Sun’s three points: (1)
LCCM is in fact fully analyzable, and its programs are transparently so, because they are in the declarative
mode and are themselves well-defined logico-mathematical objects (more about this when the third challenge,
(C3), is shown to be met by LCCM). (2) LCCM, in virtue of logics infused with strength factors (e.g., see
section 4.2.3) and probabilities, and of the fact that logic is ideally suited to parallelism, is fully inclusive.
(3) The expressibility of LCCM is unparalleled: there is no competitor able to directly and easily express
the declarative knowledge in the puzzles in the desiderata composing (C1).

3.3 Challenge 3 (C3): CCM Suffers From a Lack of Mathematical Maturity

In computational cognitive modeling (CCM), a cognitive model is a computational simulation produced
by executing code written in some cognitive architecture. Computational cognitive modeling is thus clearly
intimately related to computer science, which centrally involves algorithms, programs that are tokens of those
algorithms, and the execution of these programs to produce computation. But given this clear connection
between computational cognitive modeling and computer science, it’s at least somewhat surprising that while
the latter is today so rigorous as to be considered by many to be in large part a sub-field of formal logic
(Halpern et al. 2001), which is theorem-based, computational cognitive modeling apparently counts nary a
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theorem among that which it has produced over the course of decades. Part of the root cause of this state of
affairs is that the meaning of code written in computational cognitive modeling is often somewhat mysterious.
Of course, one might retort that since code written in some computational cognitive architecture can be, and
indeed sometimes is, written in some established programming language (LPL) having a formal semantics,
the meaning of a model can simply be identified with the meaning of the program P written in this LPL.
(E.g., LPL could be Common Lisp.) Unfortunately, the meaning of a computational model obviously must
be cognitive in nature. It is crucial that the meaning of a model relates to the goal of CCM, which is to model
human cognition at the symbolic level (as, again, Marr and Pylyshyn would put it), and thereby advance the
science of cognition. Put another way, a program written in CCM should have a radically different sort of
meaning than, say, a program written in operations research. But if P is written in LPL in the field of CCM,
and P ′ is written in LPL in the field of operations research (or any other field far removed from CCM), both
programs will have exactly the same sort of meaning — and it will be a meaning divorced completely from
the cognitive or psychological level.

This problem is solved decisively and cleanly by LCCM, as will be seen. Programs written in declarative
form have an exact meaning, and that meaning accords with the categories that are constitutive of human
cognition, for the simple reason that the declarative level is preserved in the relevant programs. Furthermore,
the machinery that yields this precision in turn yields the result that logic-based computational cognitive
modeling can be guided by theorems. This result, and the desirability thereof, are discussed later.

4 Logic-Based Computational Cognitive Modeling

4.1 Logical Systems

Logic-based computational cognitive modeling is based on a generalized form of the concept of logical system
as defined rather narrowly in mathematical logic, where this concept stands at the heart of Lindström’s
Theorems (for details, see an excellent book covering many additional core concepts presupposed by LCCM:
Ebbinghaus, Flum & Thomas 1994).16 For LCCM, the generalized form of a logical system L is composed
of the following six elements:

1. An object-level alphabet A, partitioned into those symbols that are invariant across the use of L for particular
applications, and those that are included by the human for particular uses. The former are called fixed symbols,
and the latter application symbols.

2. A grammar G that yields well-formed expressions (usually called formulas) LA from A.

3. An argument theory `M
X (called a proof theory when the reasoning in question is deductive in nature) that

specifies correct (relative to the system L) inference from one or more expressions to one or more expressions.
The superscript is a placeholder for the mode of inference: deductive, abductive, inductive, probabilistic,
analogical, etc. The subscript is a placeholder for particular inferential mechanisms. For example, in Aristotle’s
theory of the syllogism, visited at the beginning of the chapter, the first two declarative statements in a valid
syllogism deductively imply the third. Where D is used to indicated the deductive mode of inference, and Syll
the particular deductive scheme introduced by Aristotle, we can write

{All AB,All BC} `D
Syll All AC

to indicate that any declarative statement of the form AllAC can be deductively inferred in Aristotle’s syllogistic
system.

The space of deductive (D) mechanisms include various forms of deduction well beyond what Aristotle long
ago devised (e.g., resolution, sequent calculus, Fitch-style natural deduction; they are explained below). Other
modes of inference, as mentioned, include: probabilistic inference in Bayesian frameworks, inductive inference,
non-monotonic or defeasible inference, and so on.

4. An argument semantics that specifies the meaning of inferences allowed by `M
x , which makes possible a me-

chanical verification of the correctness of arguments.

16In a word, these theorems express the fact that logics more expressive than first-order logic necessarily lose certain attributes
that first-order logic possesses. It should be pointed out that there are a number of different narrow accounts of logical system;
e.g., see (Gabbay 1994).
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5. A formula semantics that assigns a meaning to members of LA given announcements about what the application
symbols are. The values traditionally include such things as true, false, indeterminate, probable, numbers
in some continuum (e.g., 0 to 1, as in the case of probability theory) and so on.

6. A metatheory that defines meta-mathematical attributes over the previous five components, and includes proofs
that the attributes are or are not possessed. Examples of such attributes include soundness (inference in the
argument theory from some subset Φ of LA to φ, where φ ∈ LA, implies that if all of Φ are true, φ must be as
well) and completeness (if φ is true whenever Φ is, then there is a way to infer φ from Φ).

The family F of logical systems populated by the setting of parameters in the sextet just given is infinite,
and includes zero-, first-, and higher-order extensional logics (in Hilbert style, or sequent style, or natural
deduction Fitch style, etc.); modal logics (including temporal, epistemic, deontic logics, etc.); propositional
dynamic logics; Hoare-Floyd logics for reasoning about imperative programs; inductive logics that subsume
probability theory; abductive logics; strength-factor-based and probabilistic logics; non-monotonic logics,
and many, many others. Because all of classical mathematics, outside formal logic, is derivable from merely
a small proper subset of these systems (with some specific axioms), the machinery of LCCM is enormous.
Of necessity, this the scope must be strategically limited in the present chapter.

Accordingly, it is now explained how four logical systems (the first two of which are elementary) are based
on particular instantiations of five of the six elements. (We leave aside argument semantics until we discuss
logic-based computer programming.) In addition, two additional clusters of logical systems, non-monotonic
logical systems and probabilistic logical systems, are briefly discussed after the quartet of logical systems is
presented.

The first logical system is LPC , known as the propositional calculus. The second, more powerful log-
ical system is LI , known as the ‘predicate calculus,’ or ‘first-order logic,’ or sometimes just ‘FOL.’ Every
comprehensive introductory cognitive science or AI textbook provides an introduction to these two simple,
limited systems, and makes it clear how they are used to engineer intelligent systems (e.g., see Russell
& Norvig 2002). In addition, coverage of FOL is often included in surveys of cognitive science (e.g., see
Stillings, Weisler, Chase, Feinstein, Garfield & Rissland 1995). Surveys of cognitive psychology, while rarely
presenting FOL, often give encapsulated presentations of LPC (e.g., see Ashcraft 1994). Unfortunately, it is
usually the case that when these two logical systems are described, the reader is not told that this pair is
but an infinitesimally small speck in the family F .

In both both LPC and LI , reasoning is deductive in nature. The third logical system introduced is a
particular propositional modal logic, LKT , designed to allow modeling of possibility, necessity, belief, and
knowledge. The fourth logical system is based on the simplest infinitary logic: Lω1ω.

4.1.1 The Alphabet and Grammar of LPC

The alphabet for propositional logic is simply an infinite list p1, p2, . . . , pn, pn+1, . . . of propositional variables
(according to tradition p1 is p, p2 is q, and p3 is r), and the five familiar truth-functional connectives
¬,→,↔,∧,∨. The connectives can at least provisionally be read, respectively, as ‘not,’ ‘implies’ (or ‘if then
’), ‘if and only if,’ ‘and,’ and ‘or.’ In cognitive science and AI it is often convenient to use propositional
variables as mnemonics that help one remember what they are intended to represent. For an example, recall
Puzzle 1. Instead of representing ‘There is an ace in the hand’ as pi, for some i ∈ N = {0, 1, 2, . . .}, it would
no doubt be useful to represent this proposition as A, and this representation is employed below. Now, the
grammar for propositional logic is composed of the following three rules.

1. Every propositional variable pi is a well-formed formula (wff).

2. If φ is a wff, then so is ¬φ.

3. If φ and ψ are wffs, then so is (φ ? ψ), where ? is one of ∧,∨,→,↔. (We allow outermost parentheses to be
dropped.)

This implies, for example, that p → (q ∧ r) is a wff, while → q isn’t. To represent the declarative sentence
‘If there is an ace in the hand, then there is a king in the hand’ we can use A→ K.

4.1.2 An Argument (= Proof) Theory for LPC

A number of proof theories are possible. One such system is an elegant Fitch-style system of natural
deduction, F , fully explained in (Barwise & Etchemendy 1999). (Such systems are commonly referred to
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simply as “natural” systems.) In F , each of the truth-functional connectives has a pair of corresponding
inference rules, one for introducing the connective, and one for eliminating the connective. Proofs in F
proceed in sequence line by line, each line number incremented by 1. Each line not only includes a line
number, but also a formula (the one deduced at this line) and, in the rightmost column, a rule cited in
justification for the deduction. The vertical ellipsis

...

is used to indicate the possible presence of 0 or more lines in the proof.
Here is the rule for eliminating a conjunction:

...
...

...
k φ ∧ ψ
...

...
...

m φ k ∧ Elim
...

...
...

Intuitively, this rule says that if at line k in some derivation you have somehow obtained a conjunction
φ ∧ ψ, then at a subsequent line m, one can infer to either of the conjuncts alone. Now here is the rule
that allows a conjunction to be introduced; intuitively, it formalizes the fact that if two propositions are
independently the case it follows that the conjunction of these two propositions is also true.

...
...

...
k φ
...

...
...

l ψ
...

...
...

m φ ∧ ψ k, l ∧ Intro
...

...
...

A key rule in F is supposition, according to which you are allowed to assume any wff at any point in a
derivation. The catch is that you must signal your use of supposition by setting it off typographically. Here
is the template for supposition:

...
...

...
k φ supposition
...

...
...

Often a derivation will be used to establish that from some set Φ of propositional formulas a particular
formula φ can be derived. In such a case, Φ will be given as suppositions (or, as it is sometimes said, givens),
and the challenge will be to derive φ from these suppositions. To say that φ can be derived from a set of
formulas Φ in F we follow the notation introduced above and write

Φ `D
F φ.

When it is clear from context which system the deduction is to take place in, the subscript on ` can be
omitted. Here is a proof that puts to use the rules presented above and establishes that {(p ∧ q) ∧ r} `D

F q:

1 (p ∧ q) ∧ r given
2 (p ∧ q) 1 ∧ Elim
3 q 2 ∧ Elim
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Now here is a slightly more complicated rule, one for introducing a conditional. It basically says that
if you can carry out a sub-derivation in which you suppose φ and derive ψ you are entitled to close this
sub-derivation and infer to the conditional φ→ ψ.

...
...

k φ supposition
...

...
m ψ
...

...
n φ→ ψ k −m → Intro

As stated above, in a Fitch-style system of natural deduction, the rules come in pairs. Here is the rule in F
for eliminating conditionals:

k φ→ ψ
...

...
...

l φ
...

...
...

m ψ k, l → Elim

Here is the rule for introducing ∨:

...
...

...
k φ
...

...
...

m φ ∨ φ k ∨ Intro
...

...
...

And here is the rather more elaborate rule for eliminating a disjunction:

...
...

k φ ∨ ψ
...

...
l φ supposition
...

...
m χ
...

...
n ψ supposition
...

...
o χ
...

