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COGNITIVE SYSTEMS AND COGNITIVE
ARCHITECTURES

INTRODUCTION

Cognitive systems refer to computational models and sys-
tems that are in some way inspired by human (or animal)
cognition as we understand it, which is a broad class of
systems, not always well defined or clearly delineated.
There are a variety of forms of cognitive systems. They
have been developed for a variety of different purposes and
in a variety of different ways. We will describe two broad
categories below.

In general, computational cognitive modeling explores
the essence of cognition through developing computational
models of mechanisms (including representations) and
processes of cognition, thereby producing realistic cognitive
systems. In this enterprise, a cognitive architecture is a
domain-generic and comprehensive computational cogni-
tive model that may be used for a wide range of analysis of
behavior. It embodies generic descriptions of cognition in
computer algorithms and programs. Its function is to pro-
vide a general framework to facilitate more detailed compu-
tatonal modeling and understanding of various compo-
nents and processes of the mind. Cognitive architectures
occupy a particularly important place among all kinds of
cognitive systems, as they aim to capture all basic struc-
tures and processes of the mind, and therefore are essential
for broad, multiple-level, multiple-domain analyses of
behavior. Developing cognitive architectures has been a
difficult task. In this article, the importance of developing
cognitive architectures, among other cognitive systems,
will be discussed, and examples of cognitive architectures
will be given.

Another common approach toward developing cognitive
systems is the logic-based approach. From the logical
point of view, a cognitive system is first and foremost a
system that, through time, adopts and manages certain
attitudes toward propositions, and reasons over these pro-
positions, to perform the actions that will secure certain
desired ends. The most important propositional attitudes
are believes that and knows that. (Our focus herein will be
on the latter. Other propositional attitudes include wants
that and hopes that.) A propositional attitude is simply a
relationship holding between an agent (or system) and one
or more propositions, where propositions are declarative
statements.

We can think of a cognitive system’s life as being a
cycle of sensing, reasoning, acting; sensing, reasoning,
acting; . . ., and so on. In a cognitive system, this cycle
repeats ad infinitum, presumably with goal after goal
achieved along the way. In a logic-based cognitive system,
the knowledge at the heart of this cycle is represented as
formulas in one or more logics, and the reasoning in
question is also regimented by these logics.

The eventual objective of cognitive systems research is to
construct physically instantiated cognitive systems that
can perceive, understand, and interact with their environ-
ment, and evolve and learn to achieve human-like perfor-
mance in complex activities (often requiring context-
specific knowledge). The readers may look into Refs. 1–4
for further information.

COGNITIVE ARCHITECTURES

In this section, we describe cognitive architectures. First,
the question of what a cognitive architecture is is answered.
Next, the importance of cognitive architectures is
addressed. Then an example cognitive architecture is pre-
sented.

What is a Cognitive Architecture?

As mentioned earlier, a cognitive architecture is a compre-
hensive computational cognitive model, which is aimed to
capture the essential structure and process of the mind, and
can be used for a broad, multiple-level, multiple-domain
analysis of behavior (5,6).

Let us explore this notion of architecture with an ana-
logy. The architecture for a building consists of its overall
framework and its overall design, as well as roofs, founda-
tions, walls, windows, floors, and so on. Furniture and
appliances can be easily rearranged and/or replaced and
therefore they are not part of the architecture. By the same
token, a cognitive architecture includes overall structures,
essential divisions of modules, essential relations between
modules, basic representations and algorithms within mod-
ules, and a variety of other aspects (2,7). In general, an
architecture includes those aspects of a system that are
relatively invariant across time, domains, and individuals.
It deals with componential processes of cognition in a
structurally and mechanistically well-defined way.

In relation to understanding the human mind (i.e., in
relation to cognitive science), a cognitive architecture pro-
vides a concrete framework for more detailed computa-
tional modeling of cognitive phenomena. Research in
computational cognitive modeling explores the essence of
cognition and various cognitive functionalities through
developing detailed, process-based understanding by spe-
cifying corresponding computational models of mechan-
isms and processes. It embodies descriptions of cognition
in concrete computer algorithms and programs. Therefore,
it produces runnable computational models of cognitive
processes. Detailed simulations are then conducted based
on the computational models. In this enterprise, a cognitive
architecture may be used for broad, multiple-level,
multiple-domain analyses of cognition.

In relation to building intelligent systems, a cognitive
architecture specifies the underlying infrastructure for
intelligent systems, which includes a variety of capabilities,
modules, and subsystems. On that basis, application
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systems may be more easily developed. A cognitive archi-
tecture also carries with it theories of cognition and under-
standing of intelligence gained from studying human
cognition. Therefore, the development of intelligent sys-
tems can be more cognitively grounded, which may be
advantageous in many circumstances (1,2).