...
p χ k, l −m,n− o ∨ Elim

The rule ∨ Elim is also known as constructive dilemma. The core intuition behind this rule is that if one
knows that either φ or ψ is true, and if one can show that χ can be proved from φ alone, and ψ alone, then
χ follows from the disjunction.

Next, here is a very powerful rule corresponding to proof by contradiction (sometimes called indirect proof
or reductio ad absurdum). Notice that in F this rule is ¬Intro.
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...
...

k φ supposition
...

...
m ψ ∧ ¬ψ
...

...
n ¬φ k −m ¬ Intro

Sometimes a natural deduction system can be a little obnoxious, because by insisting that inference rules
come exclusively in the form of pairs for each truth-functional connective, it leaves out certain rules that are
exceedingly useful. Two examples are modus tollens and DeMorgan’s Laws. The former rule allows one to
infer ¬φ from φ → ψ and ¬ψ. This rule can be established through a proof in F , as is shown in Figure 1.
This figure shows a screenshot of the completed proof as constructed in the hyperproof proof construction
environment, which accompanies the book by the same name authored by Barwise & Etchemendy (1994).17

The core of this proof is reductio ad absurdum, or ¬ Intro. DeMorgan’s Laws for propositional logic sanction
moving from a formula of the form ¬(φ ∧ ψ) to one of the form ¬φ ∨ ¬ψ, and vice versa. The laws also
allow an inference from a formula of the form ¬(φ ∨ ψ) to one of the form ¬φ ∧ ¬ψ, and vice versa. When,
in constructing a proof in F , one wants to use modus tollens or DeMorgan’s Laws, or any number of other
timesaving rules, one can make the inference in question, using the rule of tautological consequence as a
justification. This rule, abbreviated as taut con in hyperproof, is designed to allow the human proof
constructor a way to declare that a given inference is obvious, and could with more work be fully specified
using only the rules of F . Hyperproof responds with a check to indicate that an attempted inference is
in fact correct. As you can see in Figure 2, hyperproof approves of our use of taut con, which, again,
corresponds in this case not just to DeMorgan’s Law in the first two occurrences of this rule, but to the
useful inference of φ ∧ ¬ψ from ¬(φ→ ψ).

Figure 1: A Proof of Modus Tollens in F , Constructed in hyperproof

This section ends with two more key concepts. A formula provable from the null set is said to be a
theorem, and where φ is such a formula, customary notation is

`D
X φ

to express such a fact, where of course the variable X would be instantiated to the particular deductive
calculus in question. Here are two examples that the reader should pause to verify in his or her own mind:
`D

F (p ∧ q) → q; `D
F (p ∧ ¬p) → r. It is said that a set Φ of formulas is syntactically consistent if and only if

it’s not the case that a contradiction φ ∧ ¬φ can be derived from Φ.

4.1.3 Formal Semantics for LPC

The precise meaning of the five truth-functional connectives of the propositional calculus is given via truth-
tables, which tell us what the value of a statement is, given the truth-values of its components. The simplest
truth-table is that for negation, which informs us, unsurprisingly, that if φ is T (= true) then ¬φ is F (=
false; see first row below double lines), and if φ is F then ¬φ is T (second row).

17For data on the power of hyperproof to help teach logic, see (Rinella et al. 2001, Bringsjord et al. 1998).
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φ ¬φ
T F
F T

Here are the remaining truth-tables.

φ ψ φ ∧ ψ
T T T
T F F
F T F
F F F

φ ψ φ ∨ ψ
T T T
T F T
F T T
F F F

φ ψ φ→ ψ

T T T
T F F
F T T
F F T

φ ψ φ↔ ψ

T T T
T F F
F T F
F F T

Notice that the truth-table for disjunction says that when both disjuncts are true, the entire disjunction
is true. This is called inclusive disjunction. In exclusive disjunction, it’s one disjunct or another, but not
both. This distinction becomes particularly important if one is attempting to symbolize parts of English (or
any other natural language). It would not do to represent the sentence

George will either win or lose.

as
W ∨ L,

because under the English meaning there is no way both possibilities can be true, whereas by the meaning
of ∨ it would be possible that W and L are both true. (As we shall soon see, inclusive versus exclusive
disjunction is a key distinction in cracking the King-Ace Puzzle.) One could use ∨x to denote exclusive
disjunction, which can be defined through the following truth-table.

φ ψ φ ∨x ψ

T T F
T F T
F T T
F F F

Before concluding this section, it is worth mentioning another issue involving the meaning of English
sentences and their corresponding symbolizations in propositional logic: the issue of the “oddity” of material
conditionals (formulas of the form φ→ ψ). Consider the following English sentence.

If the moon is made of green cheese, then Dan Quayle will be the next President of the United States.

Is this sentence true? If you were to ask “the man on the street,” the answer would likely be “Of course not!”
— or perhaps you would hear: “This isn’t even a meaningful sentence; you’re speaking nonsense.” These
responses are quite at odds with the undeniable fact that when represented in the propositional calculus,
the sentence turns out true. Why? The sentence is naturally represented as

G→ Q.

Since G is false, the truth-table for → classifies the conditional as true. Results such as these have encouraged
some to devise better (but much more complicated) accounts of the “if – then’s” seen in natural languages
(e.g., see Goble 2001a). In fact, a substantial sub-space within the space F logical systems includes those
devoted to just formalizing conditionals (Nute 1984). These accounts will be beyond the purview of this
chapter, however: no such search will be embarked upon, so readers must for now be content with the
conditional as defined by the customary truth-table for → presented above.

Given a truth-value assignment v (i.e., an assignment of T or F to each propositional variable pi), one
can say that v “makes true” or “models” or “satisfies” a given formula φ; this is standardly written

v |= φ.
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A formula such that there is some model that satisfies it is said to be satisfiable. A formula that cannot
be true on any model (e.g., p ∧ ¬p) is said to be unsatisfiable. Some formulas are true on all models. For
example, the formula ((p ∨ q) ∧ ¬q) → p is in this category. Such formulas are said to be valid and are
sometimes referred to as validities. To indicate that a formula φ is valid we write

|= φ.

Another important semantic notion is consequence. An individual formula φ is said to be a consequence of
a set Φ of formulas provided that all the truth-value assignments on which all of Φ are true is also one on
which φ is true; this is customarily written

Φ |= φ.

The final concept in the semantic component of the propositional calculus is the concept of consistency
once again: we say that a set Φ of formulas is semantically consistent if and only if there is a truth-value
assignment on which all of Φ are true. As a check of understanding, the reader may want to satisfy herself
that the conjunction of formulas taken from a semantically consistent set must be satisfiable.

4.1.4 Some Metatheoretical Results for LPC

At this point it’s easy enough to describe some key metatheory for the propositional calculus. In general,
metatheory would deploy logical and mathematical techniques in order to answer such questions as whether
or not provability implies consequence, and whether or not the reverse holds. When the first direction holds,
a logical system is said to be sound, and this fact can be expressed in the notation that has now been
introduced as

If Φ ` φ then Φ |= φ.

Roughly put, a logical system is sound if it’s guaranteed that true formulas can only yield (through proofs)
true formulas; one cannot pass from the true to the false. When the “other direction” is true of a system it
is said to be complete; in the notation now available, this is expressed by

If Φ |= φ then Φ ` φ.

The propositional calculus is both provably sound and complete. One consequence of this is that all theorems
in the propositional calculus are valid, and all validities are theorems. This last fact is expressed more formally
as:

|= φ if and only if ` φ

4.1.5 The Alphabet and Grammar of LI

For LI , our alphabet will now be augmented to include

= the identity or equality symbol
variables x, y, . . . like variables in elementary algebra,

except they can range of anything, not just numbers
constants c1, c2, . . . you can think of these as proper names for objects
relation symbols R, G, . . . used to denote properties, e.g., W for being a wine-drinker
functors f1, f2, . . . used to refer to functions
quantifiers ∃, ∀ the first (existential) quantifier says

that “there exists at least one . . .,”
the second (universal) quantifier that “for all . . .”

truth-functional connectives (¬,∨,∧,→,↔) now familiar to you, same as in the propositional calculus

Predictable formation rules are introduced to allow one to represent propositions like those seen above
in Puzzle 2. In the interests of space, the grammar in question is omitted, and the reader is simply shown
“in action” the kind of formulas that can be produced by this grammar. You will recall that these three
propositions are relevant to Puzzle 2:

1. All the Frenchmen in the restaurant are gourmets.

2. Some of the gourmets are wine drinkers.

3. Some of the Frenchmen in the restaurant are wine drinkers.
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With these rules, we can now represent the first of these propositions as

∀x(Fx→ Gx),

which says that for every thing x, if it has property F (is a Frenchman), then it has property G (is a
gourmet). The second of the two propositions becomes

∃x(Gx ∧Wx)

and the third is represented as
∃x(Fx ∧Wx)

4.1.6 Argument (= Proof) Theory of LI

As in propositional logic, sets of formulas (say Φ), given certain rules of inference, can be used to prove
individual formulas (say φ); such a situation is expressed by meta-expressions having exactly the same
form as those introduced above, e.g., Φ `D

X φ, where of course X will be instantiated to a particular
deductive calculus. The rules of inference for FOL in such systems as F include those we saw for the
propositional level, and new ones: two corresponding to the existential quantifier ∃, and two corresponding
to the universal quantifier ∀. For example, one of the rules associated with ∀ says, intuitively, that if you
know that everything has a certain property, then any particular thing a has that property. This rule, known
as universal elimination or just ∀Elim (or, sometimes, universal introduction, ∀I) allows one to move from
some formula ∀xφ to a formula with ∀x dropped, and the variable x in φ replaced with the constant of
choice. For example, from ‘All Frenchman in the room are wine-drinkers,’ that is, again,

∀x(Fx→Wx),

one can infer by ∀ Elim that, where a names some particular object,

Fa→Wa,

and if one happens to know that in fact Fa, one could then infer by familiar propositional reasoning that
Ra. The rule ∀ Elim in F , when set out more carefully, is

k ∀xφ
...

...
...

l φ(a
x ) k ∀ Elim

where φ(a
x ) denotes the result of replacing occurrences of x in φ with a.

4.1.7 Semantics of LI

FOL includes a semantic side which systematically provides meaning (i.e., truth or falsity) for formulas.
Unfortunately, the formal semantics of FOL gets quite a bit more tricky than the truth table-based scheme
sufficient for the propositional level. The central concept is that in FOL formulas are said to be true (or
false) on interpretations; that some formula φ is true on an interpretation is often written as I |= φ. (This
is often read, “I satisfies, or models, φ.”) For example, the formula ∀x∃yGyx might mean, on the standard
interpretation for arithmetic, that for every natural number n, there is a natural number m such that m > n.
In this case, the domain is the set of natural numbers, that is, N; and G symbolizes ‘greater than.’ Much
more could of course be said about the formal semantics (or model theory) for FOL — but this is an advanced
topic beyond the scope of the present, brief treatment. For a fuller but still-succinct discussion using the
traditional notation of model theory see (Ebbinghaus et al. 1994). The scope of the present discussion does
allow the reader to appreciate that FOL, like the propositional calculus, is both sound and complete; proofs
can be found in (Ebbinghaus et al. 1994). This fact entails a proposition that will prove useful momentarily:
that if φ isn’t a consequence of Φ, then φ cannot be proved from Φ. In the notation introduced earlier, this
is expressed as:

Φ 6|= φ then Φ 6` φ
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4.1.8 Alphabet and Grammar for LKT

This logical system LKT adds the modal operators � and ♦ to the grammatical machinery of LPC , with
subscripts on these operators to refer to agents. Because the concern here is with what agents believe and
know (i.e., with what is called epistemic or doxastic logic; a nice overview is provided in (Goble 2001b)),
the focus is on the box, and therefore �α is rewritten as Kα. So, to represent that ‘Wise man A knows he
doesn’t have a white spot on his forehead.’ one can write KA(¬White(A). Here’s the grammar for LKT .