Existing cognitive architectures include Soar (8), ACT-R
(9), CLARION (6), and many others.

For further (generic) information about cognitive archi-
tectures, the readers may turn to the following websites:

http://www.cogsci.rpi.edu/~rsun/arch.html

http://books.nap.edu/openbook.php?isbn=0309060966
as well as the following websites for specific individual

cognitive architectures (Soar, ACT-R, and CLARION):

http://www.cogsci.rpi.edu/~rsun/clarion.html

http://act-r.psy.cmu.edu/

http://sitemaker.umich.edu/soar/home

Why are Cognitive Architectures Important?

For cognitive science, the importance of cognitive architec-
tures lies in the fact that they are beneficial to understand-
ing the human mind. In understanding cognitive
phenomena, the use of computational simulation on the
basis of cognitive architectures forces one to think in terms
of process and in terms of detail. Instead of using vague,
purely conceptual theories, cognitive architectures force
theoreticians to think clearly. They are, therefore, critical
tools in the study of the mind. Researchers who use cogni-
tive architectures must specify a cognitive mechanism in
sufficient detail to allow the resulting models to be imple-
mented on computers and run as simulations. This
approach requires that important elements of the models
be spelled out explicitly, thus aiding in developing better,
conceptually clearer theories. It is certainly true that more
specialized, narrowly scoped models may also serve this
purpose, but they are not as generic and as comprehensive
and thus they are not as useful (1).

An architecture serves as an initial set of assumptions to
be used for further computational modeling of cognition.
These assumptions, in reality, may be based on either
available scientific data (for example, psychological or bio-
logical data), philosophical thoughts and arguments, or ad
hoc working hypotheses (including computationally
inspired such hypotheses). An architecture is useful and
important precisely because it provides a comprehensive
initial framework for further modeling in a variety of task
domains. Different cognitive architectures, such as Soar,
ACT-R, or CLARION, embody different sets of assumptions
(see an example later).

Cognitive architectures also provide a deeper level of
explanation. Instead of a model specifically designed for a
specific task (often in an ad hoc way), using a cognitive
architecture forces modelers to think in terms of the
mechanisms and processes available within a generic cog-
nitive architecture that are not specifically designed for a
particular task, and thereby to generate explanations of the
task that is not centered on superficial, high level features

of a task (as often happens with specialized, narrowly
scoped models), that is, to generate explanations of a deeper
kind. To describe a task in terms of available mechanisms
and processes of a cognitive architecture is to generate
explanations centered on primitives of cognition as
envisioned in the cognitive architecture (e.g., ACT-R or
CLARION), and therefore such explanations are deeper
explanations. Because of the nature of such deeper expla-
nations, this style of theorizing is also more likely to lead to
unified explanations for a large variety of data and/or
phenomena, because potentially a large variety of tasks,
data, and phenomena can be explained on the basis of the
same set of primitives provided by the same cognitive
architecture. Therefore, using cognitive architectures
leads to comprehensive theories of the mind (5,6,9), unlike
using more specialized, narrowly scoped models.

Although the importance of being able to reproduce the
nuances of empirical data from specific psychological
experiments is evident, broad functionality in cognitive
architectures is also important (9), as the human mind
needs to deal with the full cycle that includes all of the
following: transducing signals, processing them, storing
them, representing them, manipulating them, and gener-
ating motor actions based on them. There is clearly a need
to develop generic models of cognition that are capable of a
wide range of functionalities to avoid the myopia often
resulting from narrowly-scoped research (in psychology
in particular).

In all, cognitive architectures are believed to be essential
in advancing the understanding of the mind (5,6,9). There-
fore, developing cognitive architectures is an important
enterprise in cognitive science.

On the other hand, for the fields of artificial intelligence
and computational intelligence (AI/CI), the importance of
cognitive architectures lies in the fact that they support the
central goal of AI/CI—building artificial systems that are as
capable as human beings. Cognitive architectures help us
to reverse engineer the best existing intelligent system—
the human mind. They constitute a solid basis for building
intelligent systems, because they are well motivated by,
and properly grounded in, existing cognitive research. The
use of cognitive architectures in building intelligent sys-
tems may also facilitate the interaction between humans
and artificially intelligent systems because of the similarity
between humans and cognitively based intelligent systems.

It is also worth noting that cognitive architectures are
the antithesis of ‘‘expert systems’’: Instead of focusing on
capturing performance in narrow domains, they are aimed
to provide broad coverage of a wide variety of domains (2).
Business and industrial applications of intelligent systems
increasingly require broad systems that are capable of a
wide range of intelligent behaviors, not just isolated sys-
tems of narrow functionalities. For example, one applica-
tion may require the inclusion of capabilities for raw image
processing, pattern recognition, categorization, reasoning,
decision making, and natural language communications. It
may even require planning, control of robotic devices, and
interactions with other systems and devices. Such require-
ments accentuate the importance of research on broadly
scoped cognitive architectures that perform a wide range of
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cognitive functionalities across a variety of task domains
(as opposed to more specialized systems).