1. All ordinary wffs are wffs.

2. If φ is a closed wff, and α is a constant, then �αφ is a wff. Since the concern in WMP is with doxastic
matters, that is, matters involving believing and knowing, one says that Bαφ is a wff, or, if one is concerned
with ‘knows’ rather than ‘believes,’ that Kαφ is a wff.

3. If φ and ψ are wffs, then so are any strings which can be constructed from φ and ψ by the usual propositional
connectives (e.g., →,∧, . . .).

4.1.9 Semantics for LKT

The formal semantics for LKT can be achieved via three steps. The cornerstone of these steps is the concept
of a possible world. Intuitively, the idea, which goes back to (Hintikka 1962), and can arguably be traced
back as far as Aristotle’s treatment of the logic of knowledge and belief in his De Sophisiticis Elenchis and in
the Prior and Posterior Analytics (McKeon 1941), is that some agent α knows some declarative statement
(= some proposition) φ provided that, in all possible worlds compatible with what α knows, it is the case
that φ. The compatibility between worlds can be regimented by way of an accessibility relation between
them. Here are the three steps:

1. Associate with each interpretation (which now includes a set, A, of agents) a possible world.

2. Establish a relation — the accessibility relation — k ⊆ A×W ×W where W denotes the set of all possible
worlds.

3. Now it is said that Kαφ is true in some possible world wi iff φ is true in every world wj such that < α,wi, wj >∈
k. We write this as |=wiKαφ.

For a full, modern treatment of epistemic logic in connection with computationally modeling the mind
(from the standpoint of AI), see (Fagin, Halpern, Moses & Vardi 2004).

4.1.10 The Simplest Infinitary Logical System: Lω1ω

Because LI is so limited (most interesting mathematical statements cannot be expressed in FOL; e.g., the
concept of finitude, central to mathematics, provably cannot be expressed in FOL), logicians have studied
infinitary logics like Lω1ω, the definition of which is now provided.

The basic idea behind Lω1ω is straightforward. This logical system allows for infinite disjunctions and
conjunctions,18 where these disjunctions and conjunctions are no longer than the size of the set of natural
numbers (let’s use ω to denote the size of the set of natural numbers).19 This fundamental idea is effortlessly
regimented: First one simply adds to the customary alphabet for first-order logic the symbols

∨
and

∧
. To

the ordinary formation rules for building grammatically correct first-order formulas, one then adds

• If Φ is a set of well-formed formulas {φ1, φ2, . . .} no larger than ω, then
W

Φ(
V

Φ) is also a well-formed formula,
viz., the disjunction (conjunction) of the formulas in Φ.

The conditions under which an infinite formula is true is fixed by extending the notion of truth in ordinary
first-order logic:

18Of course, even finitary logics have underlying alphabets that are infinite in size (the propositional calculus comes with an
infinite supply of propositional variables). Lω1ω , however, allows for formulas of infinite length — and hence allows for infinitely
long derivations. More about such derivations in a moment.

19This chapter, as stated at the outset, is aimed at an audience assumed to have familiarity with but elementary logic. So
this isn’t the place to baptize readers into the world of cardinal numbers. Hence the size implications of the subscripts in Lω1ω ,
and other related niceties, such as the precise meaning of ω, are left to the side. For a comprehensive array of the possibilities
arising from varying the subscripts, see (Dickmann 1975).
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• A possibly infinite disjunction,
W

Φ, is true on an interpretation I (written I |=
W

Φ) if and only if there is a
formula φ in Φ which is true on I.

• A possibly infinite conjunction,
V

Φ, is true on an interpretation I (written I |=
V

Φ) if and only if every
formula φ in Φ is true on I.

Proofs (= derivations) in Lω1ω can, as the relevant literature states, be “infinitely long” (Ebbinghaus,
Flum & Thomas 1984). This is because in addition to classical cornerstones like modus ponens covered
above,

fromφ→ ψ andφ infer toψ,

Lω1ω allows rules of inference like

fromφ→ ψ for allψ ∈ Φ, infer toφ→
∧

Ψ.

This rule says that if in a derivation you have an infinite list of if-thens (i.e., formulas of the form φ → ψ)
where each consequent (ψ) in each if-then is an element of some infinite set Φ, then you can infer to an
if-then whose consequent is the infinite conjunction obtained by conjoining all the elements of Φ. It may be
worth pausing a bit to create a picture of the sort of derivation which is here permitted: Suppose that Γ
is an infinite set of the same size as N, the natural numbers. So Γ is {γ1, γ2, . . . , γn, γn+1, γn+2, . . .}. Then
here is one possible picture of an infinite derivation:

φ→ γ1

φ→ γ2

φ→ γ3

...
φ→ γn

φ→ γn+1

...

φ→ γ1 ∧ γ2 ∧ . . . ∧ γn ∧ γn+1 ∧ γn+2 . . .

It should be clear from this that derivations in Lω1ω can indeed be infinitely long.

4.1.11 Nonmonotonic Logical Systems

Deductive reasoning is monotonic. That is to say, if φ can be deduced from some knowledge base Φ of
formulas (written, recall, Φ `d

x φ), then for any formula ψ 6∈ Φ, it remains true that Φ ∪ {ψ} `d
x φ. In

other words, when the reasoning in question is deductive in nature, new knowledge never invalidates prior
reasoning. More formally, where Φ is some set of formulas, the closure of this set under standard deduction
(i.e., the set of all formulas that can be deduced from Φ), denoted by Φ`, is guaranteed to be a subset of
(Φ ∪Ψ)`, for all sets of formulas Ψ. This is not how real life works, at least when it comes to humans; this
is easy to see. Suppose that at present, Jones knows that his house is still standing as he sits in it, typing.
If, later in the day, while away from his home and working at his office, he learns that a vicious tornado
passed over the town in which his house is located, he has new information that probably leads him to at
least suspend judgment as to whether or not his house still stands. Or to take the much-used example from
AI, if Smith knows that Tweety is a bird, he will probably deduce that Tweety can fly, on the strength of a
general principle saying that birds can fly. But if he learns that Tweety is a penguin, the situation must be
revised: that Tweety can fly should now not be in Smith’s knowledge base. Nonmonotonic reasoning is the
form of reasoning designed to model, formally, this kind of defeasible inference.

There are many different logic-based approaches that have been designed to model defeasible reasoning,
and each one is associated with a group of logical systems, as such systems have been defined above. Such
systems include: default logic, circumscription, argument-based defeasible reasoning, and so on. (The locus
classicus of a survey can be found in (Genesereth & Nilsson 1987). An excellent survey is also provided in
the Stanford Encyclopedia of Philosophy.20) In the limited space available in the present chapter, the wisest

20At

http://plato.stanford.edu/entries/logic-ai
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course is to briefly explain one of these approaches. Argument-based defeasible reasoning is selected, because
it seems to accord best with what humans actually do as they adjust their knowledge through time.21

Let us return to the tornado example. What is the argument that Jones might give to support his belief
that his house still stands, while he sits within it, typing? There are many possibilities, one respectable one
is what can be labeled ‘Argument 1,’ where the indirect indexical refers of course to Jones:

(1) I perceive that my house is still standing.
(2) If I perceive φ, φ holds.

∴ (3) My house is still standing.

The second premise is a principle that seems a bit risky, perhaps. No doubt there should be some caveats
included within it: that when the perception in question occurs, Jones is not under the influence of drugs,
not insane, and so on. But to ease exposition, let’s leave aside such clauses. So, on the strength of this
argument, we assume that Jones’ knowledge base includes (3), at time t1.

Later on, as we have said, he finds himself working in his office, away from hom. A tornado passes over
his building. Jones quickly queries his web browser once the roar and rumble dies down, and learns from
the National Weather Service this very same tornado has touched down somewhere in the town T in which
Jones’ house is located. At this point (t2, assume), if Jones were pressed to articulate his current position
on (3), and his reasoning for that position, and he had sufficient time and patience to comply, he might offer
something like this (Argument 2):

(4) A tornado has just (i.e., at some time between t1 and t2) touched
down in T , and destroyed some houses there.

(5) My house is located in T .
(6) I have no evidence that my house was not struck to smithereens

by a tornado that recently passed through the town in which
my house is located.

(7) If a tornado has just destroyed some houses in (arbitrary) town
T ′, and house h is located in T , and one has no evidence that
h is not among the houses destroyed by the tornado, then one
ought not to believe that h wasn’t destroyed.

∴ (8) I ought not to believe that my house is still standing. (I.e., I
ought not to believe (3).)

Assuming that Jones meet all of his “epistemic obligations” (in other words, assuming that he’s rational),
he will not believe (3) at t2. Therefore, at this time, (3) will not be in his knowledge base. (If a cognitive
system s doesn’t believe φ, it follows immediately that s doesn’t know φ.) The nonmonotonicity should be
clear.

The challenge is to devise formalisms and mechanisms that model this kind of mental activity through
time. The argument-based approach to nonmonotonic reasoning does this. While the details of the approach
must be left to outside reading (see Pollock 1992, Pollock 2001), it should be easy enough to see that the main
point is to allow one argument to shoot down another (and one argument to shoot down an argument that
shoots down an argument, which revives the original, etc.), and to keep a running tab on which propositions
should be believed at any particular time. Argument 2 above rather obviously shoots down Argument 1;
this is the situation at t2. Should Jones then learn that only two houses in town T were leveled, and that
they are both located on a street other than his own, Argument 2 would be defeated by a third argument,
because this third argument would overthrow (6). With Argument 2 defeated, (3) would be reinstated, and
back in Jones’ knowledge base. Clearly, this ebb and flow in argument-versus-argument activity is far more
than just straight deductive reasoning.

4.1.12 Probabilistic Logical Systems

While, as we have seen, declarative/logic-based computational cognitive modeling was being pursued in
earnest more than 2,300 years ago, probability theory is only about 200 years old; it emerged from technical

21From a purely formal perspective, the simplest way to achieve non-monotonicity is to use the so-called closed world
assumption, according to which, given a set Φ of initially believed declarative statements, what an agent believes after applying
the closed world assumption (CWA) to the set is not only what can be deduced from Φ, but also the negation of every formula
that cannot be deduced. It is easy to verify that it doesn’t always hold that CWA(Φ) ⊂ CWA(Φ ∪ Ψ), for all sets Ψ. I.e.,
monotonicity doesn’t hold.
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philosophy and logic (Glymour 1992, Skyrms 1999). Kolmogorov’s axioms, viz.,

1. All probabilities fall between 0 and 1. I.e., ∀p(0 ≤ P (p) ≤ 1).

2. Valid (in the traditional logic-based sense explained earlier in the present chapter) propositions have a proba-
bility of 1; unsatisfiable (in the traditional logic-based sense explained earlier) propositions have a probability
of 0.

3. P (p ∨ q) = P (p) + P (q)− P (p ∧ q)

are simple formulas from a simple logical system, but modern probability theory can be derived from them
in straightforward fashion.

The reader may wonder where probabilistic inference enters the picture, since traditional deduction is
not used for inference in probability theory. Probabilistic inference consists in computing, from observed
evidence expressed in terms of probability theory, posterior probabilities of propositions of interest. In the
relevant class of logical systems, the symbol to be used is `P robX , where X would be the particular way
of computing over prior distributions to support relevant posterior formulas. Recently, the assignment to
X has received much interest, because some strikingly efficient ways of representing and computing over
distributions have arrived due to the use of graph-theoretic structures, but the expressiveness of probability
theory is ultimately bounded by the logical system with which it’s associated, and the two systems in question
(the propositional calculus and first-order logic, both of course introduced above as LPC and LI , resp.) are
rather inexpressive, from the mathematical point of view afforded by F . In fact, extending probability theory
to the first-order case is a very recent achievement, and things are not settled (Russell & Norvig 2002).

Because another chapter in the present handbook covers probabilistic computational cognitive modeling
(see “Bayesian Models of Cognition,” by Griffiths et al. in this volume), no more is said about such logical
systems here. The interested reader is also directed to (Skyrms 1999, Russell & Norvig 2002, Bringsjord in-
press) for additional coverage of probabilisitc formalisms and modeling.

4.2 Sample Declarative Modeling in Conformity to LCCM

Though the purpose of this chapter is to present logic-based computational cognitive modeling itself, and to
show it at work directly, it is appropriate to present a few examples of declarative computational cognitive
modeling, and to see how this kind of modeling is formalized by LCCM. Three such examples will now be
provided.

4.2.1 Production Rule-Based Modeling

Much computational cognitive modeling is based on production-rules. For example, Soar, ACT-R, and EPAM
are based on such rules, and, accordingly, are often called production systems. But what is a production
rule? In a seminal paper dealing with the relationship between logic and production rule-based modeling,
Eisenstadt & Simon (1997) tell us that

A production [rule] can be represented in the form C → A, where the C represents a set of conditions,
which are knowledge elements, either stored in memory or derived from current stimuli; and the A
represents a set of actions, that either alter internal symbol structures or initiate more responses, or
both. (Eisenstadt & Simon 1997, p. 368)

Given the technical content shared with the reader earlier, what should come to mind when seeing ‘C
→ A’ is a conditional in LI (or even, in some simple cases, in LPC), and in point of fact this logical system
does provide a precise formalization of activity in collections of interconnected production rules. In any
case where A is performed, the declarative content C is satisfied, and there exists a mechanical sequence of
deductive inference (a proof) that produces C as a conclusion, and indeed a proof that produces a declarative
representation of A as a conclusion.22

22More generally, the production rules used to specify the operation of a Turing machine (in some formalizations of these
machines, such rules are used), and executions of these rules, can be entirely algorithmically replaced with deduction over these
rules expressed exclusively in LI . A readable proof of this is found in (Boolos & Jeffrey 1989). Going from the abstract and
mathematical to the concrete, any production rule-based activity in an implemented system (such as Soar), can be directly
matched by the corresponding execution of a program in the general space PLP C

of such program (see the coverage below of
logic-based computer programs).
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Let us consider an example to make this clearer; the example parallels one given — for different pur-
poses — by Eisenstadt & Simon (1997). Three consequences result from a dog chasing a cat, where this
event consists in the instantiation of Chasing(x,y), Dog(x), and Cat(y). The consequences are certain
actions, denoted, respectively, by Consequence1(x), Consequence2(y), and a general consequence Con-
sequence3; the third consequence, Eisenstadt & Simon (1997) tell us, consists in the cat knocking over a
bowl. The idea is that if instantiations of the three conditions appear in memory (i.e., that if Chasing(a,b),
Dog(a), Cat(b) are in memory), the production is executed and the consequences ensue.

Where

Happens(Consequence1(x)) ∧Happens(Consequence2(y)) ∧Happens(Consequence3))

expresses in LI that the three consequences do in fact transpire, this proposition combined with the following
four formulae allows any standard automated prover (ATP) to instantly prove exactly what is desired.

1. ∀x∀y((Chasing(x, y) ∧Dog(x) ∧ Cat(y)) →

(Happens(Consequence1(x) ∧Happens(Consequence2(y)) ∧Happens(Consequence3))))

2. Chasing(a, b)

3. Dog(a)

4. Cat(b)

As we shall see, ATPs stand to logic-based computer programming as, say, built-in functions like addition
stand to an established programming language like Common Lisp (Steele 1984) (which happens to be long
associated with computational cognitive modeling and AI).23 In Lisp, (+ 4 5), when executed, returns
9. Likewise, a standard ATP, upon given the five formulas above, and a request to prove whether the
second consequence obtains, brings the correct answer back immedidately. For example, here is a proof
instantly returned by the well-known and long-established ATP known as Otter (Wos, Overbeek, e. Lusk &
Boyle 1992), once the five formulae are asserted, and the query is issued.

---------------- PROOF ----------------

2 [] -Chasing(x,y)| -Dog(x)| -Cat(y)|Happens(consequence2(y)).

4 [] -Happens(consequence2(b)).

5 [] Dog(a).

6 [] Cat(b).

7 [] Chasing(a,b).

9 [hyper,7,2,5,6] Happens(consequence2(b)).

10 [binary,9.1,4.1] $F.

------------ end of proof -------------

This particular proof uses a mode of deductive inference called resolution, a mode that, using the notation
introduced above, can be labeled `d

res, The core rule of inference in resolution is simply that from φ∨ψ and
¬φ it can be inferred that ψ. In this inference, it can be accurately said that φ and ¬φ “cancel each other
out,” leaving φ. The careful reader can see this “cancellation” at work in the inference at the line containing
hyper, and in the inference at the line containing binary.

It’s important to know that while all that is represented in a production system, and all processes
over those representations, corresponds, formally speaking, to representation and reasoning in simple logical
systems, the converse does not hold. The reason for this is simply that some declarative information exceeds
the particular structure for expressing declarative information available in the production paradigm. Whereas
every production rule maps directly to a particular formula in some logical system, and every firing of
production rules maps directly to a machine-generated proof, many formulas in many logical systems exceed
the expressive power of production rules and systems. This is without question true for an entire sub-class
infinitary logical systems are in this category. Even the smallest infinitary logical system (Lω1ω, visited
above) allows for declarative statements that exceed production rules. Even more mundane declarative
statements, while easily expressed by particular formulas in particular logical systems, at the very least pose

23For cognoscenti to see that the analogy between these built-in functions and ATPs holds firmly, it must be stipulated that
calls like Φ `M φ? include an interval of time n beyond which the machine’s deliberation will not be allowed to pass.
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an extreme challenge to production systems. For example, while φ = ‘Everyone loves anyone who loves at
least three distinct people’ is trivially mapped to a formula in LI ,24 it is impossible to devise one production
rule to correspond directly to this declarative statement. Things get even harder when expressivity must
increase. For example, operators can range over φ as when, in quantified epistemic logic (LQKT ), we say
such things as that Jones believes that Smith believes φ.

4.2.2 Rips’ PSYCOP and Johnson-Laird-Written Models

Rips (1994) describes a system (PSYCOP) designed to model normatively incorrect human reasoning at
the level of the propositional calculus (i.e., at the level of LPC), and to some degree (if for no other reason
than that PSYCOP includes normatively correct deductive rules of inference) normatively correct reasoning
at this level as well. This means that PSYCOP is couched in terms of the logical system LPC , discussed
above (from which it follows that whatever declarative statement(s) LPC cannot express, PSYCOP cannot
express).

PSYCOP reflects the driving dogma of the aforementioned theory of human reasoning known as mental
logic — the dogma being that (logically untrained) human reasoners reason by following rules of inference
similar to those used in the argument theory of LPC . For example, while the inference rule mentioned in a
moment is absent from the system, modus ponens is in it, as are a number of other rules. (PSYCOP and
its underpinnings are critiqued by Johnson-Laird, in his entry in the present volume.) It’s important to
note that PSYCOP is not an architecture designed to computationally model all of human cognition. In
fact, PSYCOP can’t be used to model the human reasoning triggered by the puzzle-based desiderata listed
above. This is so because PSYCOP is insufficiently expressive (e.g., it has no modal operators like those in
LKT , and they are needed for WMP, as we shall soon see; nor does PSYCOP even have the basic quantifiers
or first-order models of LI), and doesn’t allow trivial normatively correct inferences that good deductive
reasoners make all the time. For example, in PSYCOP, you can’t infer from the falsity of (where φ and ψ are
well-formed formulas of LPC) “If φ, then ψ” to the falsity of ψ, but that is an inference that even logically
untrained reasoners do sometimes make. For example, they sometimes say, when faced with such declarative
sentences as

It’s false that: If the cat is not on the mat, then Jones is away.

that if the if-then is false, the “if part” (= the antecedent) must be true while the “then part” (= the
consequent) isn’t — which immediately implies here that Jones isn’t away.

Interestingly enough, Rips explicitly considers the possibility of a “deduction-based” cognitive architec-
ture (in Chapter 8, “The Role of Deduction in Thought,” in Rips 1994). This possibility corresponds to a
proper subset of what is realized by LCCM. Rips has in mind only a particular simple extensional logic as
the core of this possibility (viz., LPC), whereas LCCM , as you now know, is based on the literally infinitely
broader concept of the family F of logical systems; on not just deduction, but other forms of reasoning as
well (e.g., induction, abduction, non-monotonic reasoning, etc.); and on a dedicated programming paradigm
tailor-made for implementing such systems.

Now, what about Johnson-Laird’s (1983) mental models theory, and specifically some computer programs
that implement it? Does this work also fall under LCCM? Since Johnson-Laird’s work is declarative in
nature, it does indeed fall under logic-based computational cognitive modeling.

Mental models theory has been, at least in part, implemented in the form of various computer programs
(see the contribution from Johnson-Laird and Yang in the present volume), but none of these programs
constitute across-the-board computational cognitive models of the human cognizer. Instead, the reasons
offered as to why such programs have been written include the standard (but very compelling) ones — such
as that the computer implementation of a psychological theory can reveal ambiguities and inconsistencies
in that that theory. However, the programs in question obviously fall under LCCM. After all, these are
programs that produce models in the logic-based sense, and then reason over these models in accordance with
rules naturally expressed in logic. At the level of LPC , mental models in mental models theory correspond
to rows in truth tables that yield true for the formula, and where only the true literals in those rows are
included (a literal is either some pi, or ¬pi). For example, the mental models corresponding to “The Yankees

24In LI it’s simply ∀x∀y((∃z1∃z2∃z3(z1 6= z2 ∧ z2 6= ∧z1 6= z3 ∧ Lyz1 ∧ Lyz2 ∧ Lyz3)) → Lxy).
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will win and the Red Sox will lose,” assuming a symbolization of Y ∧R for this English sentence, yields one
mental model:

Y R

In the case of disjunction, such as “Either the Yankees will win the World Series, or the Red Sox will,” the
models would be three in number, viz.,

Y
R
Y R

Since on mental models theory a conclusion is necessary if it holds in all the models of the premises, some
deductively valid inferences, such as that “The Yankees will win” follows from “The Yankees will win and the
Red Sox will lose,” should be made by logically untrained subjects. This is a normatively correct inference.
(However, standard normatively correct justifications are not available on Johnson-Laird’s theory. This is
so because standard justifications are proofs of the sort seen in formal logic and mathematics.) What about
normatively incorrect reasoning? Clearly, such reasoning will frequently occur, according to the theory.
Think back to the formal structure of experiments as set out at the beginning of this chapter (section 4.3).
Suppose the human reasoner assimilates premises in the list L yielding the mental models in a set S. The
reasoner will declare a purported conclusion D to follow if D ∈ S, and such membership can obviously hold
independent of formally valid inference.

4.2.3 Rule-Based, Similarity-Based, and Commonsense Reasoning in LCCM

The Clarion cognitive architecture models human declarative reasoning in some very interesting non-logic-
based ways. For example, Clarion models two apparently distinct forms of (simple) reasoning detected in
the logically untrained. While the distinction between these two forms can’t be modeled through naive use
of first-order logic (= LI), since both forms of reasoning are declarative in nature, it is effortless to model
the distinction using the full arsenal of LCCM; that is, using logical systems in the space F that are more
expressive than LI . This is now shown.

The two forms of reasoning in question are what Sun and Zhang (2006) call ‘rule-based reasoning’ (RBR)
and ‘similarity-based reasoning’ (SBR).” In order to look a bit more closely at the situation, one can turn to
the specific stimuli on which Sun and Zhang focus, which are taken from (Sloman 1998). Stimuli consisted
of pairs of arguments. Some pairs are said to be in the form of “premise specificity,” as for instance in this
pair:

All flowers are susceptible to thrips ⇒ All roses are susceptible to thrips.