An Example of a Cognitive Architecture

An Overview. As an example, we will describe a cognitive
architecture CLARION. It has been described extensively in
a series of previous papers, including Refs. 6,10–12. The
readers are referred to these publications for further details.

Those who wish to know more about other cognitive
architectures in existence (such as ACT-R or Soar) may
want to see Refs. 8 and 9.

CLARION is an integrative architecture, consisting of a
number of distinct subsystems, with a dual representa-
tional structure in each subsystem (i.e., implicit versus
explicit representations; more later). Its subsystems
include the action-centered subsystem (the ACS), the
nonaction-centered subsystem (the NACS), the motiva-
tional subsystem (the MS), and the meta-cognitive subsys-
tem (the MCS). The role of the action-centered subsystem is
to control actions, regardless of whether the actions are for
external physical movements or for internal mental opera-
tions. The role of the nonaction-centered subsystem is to
maintain general knowledge (either implicit or explicit).
The role of the motivational subsystem is to provide under-
lying motivations for actions in terms of providing impetus
and feedback (e.g., indicating whether outcomes are satis-
factory). The role of the meta-cognitive subsystem is to
monitor, direct, and modify the operations of the action-
centered subsystem dynamically as well as the operations
of all the other subsystems.

Each of these interacting subsystems consists of two
‘‘levels’’ of representation (i.e., a dual representational
structure): Generally, in each subsystem, the top level
encodes explicit knowledge and the bottom level encodes
implicit knowledge. The distinction of implicit and explicit

knowledge has been amply argued for before (6,13–15). The
two levels interact, for example, by cooperating in actions,
through a combination of the action recommendations from
the two levels respectively, as well as by cooperating in
learning through a bottom-up and a top-down process (to be
discussed below). See Fig. 1.

It has been intended that this cognitive architecture
satisfy some basic requirements as follows. It should be
able to learn with or without a priori domain-specific knowl-
edge to begin with (unlike most other existing cognitive
architectures) (11,13). It also has to learn continuously
from ongoing experience in the world (as indicated by
Refs. 16 and 17, and others, human learning is often
gradual and ongoing). As suggested by Refs. 13 and 14,
and others, there are clearly different types of knowledge
involved in human learning. Moreover, different types of
learning processes are involved in acquiring different types
of knowledge (9,11,18). Furthermore, it should include both
situated actions/reactions and cognitive deliberations (6). It
should be able to handle complex situations that are not
amenable to simple rules. Finally, unlike other existing
cognitive architectures, it should more fully incorporate
emotional and motivational processes as well as meta-
cognitive processes. Based on the above considerations,
CLARION was developed.

Some Details. The Action-Centered Subsystem. First,
let us look into the action-centered subsystem (the ACS) of
CLARION. The overall operation of the action-centered
subsystem may be described as follows:

1. Observe the current state x.

2. Compute in the bottom level the Q-values of x asso-
ciated with each of all the possible actions ai’s: Q(x,
a1), Q(x, a2), . . . . . . , Q(x, an).

Figure 1. The CLARION architecture.
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3. Find out all the possible actions (b1, b2, . . . . , bm) at the
top level, based on the input x (sent up from the
bottom level) and the rules in place.

4. Compare or combine the values of the selected ais
with those of bjs (sent down from the top level), and
choose an appropriate action b.

5. Perform the action b, and observe the next state y and
(possibly) the reinforcement r.

6. Update Q-values at the bottom level in accordance
with the Q-Learning-Backpropagation algorithm

7. Update the rule network at the top level using the
Rule-Extraction-Refinement algorithm.

8. Go back to Step 1.

In the bottom level of the action-centered subsystem,
implicit reactive routines are learned: A Q-value is an
evaluation of the ‘‘quality’’ of an action in a given state:
Q(x, a) indicates how desirable action a is in state x (which
consists of some sensory input). An action may be chosen in
any state based on Q-values in that state. To acquire the Q-
values, the Q-learning algorithm (19) may be used, which is
a reinforcement learning algorithm (see the articles on
learning algorithms in this encyclopedia). It basically com-
pares the values of successive actions and adjusts an eva-
luation function on that basis. It thereby develops reactive
sequential behaviors or reactive routines (such as navigat-
ing through a body of water or handling daily activities, in a
reactive way (6,12). Reinforcement learning is implemen-
ted in modular (multiple) neural networks. Due to such
networks, CLARION is able to handle very complex situa-
tions that are not amenable to simple rules.