All plants are susceptible to thrips ⇒ All roses are susceptible to thrips.

Other pairs are in the form of what is called “inclusion similarity.” Examples include:

All plants contain bryophytes. ⇒ All flowers contain bryophytes.

All plants contain bryophytes. ⇒ All mosses contain bryophytes.

Subjects were directed to pick the stronger argument from each pair.25 In response, the vast majority of
subjects, for both types of pairs, selected as stronger the “more similar argument,” as Sun and Zhang put
it. By this they mean that the vast majority of subjects chose, from each pair, the argument whose subjects
are intuitively regarded to be more similar. For example, the assumption is that roses are more similar to
flowers than they are to plants.26

25Presumably one should assume that subjects were told to pick what they perceived to be the stronger argument from each
pair. Since all the arguments in question are fallacious, it is not possible, from the mathematical point of view taken by LCCM,
that any argument be stronger than the other one in a pair. All the arguments are enthymemes; all enthymemes, by definition,
are formally invalid. The other horn of the dilemma is that if the missing premise in each argument had been supplied (e.g.,
‘All roses are flowers’), then each would become formally deductively valid, and it would once again be inappropriate to deem
one argument stronger than another. Though these issues are somewhat worrisome, due to space constraints that are left aside.

26For lack of space, formal reasons for doubting that such similarity is in any way actual must be left aside. Presumably,
once again, the issue is perceived similarity, or some such thing. And this perceived similarity is presumably supposed to be
generally true of the population in question.
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It should be apparent that if only RBR (e.g., based on logics) was used, then similarity should not have
made a difference, because the conclusion category was contained in the premise category, and thus both
arguments in each pair should have been equally, perfectly strong. Therefore, the data suggested that
SBR (as distinct from RBR or logics capturing category inclusion relations) was involved to a significant
extent. (Sun & Zhang 2006)

Of course, by ‘RBR’ Sun and Zhang here mean “barebone” RBR, which involves only category inclusion
relations.

Now, Sun and Zhang proceed to show that Clarion can be used to model the distinction between RBR
and SBR. While that modeling is impressive, the point relevant to the present chapter is that the RBR-
is-distinct-from-SBR phenomenon, since it is declarative in nature, is also easily enough modeled in the
LCCM approach, since this approach is based on F , the infinite family of logical systems, not on a particular
logic. Sun and Zhang, in the parenthetical in the quote immediately above, indicate that RBR is “based
on logics.” The use of the plural here is wise. For it would be exceedingly peculiar for any proponent of
LCCM to maintain that human reasoning, let alone human cognition, can be modeled by a particular logic.
This would be even more peculiar than maintaining that in modeling various phenomena, mathematicians
and physicists can restrict themselves to only one specific branch of mathematics for purposes of modeling.
(The tensor calculus is a thing of beauty when it comes to relativity, but of what good is it in, say, doing
axiomatic set theory?) Following logical systems introduced by Chisholm (1966, 1977, 1987), and Pollock
(Pollock 1974), one can assign strength factors (note: not probabilities; strength factors) to non-deductive
inferential links, as in fact has been done in the LCCM-based Slate interactive reasoning system (Bringsjord,
Arkoudas, Clark, Shilliday, Taylor, Schimanski & Yang 2007).27 In Slate, these factors include, in descending
strength, certain (4), evident (3), beyond reasonable doubt (2), probable (1), and counter-balanced
(0), and then the negative counterparts to the first four of these (yielding, in the numerical shorthand, -1,
-2, -3, and -4. These strength factors can be effortlessly associated with knowledge about the similarity of
the subjects involved in such arguments as those studied by Sloman, Sun, and Zhang. Given, then, a pair
such as

All flowers are susceptible to thrips ⇒2 All roses are susceptible to thrips.

All plants are susceptible to thrips ⇒1 All roses are susceptible to thrips.

and a straightforward selection algorithm for strength of argument that works by simply selecting the argu-
ment whose inferential link is associated with a higher number, LCCM has no trouble in the least modeling
the phenomenon in question (i.e., the distinction between barebone RBR and SBR is formally captured).
Moreover, since the cognitive plausibility of such strength factors rather obviously inheres in the fact that
the average subject assigns a higher strength factor to the hidden premise (so that, e.g., ‘All roses are flowers’
is epistemically stronger than ‘All roses are plants’), LCCM would allow us to model human reasoning that
leads subjects to prefer even the more similar pairs in the non-enthymematic versions of Sloman’s arguments
(see note 25).

The reach of logic-based computational cognitive modeling can be shown to formalize not just RBR and
SBR, but the overall phenomenon of commonsense reasoning, as this phenomenon is characterized by Sun
(1995). Sun tells us that commonsense reasoning, while not strictly speaking definable, can be taken to
include

informal kinds of reasoning in everyday life regarding mundane issues, where speed is oftentimes more
critical than accuracy. The study of commonsense reasoning as envisaged here is neither about the
study of a particular domain, nor about idiosyncratic reasoning in any particular domain. It deals with
commonsense reasoning patterns; that is, the recurrent, domain-independent basic forms of reasoning
that are applicable across a wide range of domains. (Sun 1995, p. 242)

Sun then goes on to show that such reasoning, insofar as a particular set of eleven examples can be taken
as exemplars of this reasoning, can be modeled in the CONSYDERR architecture. While obviously there
is insufficient space to show here how LCCM can also model commonsense reasoning characterized in this
ostensive way, it can be indicated how such modeling would run.

27Information about Slate, and a for-teaching version of the system itself, can be obtained at

http://www.cogsci.rpi.edu/research/rair

.
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The first of the eleven examples, all of which are taken from (Collins & Michalski 1989, Collins 1978), is
as follows.

Q: Do you think they might grow rice in Florida?
A: Yeah. I guess they could, if there were an adequate fresh water supply, certainly a nice, big, warm,
flat area.

About this example, Sun writes:

There is a rule in this example: if a place is big, warm, flat, and has an adequate fresh water supply,
then it is a rice-growing area. The person answering the question deduced an uncertain conclusion based
on partial knowledge, although a piece of crucial information (i.e., the presence of fresh water) is absent.
Sun 1995, p. 244)

One interesting aspect of this example is that the subject not only answers the question in the affirmative,
but also sketches a justification. (You will recall that the structure of experiments designed to uncover the
nature of reasoning and decision making are assumed herein to request justifications. See section 4.3.) The
response is an enthymematic deductive argument (see note 25) easily expressed in LI , under the parameter
`D

F defined earlier in the chapter, as follows (with obvious meanings for the predicate letters).

(1) ∀x((Place(x) ∧Big(x) ∧Warm(x) ∧ Flat(x) ∧Water(x)) → GrowRice(x)) premise
(2) Place(fl) ∧Big(fl) ∧Warm(fl) ∧ Flat(fl) premise
(3) Water(x) probable
(4) Place(fl) ∧Big(fl) ∧Warm(fl) ∧ Flat(fl) ∧Water(fl) from (2), (3) BY ∧I
(5) Place(fl) ∧Big(fl) ∧Warm(fl) ∧ Flat(fl) ∧Water(fl)) → GrowRice(fl) from (1) BY ∀E

∴ (6) GrowRice(fl) from (5), (6) by →Elim

Of course, while (4) follows deductively from {(1), (2), (3)} using the rules of natural deduction introduced
earlier (as shown in the proof immediately above), (3) is only probable, which means that, overall, the
strength of the argument for (6) is itself probable.

There are other formal niceties that would be included in a full exposition, but the point should be clear:
Commonsense reasoning, as a declarative phenomenon, that is, as reasoning over declarative statements, can,
from the formal point of view, be modeled in an illuminating way by LCCM. The subject in this case has
given an answer, and a justification, whose formal essence can be expressed with the machinery of LCCM.
All of the remaining ten examples in (Sun 1995) can be modeled in LCCM as well. Moreover, while it is not
shown herein, using the concrete computational techniques covered in the next section, logic-based computer
programs can be written and executed to produce rapid, real-time simulations of the commonsense reasoning
in question. Finally, whatever empirical data might be associated with human commonsense reasoning (e.g.,
response time for answer to be produced and justification to be articulated) can be formally expressed in
the framework of logic-based computational cognitive modeling.

4.3 Logic-Based Computer Programming

Needless to say, none of the foregoing has much value unless a program can be written which, when executed,
produces a computational simulation of some cognition. After all, the subject being rationalized in this
chapter is a particular paradigm for computational cognitive modeling, and computation is by definition the
movement through time of a computer; and now and for the foreseeable future such movement is invariably
caused and regulated by the creation (manual or automatic in nature, or a hybrid of the two) and execution
of computer programs.28 Given this, an obvious question is: With what same-level programming paradigm,
and languages within it, is LCCM naturally associated? The answer to this question is straightforward, and
comes in three parts, as follows.

First, in order to remind readers of the context, note that there are three programming paradigms
(procedural, reflected, e.g., in Turing machines themselves, and in various “minimalist” languages like those
seen in foundational computer science texts (e.g., Davis & Weyuker 1994, Pascal, etc.); functional, reflected,
e.g., in Scheme, ML, and purely functional Common Lisp (Shapiro 1992, Abelson & Sussman 1996); and

28Even in the case of so-called hypercomputers, the machines in question must receive instructions. E.g., even Infinite Time
Turing machines (Hamkins & Lewis 2000) are driven by instructions (= programs).
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declarative, reflected, albeit weakly, in Prolog (Clocksin & Mellish 2003)), and unsurprisingly, the same-level
programming paradigm, from the formal point of view, naturally associated with logic-based computational
cognitive modeling is the declarative one.29 This is not surprising because we noted at the outset that
declarative/logic-based computational cognitive modeling takes declarative statements as fundamental units
of information.

It’s important to appreciate the adjective “same-level” in the previous paragraph. In theory, any Turing-
computable function can be implemented through code written in any Turing-complete programming lan-
guage. There is nothing in principle precluding the possibility of writing a program in assembly language
that, at a higher level of abstraction, processes information in accordance with inference in many of the
logical systems in the family F explained above. (In fact, as is well-known, the other direction is routine,
as it occurs when a high-level computer program in, say, Prolog, is compiled to produce corresponding to
low-level code; assembly language, for example.) However, this would not be same-level programming, and
it would require a programming mindset that doesn’t correspond to the declarative representational and
design mindset reflected by logical systems in F .

The second part of the answer to the question of what same-level programming paradigm is associated
with logic-based computational cognitive modeling is this: Just as a generalization of the concept of logical
system from mathematical logic was used to arrive at the family F of logical systems for LCCM, programs
in logic-based computational cognitive modeling are written in programming languages from a family P
composed of languages that are generalizations of the long-established concept of a logic program in computer
science (succinctly presented, e.g., in the chapter “Logic Programming” in Ebbinghaus et al. 1994). For each
system S in F , there is a corresponding programming language PS in P. In the interests of space, and to
simplify the exposition, the focus here will be on PLP C

and PLI
, in which programs are written based on the

computation of the two central relations in LPC and LI , viz., `D
X and |=, both defined earlier. (As will be

recalled, Φ `D
X ψ holds iff ψ can be deductively inferred from Φ in deductive calculus X, and I |= ψ holds

iff ψ is true on interpretation I.) Fortunately, there are many well-established programming environments
for writing programs based on the computing of these relations. For example, `D

Res is computed by Vampire
(Voronkov 1995) and Otter (Wos 1996, Wos et al. 1992), `D

F by Oscar (Pollock 1989, Pollock 1995) and
Athena and NDL (Arkoudas 2000, Bringsjord, Arkoudas & Bello 2006), among other such systems. As to |=,
a number of mature, readily available systems now compute this relation as well, for example, Hyperproof
(Barwise & Etchemendy 1994), and Paradox and Mace (Claessen & Sorensson 2003) at the level of LI , and
at the level of LPC , many SAT solvers (e.g., see Kautz & Selman 1999).