In the top level of the action-centered subsystem, explicit
symbolic conceptual knowledge is captured in the form of
explicit symbolic rules; see Ref. 12 for details. There are
many ways in which explicit knowledge may be learned,
including independent hypothesis-testing learning and
‘‘bottom-up learning’’ as discussed below.

Humans are generally able to learn implicit knowledge
through trial and error, without necessarily using a priori
knowledge. On top of that, explicit knowledge can be
acquired also from ongoing experience in the world, possi-
bly through the mediation of implicit knowledge (i.e.,
bottom-up learning; see Refs. 6,18, and 20). The basic
process of bottom-up learning (which is generally missing
from other existing cognitive architectures and which dis-
tinguishes CLARION from others) is as follows: If an action
implicitly decided by the bottom level is successful, then the
agent extracts an explicit rule that corresponds to the
action selected by the bottom level and adds the rule to
the top level. Then, in subsequent interaction with the
world, the agent verifies the extracted rule by considering
the outcome of applying the rule: If the outcome is not
successful, then the rule should be made more specific and
exclusive of the current case; if the outcome is successful,
the agent may try to generalize the rule to make it more
universal (21).1 After explicit rules have been learned, a

variety of explicit reasoning methods may be used. Learn-
ing explicit conceptual representation at the top level can
also be useful in enhancing learning of implicit reactive
routines at the bottom level (11).

Although CLARION can learn even when no a priori or
externally provided explicit knowledge is available, it can
make use of it when such knowledge is available (9,22). To
deal with instructed learning, externally provided knowl-
edge, in the forms of explicit conceptual structures such as
rules, plans, categories, and so on, can 1) be combined with
existent conceptual structures at the top level, and 2) be
assimilated into implicit reactive routines at the bottom
level. This process is known as top-down learning (12).

The Non-action-Centered Subsystem. The nonaction-cen-
tered subsystem (NACS) may be used for representing
general knowledge about the world (23), for performing
various kinds of memory retrievals and inferences. The
nonaction-centered subsystem is under the control of the
action-centered subsystem (through its actions).

At the bottom level, ‘‘associative memory’’ networks
encode nonaction-centered implicit knowledge. Associa-
tions are formed by mapping an input to an output (such
as mapping ‘‘2 þ 3’’ to ‘‘5’’). For example, the regular back-
propagation learning algorithm can be used to establish
such associations between pairs of inputs and outputs (24).

On the other hand, at the top level of the nonaction-
centered subsystem, a general knowledge store encodes
explicitnonaction-centered knowledge (25). In thisnetwork,
chunks are specified through dimensional values
(features).2 A node is set up in the top level to represent a
chunk. The chunk node connects to its corresponding fea-
tures (represented as individual nodes) in the bottom level of
the nonaction-centered subsystem (25). Additionally, links
between chunks encode explicit associations between pairs
of chunks, known as associative rules. Explicit associative
rules may be formed (i.e., learned) in a variety of ways (12).

Different from most other existing cognitive architec-
tures, during reasoning, in addition to applying associative
rules, similarity-based reasoning may be employed in the
nonaction-centered subsystem. During reasoning, a known
(given or inferred) chunk may be automatically compared
with another chunk. If the similarity between them is
sufficiently high, then the latter chunk is inferred (12,25).

As in the action-centered subsystem, top-down or
bottom-up learning may take place in the nonaction-cen-
tered subsystem, either to extract explicit knowledge in the
top level from the implicit knowledge in the bottom level or
to assimilate explicit knowledge of the top level into implicit
knowledge in the bottom level.

The Motivational and the Meta-Cognitive Subsystem. The
motivational subsystem (the MS) is concerned with why an

2 The basic form of a chunk is as follows: chunk-idi: (dimi1
,

vali1
)(dimi2

, vali1
) . . . . . . (dimin

, valin
), where dim denotes a

particular state/output dimension and val specifies its
corresponding value. For example, table-1: (size, large)
(color, white) (number-of-legs, four) specifies a large,
four-legged, white table.

1
The detail of the bottom-up learning algorithm can be

found in Ref. 10.
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agent does what it does. Simply saying that an agent
chooses actions to maximizes gains, rewards, reinforce-
ments, or payoffs leaves open the question of what deter-
mines these things. The relevance of the motivational
subsystem to the action-centered subsystem lies primarily
in the fact that it provides the context in which the goal and
the reinforcement of the action-centered subsystem are set.
It thereby influences the working of the action-centered
subsystem, and by extension, the working of the nonaction-
centered subsystem.

A dual motivational representation is in place in
CLARION. The explicit goals (such as ‘‘finding food’’) of
an agent (which is tied to the working of the action-centered
subsystem) may be generated based on internal drive states
(for example, ‘‘being hungry’’; see Ref. 12 for details).

Beyondlowleveldrives(concerningphysiologicalneeds),3

there are also higher level drives. Some of them are primary,
inthesenseofbeing ‘‘hard-wired’’.4 Althoughprimarydrives
are built-in and relatively unalterable, there are also
‘‘derived’’ drives, which are secondary, changeable, and
acquired mostly in the process of satisfying primary drives.

The meta-cognitive subsystem (the MCS) is closely tied
to the motivational subsystem. The meta-cognitive subsys-
tem monitors, controls, and regulates action-centered and
nonaction-centered processes for the sake of improving
performance (26,27). Control and regulation may be in
the forms of setting goals for the action-centered subsys-
tem, setting essential parameters of the action-centered
subsystem and the nonaction-centered subsystem, inter-
rupting and changing ongoing processes in the action-
centered subsystem and the nonaction-centered subsys-
tem, and so on. Control and regulation can also be carried
out through setting reinforcement functions for the action-
centered subsystem. All of the above can be done on the
basis of drive states in the motivational subsystem. The
meta-cognitive subsystem is also made up of two levels: the
top level (explicit) and the bottom level (implicit).

Accounting for Cognitive Data. Like some other cognitive
architectures (ACT-R in particular), CLARION has been
successful in accounting for and explaining a variety of
psychological data. For example, a number of well-known
psychological tasks have been simulated using CLARION
that span the spectrum ranging from simple reactive skills
to complex cognitive skills. The simulated tasks include
serial reaction time tasks, artificial grammar learning
tasks, process control tasks, categorical inference tasks,
alphabetical arithmetic tasks, and the Tower of Hanoi task
(6). Among them, serial reaction time and process control
tasks are typical implicit learning tasks (mainly involving
implicit reactive routines), whereas Tower of Hanoi and
alphabetic arithmetic are high level cognitive skill acquisi-
tion tasks (with a significant presence of explicit processes).

3 Low level drives include, for example, need for food, need
for water, need to avoid danger, need to avoid boredom, and
so on (12).
4 A few high level drives include: desire for domination,
desire for social approval, desire for following social norms,
desire for reciprocation, desire for imitation (of certain
other people), and so on (12).

In addition, extensive work has been done on a complex
minefield navigation task, which involves complex sequen-
tial decision making (10,11). Work has also been done on an
organizational decision task (28), and other social simula-
tion tasks, as well as meta-cognitive tasks. While account-
ing for various psychological data, CLARION provides
explanations that shed new light on cognitive phenomena.

In all of these cases of simulations, the use of the
CLARION cognitive architecture forces one to think in
terms of process, and in terms of details, as envisaged in
CLARION. The use of CLARION also provides a deeper
level of explanations. It is deeper because the explanations
were centered on lower level mechanisms and processes
(1,6). Due to the nature of such deeper explanations, this
approach is also likely to lead to unified explanations,
unifying a large variety of data and/or phenomena. For
example, all the afore-mentioned tasks have been
explained computationally in a unified way in CLARION.

LOGIC-BASED COGNITIVE SYSTEMS

We now give an account of logic-based cognitive systems,
mentioned in broad strokes earlier.

Logic-Based Cognitive Systems in General

At any time t during its existence, the cognitive state of a
cognitive system S consists in what the system knows at that
time, denoted by Ft

S. (To ease exposition, we leave aside the
distinction between what S knows versus what it merely
believes.) We assume that as S moves through time, what
it knows at any moment is determined, in general, by two
sources: information coming directly from the external envir-
onment in which S lives, through the transducers in S’s
sensors that turn raw sense data into propositional content,
and from reasoning carried out by S over its knowledge.

For example, suppose you learn that Alvin loves Bill, and
that everyone loves anyone who loves someone. Your goal is
to determine whether or not everyone loves Bill, and
whether or not Katherine loves Dave. The reasoning needs
to be provided in the form of an explicit series of inferences
(which serves to guarantee that the reasoning in question is
‘‘surveyable’’).

Your knowledge (or knowledge base) now includes that
Alvin loves Bill. (It also includes ‘Everyone loves anyone
who loves someone’.) You know this because information
impinging upon your sensors has been transduced into
propositional content added to your knowledge base. We
can summarize the situation at this point as follows:

F
tnþ1

S ¼ F
tn

S [fLovesðalvin; billÞg

Generalizing, we can define a ternary function env from
timepoint-indexed knowledge bases, and formulas generated
by trans applied to raw information hitting sensors, to a new,
augmentedknowledgebaseat thenext timepoint.Sowehave:

F
tnþ1

S ¼ envðFtn

S ; transðrawÞÞ

where trans(raw) ¼ Loves(alvin,bill).
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Now consider the second source of new knowledge, viz.,
reasoning. On the basis of reasoning over the proposition
that Alvin loves Bill, we know that someone loves Bill, that
someone loves someone, that someone whose name starts
with ‘A’ loves Bill, and so on. These additional propositions
can be directly deduced from the single one about Alvin and
Bill; each of them can be safely added to your knowledge
base.