Enough information is now provided to enable the reader to see how simulations that model human
reasoning (triggered by the desiderata given in section 3.1) can be produced by programs written in PLP C

and PLI
. To produce these simulations, we need to give to a program in either of these languages declarative

knowledge corresponding to what the human knows, and then execute this code to produce the desired answer
(the answer that corresponds to the answer given by the human cognizer), and the desired justification (the
justification given by the human cognizer). It is important to realize that not just any justification will do:
the justification produced by the machine must match that produced by the human.

In order to make all of this more concrete for readers, what follows is a program (or, better, an evaluable
program) written in PLP C

, specifically in the generic, easy-to-understand denotational proof language NDL
(Arkoudas 2000, Bringsjord et al. 2006) that corresponds directly to the system of natural deduction F
presented in detail earlier in the chapter. This deduction, upon evaluation, produces a theorem in LPC as
output — a theorem that Newell and Simon’s Logic Theorist, to great fanfare (because here was a machine
doing what “smart” humans did), was able to muster at the dawn of AI in 1956, at the original Dartmouth
AI conference. For a particular syntax, we follow the argument theory `D

F introduced earlier: Fitch-style
natural deduction, first presented in 1934 by two thinkers working independently to offer a format designed
to capture human mathematical reasoning as it was and is expressed by real human beings: Gentzen (1935)
and Jaskowski (1934). Streamlining of the formalism was carried out by Fitch (1952). The hallmark of this
sort of deduction is that assumptions are made (and then discharged) in order to allow reasoning of the sort
that human reasoners engage in. Now here is the deduction, commented to make it easy to follow.

// Here is the theorem to be proved,

29Readers should understand that each of the three programming paradigms corresponds to a seminal system invented long
ago: Turing machines in the procedural case, the λ-calculus in the functional case, and first-order logic and associated provability
in the declarative case.
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// Logic Theorist’s ‘‘claim to fame’’:

// (p ==> q) ==> (~q ==> ~p)

Relations p:0, q:0. // Here we declare that we have two

// propositional variables, p and q.

// They are defined as 0-ary relations.

// Now for the argument. First, the antecedent (p ==> q)

// is assumed, and then, for contradiction, the antecedent

// (~q) of the consequent (~q ==> ~p).

assume p ==> q

assume ~q

suppose-absurd p

begin

modus-ponens p ==> q, p;

absurd q, ~q

end

If, upon evaluation, the desired theorem is produced, the program is successful. In the present case, sure
enough, after the code is evaulated, one receives this back:

Theorem: (p ==> q) ==> (~q ==> ~p)

Now let us move up to programs written in PLI
for simulations of cognition based on LI . As you will

recall, this entails that the quantifiers ∃x (‘there exists at least one thing x such that . . .’) and ∀x (‘for
all x . . .’) are admitted. In addition, there is now a supply of variables, constants, relations, and function
symbols; these were discussed above. What follows is a simple NDL deduction in PLI

that illuminates a
number of the concepts introduced to this point. The code in this case, upon evaluation, yields the theorem
that Tom loves Mary, given certain helpful information. It is important to note that both the answer and
the justification have been assembled, and that the justification, since it is natural deduction, corresponds
to the kinds of arguments often given by human beings.

Constants mary, tom. // Two constants announced.

Relations Loves:2. // This concludes the simple signature, which

// here declares Loves to be a two-place relation.

// That Mary loves Tom is asserted:

assert Loves(mary, tom).

// ’Loves’ is a symmetric relation, and this is asserted:

assert (forall x (forall y (Loves(x, y) ==> Loves(y, x)))).

//Now the evaluable deduction proper can be written:

suppose-absurd ~Loves(tom, mary)

begin

specialize (forall x (forall y (Loves(x, y) ==> Loves(y, x)))) with mary;

specialize (forall y (Loves(mary, y) ==> Loves(y, mary))) with tom;

Loves(tom,mary) BY modus-ponens Loves(mary, tom) ==> Loves(tom, mary), Loves(mary, tom);

false BY absurd Loves(tom, mary), ~Loves(tom, mary)

end;

Loves(tom,mary) BY double-negation ~~Loves(tom,mary)

When this program is evaluated, one receives the desired result back: Theorem: Loves(tom,mary). Once
again, it is important to note that both the answer and the justification have been assembled, and that the
justification, since it is natural deduction, corresponds to the kinds of proofs often given by human beings.

So far we have conceived of programs as proof-like entities. This takes care of the `D
X in a logical

system. But what about the semantic side? What about |=? What about interpretations, or models? In
PLI

, programs can be written to produce, and to manipulate, models. Returning back once again to the
abstract structure of problems given at the outset of the present chapter (see section ), when the declarative
information in some stimulus presented to a subject in the form of a list L of declarative statements doesn’t
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allow a featured proposition D to be deductively inferred, a normatively correct justification is a disproof:
a proof the includes the presentation of a model on which all of the entries in L are true, but on which D is
false. (Such models, for obvious reasons, are traditionally called countermodels.) Rather than give examples
of such processing here, we describe how programs written in PLI

can produce and manipulate models in
the next section (5), by turning to the Hyperproof (Barwise & Etchemendy 1994) system.

5 Meeting the Challenges

It’s time now to turn to showing how the problems composing (C1) can be solved in LCCM in a manner
that matches the human normatively incorrect and normatively correct responses returned after the relevant
stimuli are presented. Recall, yet again, the ecumenical experimental structure to which declarative/logic-
based computational cognitive modeling must conform (section 4.3).

5.1 Meeting (C1), the Challenge of Mechanizing Human Reasoning

Let’s begin by reviewing the desiderata under (C1): Desideratum 1 is modeling both System 1 and System
2. Desideratum 2 is modeling reasoning that is emphasized by the three theories. Desiderata 3–6 consist of
the sequence of four puzzles: King-Ace, Wine Drinker, Wise Man, and Infinitary DeMorgan. Now, how can
it be shown that logic-based computational cognitive modeling can meet the six requirements? By providing
the following six demonstrations:

D1 a normatively correct solution to King-Ace can be modeled by LCCM;

D2 a normatively incorrect, mental logic-based response to King-Ace can be modeled by LCCM;

D3 a normatively correct mental meta-logic-based solution to Wine Drinker can be modeled by LCCM;

D4 a normatively incorrect mental models-based response to Wine Drinker can be modeled by LCCM;

D5 a normatively correct solution to Wise Man can be modeled by LCCM.

D6 a normatively correct solution to Infinitary DeMorgan can be modeled by LCCM.

The reader, by elementary deduction, can satisfy herself that once these things are demonstrated, all
desiderata are satisfied. These demonstrations, recall, are to be carried out at the “algorithmic” level in
Marr’s (1982) tripartite scheme, or, equivalently, the “symbolic” in Pylyshyn’s (1984) corresponding three-
level view of the computational modeling of cognition. Using Marr’s language, that means that what is sought
is a representation for the input and output, and the algorithm for the transformation from the former to the
latter. The algorithm for transformation corresponds directly to the argument or proof provided. (Recall that
what the algorithms in question are was provided in section 4.3, when logic-based computer programming
was defined. The programming is based directly on arguments or proofs returned by subjects.)

5.1.1 D1 (N.C. King-Ace Modeled)

A normatively correct solution to Puzzle 1 that follows what human cognizers do when succeeding on the
puzzle is effortless to construct in LCCM, with the logical system in question set to LPC . In a recent
experiment in our laboratory (to test hypotheses outside the scope of the present chapter), 40 subjects were
given Puzzle 1. The subjects were divided into two groups, one that was given a paper-and-pencil version
of Puzzle 1, and one that was given an electronic version encoded in our Slate system. In both cases, a
justification for the given answer was requested. A number of subjects did in fact answer correctly, and give
a normatively correct justification, that is, a proof in a particular deductive calculus, namely the calculus F
defined earlier. Figure 2 shows a proof in F , constructed in hyperproof, that follows the reasoning given by
some students in proving that in Puzzle 1 one can correctly conclude ¬A. It is important to note that there
are an unlimited number of deductive calculi that could be used to a proof establishing the correct answer
“There is not an ace in the hand”. The normative correct solution provided here is a direct match to the
justification given by human subjects. For many examples of such normatively correct solutions produced
by human subjects, see (Rinella et al. 2001).
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Figure 2: A Proof That There is No Ace in the Hand in F

5.1.2 D2 (N.I. Mental Logic-Based King-Ace Modeled)

The same experiment as mentioned in the previous section, combined with a number of predecessors rele-
vantly like it, have enabled us to acquire an archive of “justifications” in support of A. The vast majority
of these express reasoning that is in fact formally valid reasoning in conformity with mental logic theory —
but in this reasoning, the declarative information is incorrectly represented. How does the reasoning run,
specifically? It’s perfectly straightforward; here is a sample:

“We know that if there’s a king in the hand, then there’s an ace in the hand. And we know that if there
isn’t a king in the hand, then there is an ace in the hand. But, there are only two possibilities here.
Either there is a king in the hand, or there isn’t. But both of these possibilities let us conclude that
there is an ace in the hand.”

Obviously, such reasoning accords well with mental logic, and a simulation of this reasoning in the LCCM
approach is trivial. One need only write a program PLP C

such that, when evaluated, the reasoning quoted
immediately above is produced. Here’s a simple NDL deduction that does the trick:

// The signature for this simple example (normatively incorrect

// deductive reasoning given in response to the king-ace puzzle)

// contains to propositional variables, A and K:

Relations A:0, K:0.

// One asserts the conjunction consisting of the claim that if there’s

// a king in the hand, then there’s an ace in the hand, and the claim

// that if there isn’t a king in the hand then there’s an ace in the

// hand.

assert ((K ==> A) & (~K ==> A))

// Either there’s a king in the hand, or there isn’t:

assert K \/ ~K

// And now for the argument, which mechnizes the idea that no

// mather which if-then one goes with, in either case one can

// show that there is an ace in the hand.

left-and ((K ==> A) & (~K ==> A));

right-and ((K ==> A) & (~K ==> A));

cases K \/ ~K, K ==> A, ~K ==> A

When evaluated, this returns a theorem exactly in line with what the normatively incorrect reasoning is
supposed to produce, viz.,

Theorem: A

Once again, note that it is not just that the desired answer is produced. The structure of the justification
directly models what is given by human subjects who fall prey to the puzzle.
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5.1.3 D3 (N.C. Mental Meta-Logic-Based Wine Drinker Modeled)

How does LI allow us to solve Puzzle 2? Recall yet again the three relevant statements, in English:

1. All the Frenchmen in the restaurant are gourmets.

2. Some of the gourmets are wine drinkers.

3. Some of the Frenchmen in the restaurant are wine drinkers.

The simplest solution to the puzzle is to note that one can find an interpretation I (in the logical system
LI) in which the first two statements are true, but the third isn’t. This will show that the third isn’t a
deductive consequence of the first two, from which it will immediately follow that the third cannot be proved
from the first two. Here is an interpretation that fits the bill: First, assume that everyone we’re talking
about is in the restaurant. Now, suppose that Alvin is a wine-drinker and a gourmet, and not a Frenchman.
Bertrand is a Frenchman and a gourmet, but not a wine drinker. No one else, in this imaginary scenario,
exists. In this situation, all Frenchmen are gourmets, and there exists someone who is a wine-drinker and
a gourmet. This ensures that both the first two statements are true. But it’s not true that there exists
someone who is both a Frenchman and a wine drinker. This means that third proposition is false; more
generally, it means that the third isn’t a consequence of the first two, which in turn means that (using the
list of the three just given)

{(1), (2)} ` (3),

and the full solution is accomplished. Please note that logic-based programming at the level of LI allows
for countermodels to be produced, and they can be rendered in visual form to be more quickly grasped.
Figure 3 shows such a countermodel relevant to the present case, produced by the aforementioned Paradox
system (Claessen & Sorensson 2003), and translated and visually displayed by the Slate system (Bringsjord
et al. 2007). For studies in which subjects respond to stimuli like the Wine Drinker in normatively correct
fashion, see (Bringsjord et al. 1998, Rinella et al. 2001).