Let R½F
 denote an augmentation of F via some mode of
reasoning R. Then your knowledge at the next timepoint,
tnþ2, is given by

F
tnþ2

S ¼ R½envðFtn

S ; transðrawÞÞ


As time flows on, the environment’s updating, followed by
reasoning, followed by changes the cognitive system makes
to the environment (the system’s actions), define the cog-
nitive life of S.

But what is R, and what is the structure of propositions
returned by trans? This point is where logic enters the
stage. In a logic-based cognitive system, propositions are
represented by formulas in a logic, and a logic provides
precise machinery for carrying out reasoning.

Knowledge Representation in Elementary Logic

In general, when it comes to any logic-based system, three
main components are required: one is syntactic, one is
semantic, and one is metatheoretical in nature.

The syntactic component includes specification of the
alphabet of a given logical system, the grammar for build-
ing well-formed formulas (wffs) from this alphabet, and,
more importantly, a proof theory that precisely describes
how and when one formula can be inferred from a set of
formulas. The semantic component includes a precise
account of the conditions under which a formula in a given
system is true or false. The metatheoretical component
includes theorems, conjectures, and hypotheses concerning
the syntactic component, the semantic component, and
connections between them.

The simplest logics to build logic-based cognitive sys-
tems are the propositional calculus and the predicate cal-
culus (or first-order logic, or just FOL).

The alphabet for propositional logic is an infinite list

p1; p2; . . . ; pn; pnþ1; . . .

of propositional variables and the five familiar truth-func-
tional connectives : ; ! ; $ ; ^ ; _ . (The connectives can at
least provisionally be read, respectively, as ‘not,’ ‘implies’
(or ‘if then’), ‘if and only if,’ ‘and,’ and ‘or.’) To say that ‘if
Alvin loves Bill, then Bill loves Alvin, and so does Kather-
ine,’ we could write

al !ðb1 ^ klÞ

where bl and kl are the propositional variables.
We move up to first-order logic when we allow the

quantifiers 9 x (‘there exists at least one thing x such
that . . .’) and 8 x (‘for all x . . .’); the first is known as the

existential quantifier, and the second is known as the
universal. We also allow a supply of variables, constants,
relations, and function symbols. Using this representation,
the proposition that ‘Everyone loves anyone who loves
someone’ is represented as

8 x8 yð 9 zLovesðy; zÞ!Lovesðx; yÞÞ

Deductive Reasoning

The hallmark of deductive reasoning is that if the premises
are true, then that which is deduced from them must be true
as well. In logic, deduction is formalized in a proof theory.
Such theories (versions of which were first invented and
presented by Aristotle) are often designed not to model the
reasoning of logically untrained humans, but rather to
express ideal, normatively correct human deductive rea-
soning targeted by the logically trained. To canvass other
proof theories explicitly designed to model the deductive
reasoning of logically untrained humans, interested
readers may consult Ref. 29.

A number of proof theories are possible (for either of the
propositional or predicate calculi). When the goal is to
imitate human reasoning and to be understood by humans,
the proof theory of choice is natural deduction rather than
resolution. The latter approach to reasoning (whose one and
only rule of inference, in the end, is that from w_c and :w

one can infer c), while used by a number of automated
theorem provers (e.g., Otter, which, along with resolution,
is presented in Ref. 30), is generally impenetrable to
humans.

On the other hand, suppositional reasoning is at the
heart of natural deduction. For example, one such common
suppositional technique is to assume the opposite of what
one wishes to establish, to show that from this assumption
some contradiction (i.e., an absurdity) follows, and to then
conclude that the assumption must be false. The technique
in question is known as reductio ad absurdum, or indirect
proof, or proof by contradiction. Another natural rule is that
to establish that some conditional of the form w!c (where
wandcare any formulas in a logic L), it suffices to supposew
and derivec based on this supposition. With this derivation
accomplished, the supposition can be discharged, and the
conditional w!c established. The needed conclusion from
the previous example (i.e., whether or not everyone loves
Bill, and whether or not Katherine loves Dave) follows
readily from such reasoning. (For an introduction to nat-
ural deduction, replete with proof-construction and proof-
checking software, see Ref. 31.)

Nonmonotonic Reasoning

Deductive reasoning is monotonic. That is, if w can be
deduced from some knowledge base F of formulas (written
F‘ Df), then for any formula c =2F, it remains true that
F[fcg ‘ Df In other words, whenR is deductive in nature,
new knowledge never invalidates prior reasoning.