Object-1 Object-2

IN-THE-RESTAURANT WINE-DRINKERGOURMETFRENCHMANNON-WINE-DRINKER

Figure 3: Visual Countermodel in Wine Drinker Puzzle (provided by Andrew Shilliday and Joshua Taylor)

5.1.4 D4 (N.I. Mental Models-Based Wine Drinker Modeled)

This is effortless to model in LCCM, as follows. First, most subjects who succumb to this problem see not
the list of English sentences as written, but rather

1. All the Frenchmen in the restaurant are gourmets.

2. All of the gourmets are wine drinkers.

3. There are some Frenchman.

4. Some of the Frenchmen in the restaurant are wine drinkers.

The deduction of the last of these from the first three in a natural calculus is straightforward. Here is an
NDL deduction that, once evaluated, produces exactly the human-produced output (i.e., exactly (exists x
(Frenchmen(x) & Winedrinker(x))), by exactly the human-produced reasoning:

// There are three obvious relations to declare:
Relations Frenchman:1, Gourmet:1, Winedrinker:1.

assert (forall x (Frenchman(x) ==> Gourmet(x))) // The first proposition is asserted.

assert (forall x (Gourmet(x) ==> Winedrinker(x))) // The second proposition is asserted.

assert (exists x Frenchman(x)) // There are some Frenchmen.

34



// Now for the reasoning corresponding to the normatively incorrect response.
// The reasoning itself, note, is formally valid.

pick-witness z for (exists x Frenchman(x)) // An arbitrary individual z is picked
to facilitate the reasoning.

begin
specialize (forall x (Frenchman(x) ==> Gourmet(x))) with z;
specialize (forall x (Gourmet(x) ==> Winedrinker(x))) with z;
assume Frenchman(z)

begin
modus-ponens Frenchman(z) ==> Gourmet(z), Frenchman(z);
modus-ponens Gourmet(z) ==> Winedrinker(z), Gourmet(z)

end;
modus-ponens Frenchman(z) ==> Winedrinker(z), Frenchman(z);
both Frenchman(z), Winedrinker(z);
ex-generalize (exists x Frenchman(x) & Winedrinker(x)) from z

end

5.1.5 D5 (N.C. Wise Man Modeled)

To ease exposition, the solution is restricted to the two-wise man version. In this version, the key information
consists in these three facts:

1. A knows that if A doesn’t have a white spot, B will know that A doesn’t have a white spot.

2. A knows that B knows that either A or B has a white spot.

3. A knows that B doesn’t know whether or not B has a white spot.

Next, here are some key axioms and rules of inference:

K �(φ⇒ ψ) ⇒ (�φ⇒ �ψ)

T �φ⇒ φ

LO (“logical omniscience”) From φ `∗ ψ and Kαφ infer Kαψ

We are now positioned to appreciate a traditional-style proof in LKT that solves this problem, and which
is the direct correlate given by (the few) subjects who, when WMP is given, provide a normatively correct
justification:

1. KA(¬White(A) ⇒ KB(¬White(A)))

2. KA(KB(¬White(A) ⇒ White(B)))

3. KA(¬KB(White(B)))

4. ¬White(A) ⇒ KB(¬White(A)) 1, T

5. KB(¬White(A) ⇒ White(B)) 2, T

6. KB¬(White(A)) ⇒ KB(White(B)) 5, K

7. ¬White(A) ⇒ KB(White(B)) 4, 6

8. ¬KB(White(B)) ⇒ White(A) 7

9. KA(¬KB(White(B)) ⇒ White(A)) 4–8, 1, LO

10. KA(¬KB(White(B))) ⇒ KA(White(A)) 9, K

11. KA(White(A)) 3, 10

To see how this can be rendered in computational form, implemented, and efficiently run in a logic-based
computer program, see (Arkoudas & Bringsjord 2005).

5.1.6 D6 (N.C. Infinitary DeMorgan)

Given the reach of LCCM through Lω1ω, this puzzle is strikingly easy to solve, as some humans realize.
The disjunction in question can be denoted by

∨
Φ. We then simply invoke the infinitary analogue to the

inference rule known as disjunctive syllogism, which sanctions deducing ψ from the two formulas φ ∨ ψ and
¬φ. The analogue is

from
∨

Φ, where φ ∈ Φ, and ¬φ, infer to
∨

Φ− {φ}

It’s as easy as that.
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5.2 Meeting (C2), the Perception/Action Challenge

(C2) can be solved if logic-based computational cognitive modeling can transparently model, on the strength
of the core mechanical processes given by the families F and P, the range of high-level cognition all the way
down to non-deliberative interaction with the environment, or what, following contemporary terminology,
can be called external perception and action.30 In Ron Sun’s words, discussed earlier, one can meet challenge
(C2) if F and P constitute the unifying logico-mathematical language he says is sorely missing.

It has been shown above that logic-based computational cognitive modeling can model high-level reason-
ing. If it can be shown that LCCM can meet the perception-and-action challenge, large steps will have been
taken toward showing that (C2) can be met by LCCM.31

Of course, there is a general feeling afloat that logic is unacceptably slow. Can LCCM handle rapid, non-
deliberative perception and action, in an exchange with the physical environment? For example, can logic
be used to model a human making his or her way through a rapid-fire first-person shooter computer game?
In this section it is explained why this challenge (a) may be beside the point of modeling human personhood,
(b) needs to be distinguished from so-called transduction, (c) can be met in at least two logic-based ways,
one of which has already been successfully pursued to some degree, and one of which would be based on
visual logic, an area of growing and great future importance to LCCM.

5.2.1 Is Perception and Action Beside the Point?

Note that non-deliberative, external perception and action is not part of the definition of human personhood
given earlier in the chapter (section 2). The reason for that is well-known: In general, it seems entirely
possible for us to be persons over a stretch of time during which no external perception and action occurs.32

There is no reason why Smith can’t spend three hours in a sensory deprivation tank, during which time he
cracks a math problem, or writes a story in his head, or does any number of intellectual tasks. Moreover,
it certainly seems mathematically possible that human persons could be brains in vats, having no exchange
with the environment of the type that is supposed to be a challenge to logic-based computational cognitive
modeling (Bringsjord & Zenzen 1991).

Nonetheless, it is charitably assumed that LCCM is challenged with having to model external perception
and action. An explanation that this challenge can apparently be met is now provided.

5.2.2 Separating Out Transduction

It is important to distinguish between perception and action, and transduction. Transduction is the process
by which data hitting sensors is transformed into information that can processed by an agent, and by which
information processed by an agent is transformed into data emitted by effectors. Arguably, computational
cognitive modeling should not be charged with having to capture transduction. Transduction is a purely
physics- and engineering-relevant process having nothing to do with cognition. In other words, transduction
is a process peripheral to human personhood. The quickest way to see this is to note that the transducers we
currently have can be replaced with others, while the pre-replacement and post-replacement persons remain
numerically identical despite this replacement. If you go blind, and doctors replace your eyes with artificial
cameras, it’s still you who thanks the surgeons after the procedure has brought your sight back. It’s your
sight they have brought back, after all. (The overall picture just described is articulated in the context of
human-level logic-based AI in (Nilsson 1991). The picture transfers directly to the specific case of human
persons.)

30The term ‘external’ is used because human persons do routinely engage in introspection (perceive internal things), and do
carry out all sorts of mental (= internal) actions.

31Astute readers may wonder about learning. Please note that the notion that logic is inappropriate for modeling learning,
which because of limited space isn’t discussed in earnest herein, has certainly evaporated. This is so for two reasons. The
first is that logic-based machine learning techniques are now well-established (for a nice survey, see Russell & Norvig 2002).
The second reason is that machine learning by reading, which has never been pursued in AI or cognitive science, is now a
funded enterprise — and is logic-based. For example, see the start of Project Halo (Friedland, Allen, Matthews, Witbrock,
Baxter, Curtis, Shepard, Miraglia, Angele, Staab, Moench, Oppermann, Wenke, Israel, Chaudhri, Porter, Barker, Fan, Chaw,
Yeh, Tecuci & Clark 2004), and logic-based machine reading research sponsored by the US government (e.g. see Bringsjord
et al. 2007).

32Internal perception and action is another story: In a sensory deprivation tank, one can perceive all sorts of mathematical
objects (e.g.), and can take all kinds of mental actions.

36



So, the assumption is made that for LCCM information from the environment is cast as expressions
in some logical system from F , and the challenge is to process those expressions with sufficient speed and
accuracy to match human performance. This can be accomplished in one of two ways. The first way is
briefly described in the next section. The second way is still experimental, and on the very frontier of LCCM
and human-level logic-based AI, and will not be discussed here.33

5.2.3 A Calculus (Situation, Event, . . .) with ATPs

While logic has been criticized as too slow for real-time perception-and-action-heavy computation, as you
might see in the computational modeling of a human playing first-person shooter game (as opposed to a
strategy game, which for obvious reasons fits nicely with the paradigm of LCCM), it has been shown that
computation produced by the execution of programs in PLI

is now so fast that it can enable the real-time
behavior of a mobile robot simulating human behavior in a robust environment. This has been shown by
having a logic-based mobile robot successfully navigate the wumpus world game, a staple in AI (Bringsjord
et al. 2005), and a game that humans have long played. (See Figures 4 and 5.) This work parallels work done
in John McCarthy’s (logic-based) AI Lab that has shown it to be possible to control a real robot, operating
in a realistic office environment in real time (Amir & Maynard-Reid 2001, Amir & Maynard-Reid 2000, Amir
& Maynard-Reid 1999).34 In this approach, a calculus is used to represent time and change. Usually the
calculus is the situation calculus, but the event calculus can also be used; both are summarized in (Russell
& Norvig 2002). It’s important to know that such work is far from peripheral and tentative: logic-based
AI is starting to reveal that even in the area of perception and action, the speed demands can be met via
well-established techniques that are part of the standard toolkit for the field, as seen by such textbooks as
(Reiter 2001).

Figure 4: The Wumpus World Game. In the wumpus world, a robot must navigate a work in matrix form,
where cells in the grid may contain pits or a monster (the Wumpus). The robot must shoot and kill the
Wumpus, and retrieve the gold.

33In the second way, information from the environment is not transduced into traditional linguistic logics, but is rather left
in visual form, and represented in visual logics. For a discussion of visual logic, in the context of the study of the mind from a
computational perspective, see (Bringsjord in-press).

34This research can be found online at: http://www-formal.stanford.edu/eyal/lsa.
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Figure 5: Performance of a RASCALS-Powered Robot in the Wumpus World. This graph shows the time (in
secs) it takes the logic-powered robot to succeed in the wumpus world, as a function of the size of the world
(i.e., the size of the grid). The speed is really quite remarkable. Engineering was carried out by Matt Daigle.

5.3 Meeting (C3), Meeting the Rigor Challenge

It is now briefly explained why it is that every computational model produced in accordance with logic-based
computational cognitive modeling has a precise meaning, which allows LCCM to be theorem-guided.35 Space
does not permit a sampling of relevant theorems to be canvassed in any detail, but a few are cited at the
end of the present section. For example, it is explained how it can be determined whether two different
logic-based programs P and P ′ have the same meaning.