This process is not how human cognition works in real
life. For example, at present, I know that my house is
standing. But if, later in the day, while away from my
home and working at RPI, I learn that a vicious tornado
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passed over RPI, and touched down in the town of Bruns-
wick where my house is located, I have new information
that probably leads me to at least suspend judgment as to
whether or not my house still stands. Or to take the much-
used example from AI, if I know that Tweety is a bird, I will
probably deduce that Tweety can fly, on the strength of a
general principle saying that birds can fly. But if I learn
that Tweety is a penguin, the situation must be revised:
that Tweety can fly should now not be in my knowledge
base. Nonmonotonic reasoning is the form of reasoning
designed to model, formally, this kind of defeasible infer-
ence.

There are many different logic-based approaches that
have been designed to model defeasible reasoning—default
logic, circumscription, argument-based defeasible reason-
ing, and so on. (The locus classicus of a survey can be found
in Ref. 32. In the limited space available in the present
chapter, we can only briefly explain one of these
approaches—argument-based defeasible reasoning,
because it seems to accord best with what humans do as
they adjust their knowledge through time.

Returning to the tornado example, what is the argument
that supports the belief that the house stands (while one
sits within it)? Here is Argument 1:

(1) I perceive that my house is still standing.

(2) If I perceive f, f holds.

[(3) My house is still standing.

Later on, we learned that the tornado had touched down
in Brunswick, and devastating damage to some homes has
come to pass. At this point (t2), if one was pressed to
articulate the current position on (3), one might offer some-
thing like this (Argument 2):

(4) A tornado has just (i.e., at some time between t1 and t2)
touched down in Brunswick, and destroyed some
houses there.

(5) My house is located in Brunswick.

(6) I have no evidence that my house was not struck to
smithereens by a tornado that recently passed
through the town in which my house is located.

(7) If a tornado has just destroyed some houses in town T,
and house h is located in T, and one has no evidence
that h is not among the houses destroyed by the
tornado, then one ought not to believe that h was
not destroyed.

[(8) I ought not to believe that my house is still standing
(i.e., I ought not to believe (3).

The challenge is to devise formalisms and mechanisms
that model this kind of mental activity through time. The
argument-based approach to nonmonotonic reasoning does
this. Although the details of the approach must be left to
outside reading (33), it should be easy enough to see that the
main point is to allow one argument to shoot down another
(and one argument to shoot down an argument that shoots
down an argument, which revives the original, etc.), and to
keep a running tab on which propositions should be
believed at any particular time.

Argument 2 above rather obviously shoots down Argu-
ment 1. Should one then learn that only two houses in
Brunswick were leveled, and that they are both located on
the other side of the town, Argument 2 would be defeated by
a third argument, because this third argument would over-
throw (6). With Argument 2 defeated, (3) would be rein-
stated, and back in my knowledge base. Notice that this ebb
and flow in argument-versus-argument activity is far more
than just straight deductive reasoning. (Logic can be used
to model nondeductive reasoning that is not only nonmo-
notonic, but also inductive, abductive, probabilistic, model-
based, and analogical, but coverage of these modes of
inference is beyond the scope of the present entry). For
coverage of the inductive and probabilistic modes of reason-
ing, see Ref. 34. For coverage of model-based reasoning,
which is not based solely on purely linguistic formulas, but
rather on models, which are analogous to states of affairs or
situations on which linguistic formulas are true or false (or
probable, indeterminate, etc.), see Ref. 35.

Modal Logics

Logics can be used to represent knowledge, but advanced
logics can also be used to represent knowledge about knowl-
edge, and reasoning about knowledge about knowledge.
Modeling such knowledge and reasoning is important for
capturing human cognition, and in light of the fact that
heretofore the emphasis in psychology of reasoning has
been on modeling simpler reasoning that does not involve
modals, the level of importance only grows. Consider the
Wise Man Puzzle below as an illustration of modal reason-
ing to be captured:

Suppose there are three wise men who are told by their king
that at least one of them has a white spot on his forehead;
actually, all three have white spots on their foreheads. We
assume that each wise man can see the others’ foreheads but
not his own, and thus each knows whether the others have
white spots. Suppose we are told that the first wise man says, ‘‘I
do not know whether I have a white spot,’’ and that the second
wise man then says, ‘‘I also do not know whether I have a white
spot.’’ Now we would like to ask you to attempt to answer the
following questions:

1. Does the third wise man now know whether or not he
has a white spot?

2. If so, what does he know, that he has one or doesn’t
have one?

3. And, if so, that is, if the third wise man does know one
way or the other, provide a detailed account (showing
all work, all notes, etc.; use scrap paper as necessary)
of the reasoning that produces his knowledge.

The logic able to answer these questions is a modal proposi-
tional epistemic logic; we refer to it simply asLKT. This logic
is produced by adding to the propositional calculus the
modal operators & (traditionally interpreted as ‘necessa-
rily’) and ^ (traditionally interpreted as ‘possibly’), with
subscripts on these operators to refer to cognitive systems.
Because we are here concerned with what cognitive sys-
tems believe and know, we will focus on the box, and will
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rewrite &a as Ka [i.e., cognitive system a knows (some-
thing)]. So, to represent that ‘Wise man A knows he doesn’t
have a white spot on his forehead,’ we can write KA

(:White(A)). Here’s the grammar for LKT.