Let PL be a logic-based computer program from the space P. It follows immediately by definitions given
above that this program conforms to what has been called the argument semantics for the logical system L
in F . That is, every inference made when PL is executed has a precise mechanical meaning in terms of the
effect this inference has on the knowledge base associated with this program. (This has been seen firsthand
by the reader earlier, in the sample logic-based computer programs that have been provided.) This meaning
perfectly coincides with corresponding inferences made when reasoning is carried out in the logical system
L using a particular mode of inference, and a particular calculus. To make this clear, consider the precise
meaning (albeit in English) of one of the inferences made use of in one of the sample logic-based computer
programs presented above; that inference is cases, as used for example in

cases K \/ ~K, K ==> A, ~K ==> A

The meaning of this inference is that, assuming that the knowledge base contains the three formulas in
question (the disjunction K K and the two conditionals K ==> A and K ==> A), its application will add
to the knowledge base the formula A. This is the kind of meaning that is regimented through the argument
semantics element in the six elements that are needed for each logical system; recall section 4.1. For each
and every inference form, there is likewise a definition of this sort to fixes the meaning of that inference.
As a result, any sequence of inferences has an absolutely clear meaning. Since every logic-based computer
program is nothing more than the specification of a sequence of inferences, the meaning of the operation of
a logic-based program is likewise entirely clear.

But what about the meaning of the formulas that are involved in the inferences? Here too precision is
guaranteed. This is so because each and every formula appearing in a logic-based program is given a precise
meaning via the formal semantics of the logical system that the formula is expressed in. As to why this is
so, you have only to look back at the formula semantics for LI , given above. One can determine, for every

35Of course, though every model has a clear meaning, there is nothing intrinsic to the logic-based paradigm that would
necessarily prevent a human modeler from midescribing human cognition. If Jones believes that everyone loves someone, and
Smith, in seeking to model this belief, codes Jones’ belief as ∀x∀yLxy, then no amount of precision in the paradigm will rescue
the situation.
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formula in every logic-based computer program, what the meaning of this formula is, because one has on
hand an interpretation specifying the formal meaning of all the elements in the signature of every program.
Look back to any of the sample logic-based programs given above, and see there, at the beginning of the
file, declarations of relations (and sometimes constants). One has on hand an interpretation I telling us
what these relations and constants mean. This pattern holds not just for programs written under LI (i.e.,
programs from PLI

), but for any logical system in the family F . In short, while in declarative computational
cognitive modeling it may happen that a declarative statement φ is employed, in the formalization of such
modeling in LCCM, the machinery must be in place for mechanically determining the meaning of φ.

Given the logico-mathematical precision of LCCM, declarative computational cognitive modeling can,
thankfully, be guided by theorems. Of course, theorem guidance is not something that can be counted upon
to be met with universal acclaim. There may well be those of the heterodox view that guidance by the
light of mathematics is unwanted. However, there can be no denying the effectiveness of mathematics in not
only describing, but predicting, the natural world, whether that description and prediction is pitched at the
level of the ‘algorithmic’ (like formal economics, computer science, and computational cognitive modeling),
or at the lower levels at which physics and chemistry operate (as has been famously pointed out in the
20th century; e.g., see Wigner 1960, Hamming 1980). To the extent that computational cognitive modeling
takes the cognition distinctive of human persons to be natural phenomena that ought not only be carefully
described, but predicted as well, theorem guidance would certainly be a welcome development; and in the
case of at least declarative computational cognitive modeling, this development is achieved by virtue of
LCCM.

There is not sufficient space, and this is not the right venue, to begin to give some interesting theorems, but
it should be pointed out that many such theorems can now be proved in connection with the discussion above.
For example, one can prove without much effort that simulations (i.e., computational cognitive models) in
LCCM produced by programs at the level of LKT will never go into infinite loops (assuming no syntactic
bugs). On the other hand, because LI is only semi-decidable (the theorems are in any decent textbook
on intermediate mathematical logic, e.g., see Boolos & Jeffrey 1989), simulations in LCCM produced by
programs at the level of this logical system can enter infinite loops, and explicit timeout catches must be
included for all but very simple programs. For a more general example, note that given the foregoing, it
is now known exactly when two logic-based computer programs PL and P ′

L have the same meaning under
some interpretation I: This equivalence holds provided that (i) both programs, given declarative input Φ
(declarative sentences expressed as formulae in logical system L), once executed, produce the very same
theorems as output; and (ii), the formulas in Φ, as well as those used in the execution of the two programs,
have the same meaning under I.

6 Limitations and the Future

What can be said about the future of computational cognitive modeling, and in particular declarative/logic-
based computational cognitive modeling? As readers well know, the future of any field is notoriously difficult
to predict. Nonetheless, in the present case, present-day deficiencies in computational cognitive modeling,
and specifically in LCCM, clearly point the way toward what cognitive modelers will in the future attempt
to do. So, in a limited sense, the future can be accurately predicted, as follows.

What are the deficiencies? First, while Turing (1950) predicted over half a century back that by now we
would be able to engineer machines linguistically indistinguishable from us (i.e., machines able to pass his
so-called “Turing Test”), the fact of the matter is that, today, a bright toddler’s conversational reach still
exceeds that of any and all computers on our planet. This situation parallels the sad state of computational
cognitive modeling when it comes to language: No robust computational cognitive models of human-level
communication (attribute 4 in the list of capacities constitutive of personhood, given in section 2) exist.
Even Anderson (2003), a sanguine champion of ACT-R, concedes that the linguistic side of computational
cognitive modeling has essentially gone nowhere; that in this regard “Newell’s Program” has not succeeded.
Not only that, but no light can even be seen at the end of the tunnel. There are those (e.g., Moravec 1999)
who hold that, relatively soon, person-level communication will be mechanized. Unfortunately, such writers
are confident because of the continuous increase in processing speed produced by Moore’s Law, but raw
processing speed is not the problem (as explained in Bringsjord 2000): the challenge, surely, is to discover
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the information-processing procedures that enable human persons to communicate in natural languages.
However fast the hardware, it does little good unless there are procedures to run upon it. It can therefore
be said with confidence that computational cognitive modeling will in the future see sustained work in the
area of language-based communication. Breakthroughs are waiting to be made in this area.

What are the implications of this specifically for declarative/logic-based computational cognitive model-
ing? At the dawn of AI in the States, when AI was what is today called human-level AI, and for at least
three decades thereafter, the dream was to capture natural languages like English, German, and Norwegian
completely in first-order logic (= in LI) (e.g., see the FOL-based Charniak & McDermott 1985). Unfortu-
nately, this specific logic-based approach has not succeeded. In fact, some originally logic-based experts in
computational language processing have turned their backs on logic, in favor of purely statistical approaches.
Charniak is an example. In 1985, his comprehensive-at-the-time Introduction to Artificial Intelligence gave
a strikingly unified presentation of AI, including natural language processing. This unification was achieved
via first-order logic (= LI), which runs throughout the book and binds things together. But Charniak
abandoned logic in favor of purely statistical approaches (Charniak 1993).

To this point, despite the richness of the families F and P, natural language has resisted attempts to
model is in logico-computational terms. However, it seems clear that some traction has taken hold in the
attempt to model fragments of natural language in formal logic (e.g., see Fuchs, Schwertel & Schwitter 1999),
and this direction is certain to see more investment, and at least some progress. Only time will tell is this
research and development will be able to scale up to all of natural language.

A second present-day deficiency in computational cognitive modeling is consciousness. That is, there
are today no simulations of consciousness (attribute 2 in the list of capacities constitutive of personhood;
again, recall section 2). (There are simulations that encourage humans seeing these simulations to ascribe
consciousness to them. But that is quite different.) As was pointed out in section 2, no one has a third-
person account of what it is to (say) experience the taste of deep, dark chocolate, or what it is to be you
(Bringsjord 1998a). Absent such an account, mechanization — indeed, taking just initial steps toward some
mechanization — is impossible. Notice that while you may disagree about what is ultimately mechanizable,
you must concede that, at least as of now, we have no third-person formalization of consciousness. In other
words, property dualism (the view that such properties as “experiencing the taste of deep, dark chocolate”
are incorporeal, though they may be correlated with certain physical properties of the brain) may be false,
but it currently can’t be overthrown by providing the third-person description of the physical properties that
are identical to the psychological (or, as they are sometimes called in philosophy, “Cartesian”) ones. Given
the importance of consciousness in human cognition (after all, the reason humans seek to continue to live is
to continue to have conscious experiences), there is little doubt that in the future computational cognitive
modeling will be marked by a persistent attempt to express consciousness in computation. Again, break-
throughs are waiting to be made. Unfortunately, declarative/logic-based computational cognitive modeling
would appear to be ill-suited to producing those breakthroughs. The reason is that such modeling is by
definition focused on content that is fully and completely third-person in form: declarative representations
are paradigmatically third-person in kind. It must be confessed that, at least at present, it is frankly hard
to see how LCCM will rise above the limitation that subjective consciousness seems impossible to formalize
in the form of propositions, and reasoning over those propositions.

The present chapter has emphasized human reasoning, as the reader well knows by now. But only
reasoning in connection with specific puzzles has been considered. What about the future of attempts
to computationally simulate robust human reasoning within the declarative/logic-based paradigm? Here
it would seem that two prudent predictions can be made, given the current state of the art, and severe
limitations seen within it.

As to trends, there is a growing desire to engineer simulations not only of the sort of relatively simple
reasoning required to solve the puzzles analyzed above, but of the sort of real-life reasoning seen in the proofs
of historic theorems. Gödel’s incompleteness theorems are in this category, and recently some attempts have
been made to build computational simulations of the reasoning involved (Sieg & Field 2005, Quaife 1988,
Shankar 1994). When one looks closely at this work, it becomes clear that these efforts are based on giving
the computer, at the start of its computation, knowledge the formation of which was the majority of the
battle in Gödel’s own case (as explained in Bringsjord 1998b). In the future, researchers will increasingly
attempt to construct computational simulations of the production of such theorems, where the starting point
involves only some basic knowledge. In other words, the attempt will be made to simulate the human ability
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to invent or create from scratch, rather than to simply process pre-defined representations. Declarative/logic-
based computational cognitive modeling, as the present chapter shows, can provide impressive simulations
when the declarative content is provided ahead of time. But what about the process of generating such
content in the first place? This, currently, is a serious limitation, and it points toward a future in which
much effort will be expended to surmount it.

7 Conclusion

This chapter has explained logic-based computational cognitive modeling as a formal, esemplastic ratio-
nalization of declarative computational cognitive modeling. It has also presented the attempt to build
computational simulations of all, or at least large portions of, human cognition, on the basis, fundamentally,
of logic and logic alone, where ‘logic’ here denotes the sense of ‘logical system’ explained above, and the
vast family F . This chapter has not argued that this engineering should be pursued; it has not argued that
something is gained by pursuing a full-blown unified theory of cognition. The absence of unification has been
famously bemoaned rather long ago by Newell (1973). Though such complaints are generally regarded to be
compelling even to this day, it must be admitted that they are not sensitive to the fact that, in other fields
more mature and (at least hitherto) more rigorous (e.g., physics) than computational cognitive modeling,
unification is regarded to be of little or no value by many, if not most, researchers in these fields. There may
be no grand synthesis between quantum mechanics and special relativity, but that doesn’t stop physics from
advancing year by year, and the benefits of that advance, from medical imaging to space exploration, are
myriad. It’s frankly a bit old-fashioned nowadays to yearn, in physics, for a grand synthesis.

To put the point another way, if one ought to pursue declarative computational models of all of human
cognition in a unified fashion, logic-based computational cognitive modeling provides a rigorous route for the
pursuit. But the antecedent of this conditional has not been established in the present chapter. In the end,
only the use of logic would allow one to rationally determine if the antecedent should be affirmed: after all,
only rational arguments either way could carry the day, since we are engaged in science. In fact, only the
use of a particular logical system in which to express and evaluate this argumentation will allow the issue
to be rationally settled. Ergo, logic-based computational cognitive modeling is configured, by virtue of the
formalisms that constitute it, to allow for the construction of cognitive models of the cognition stimulated
by this very chapter.
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