1. All wffs in the propositional calculus are wffs.

2. If f is a closed wff, and a is a constant, then &af is a
wff. Since we are here concerned with doxastic mat-
ters, that is, matters involving believing and know-
ing, we say that Baf is a wff, or, if we are concerned
with ‘knows’ rather than ‘believes,’ that Kaf is a wff.

3. Iff and c are wffs, then so are any strings that can be
constructed from f and c by the usual propositional
connectives (e.g., !,L,. . .).

Next, here are some key axioms and rules of inference:

K &(f ! c) ! (&f ! &c)

T &f ! f

LO (‘‘logical omniscience’’) Where F ¼ ff1;f2; . . . ;fng,
from F‘ Dc and Kaf1, Kaf2,. . . infer Kac

The first rule says that if one knows a conditional, then if
one knows the antecedent of the conditional, one knows the
consequent. The second says that if one knows some pro-
position, that proposition is true. The inference rule LO
says that the agentaknows that which can be deduced from
what she knows. This rule of inference, without restrictions
placed on it, implies that if a knows, say, the axioms of set
theory (which are known to be sufficient for deductively
deriving all of classic mathematics from them), a knows all
of classic mathematics, which is not cognitively plausible.
Fortunately, LO allows for the introduction of parameters
that more closely match the human case. For example LOn

would be the rule of inference according to which a knows
the consequences of what she knows, as long as the length of
the derivations (in some fixed proof theory) of the conse-
quences does not exceed n steps.

To ease exposition, we restrict the solution to the two-
wise man version. In this version, the key information
consists in these three facts:

1. A knows that if A does not have a white spot, B will
know that A does not have a white spot.

2. A knows that B knows that either A or B has a white
spot.

3. A knows that B does not know whether or not B has a
white spot.

Here is a proof in LKT that solves this problem:

1. KA(:White(A) ! KB(:White(A))) (first fact)

2. KA(KB(:White(A) ! White(B))) (second fact)

3. KA(:KB(White(B))) (third fact)

4. :White(A) ! KB(:White(A)) 1, T

5. KB(:White(A) ! White(B)) 2, T

6. KB(:White(A)) ! KB(White(B)) 5, K

7. :White(A) ! KB(White(B)) 4, 6

8. :KB(White(B)) ! White(A) 7

9. KA(:KB(White(B)) ! White(A)) 4–8, 1, LO

10. KA(:KB(White(B))) ! KA(White(A)) 9, K

11. KA(White(A)) 3, 10

The foregoing solution closely follows that, provided by
Ref. 32; this solution lacks a formal semantics for the
inference rules in question. For a fuller version of a solution
to the arbitrarily iterated n-wise man version of the pro-
blem, replete with a formal semantics for the proof theory
used, and a real-life implementation that produces a logic-
based cognitive system, running in real time, that solves
this problem; see Ref. 36.

Examples of Logic-Based Cognitive Systems

There are many logic-based cognitive systems that have
been engineered. It is important to know that they can be
physically embodied, have to deal with rapid-fire interac-
tion with the physical environment, and still run efficiently.

For example, Amir and Maynard-Reid (37) built a logic-
based robot able to carry out clerical functions in an office
environment; similar engineering has been carried out in
Ref. (38). For a set of recent examples of readily understood,
small-scale logic-based cognitive systems doing various
things that humans do; see Ref. 39.

There is insufficient space to put on display an actual
logic-based cognitive system of a realistic size here. So see
the afore-mentioned references for further details.

CONCLUDING REMARKS

In recent decades, the research on cognitive systems has
progressed to the extent that we can start to build compu-
tational systems that mimic the human mind to some
degree, although there is a long way to go before we can
fully understand the architecture of the human mind and
thereby develop computational cognitive systems that
replicate its full capabilities.

Some example cognitive systems have been presented
here. Yet, it is still necessary to explore more fully the space
of possible cognitive systems (40,41), to further advance the
state of the art in cognitive systems, in cognitive modeling,
and in cognitive science in general. It will also be necessary
to enhance the functionalities of cognitive systems so that
they can be capable of the full range of intelligent behaviors.
Many challenges and issues need to be addressed (1,2). We
can expect that the field of cognitive systems will have a
significant and meaningful impact on cognitive science and
on computer science both in terms of understanding cogni-
tion and in terms of developing artificially intelligent sys-
tems. The eventual objective of constructing embodied
systems that can perceive, understand, and interact with
their environment to achieve human-like performance in
various activities drives this field forward.
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