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Abstract. The Turing Test (TT) is claimed by many to be a way to test for the presence, in com-
puters, of such “deep” phenomena as thought and consciousness. Unfortunately, attempts to build
computational systems able to pass TT (or at least restricted versions of this test) have devolved
into shallow symbol manipulation designed to, by hook or by crook, trick. The human creators of
such systems know all too well that they have merely tried to fool those people who interact with
their systems into believing that these systems really have minds. And the problem is fundamental:
the structure of the TT is such as to cultivate tricksters. A better test is one that insists on a certain
restrictive epistemic relation between an artificial agent (or system) A, its output 0, and the human
architect H of A — a relation which, roughly speaking, obtains when H cannot account for how A
produced o. We call this test the “Lovelace Test” in honor of Lady Lovelace, who believed that only
when computers originate things should they be believed to have minds.

1. Introduction

As you probably know, Turing predicted in his “Computing Machinery and Intel-
ligence” (1964) that by the turn of the century computers would be so smart that
when talking to them from a distance (via e-mail, if you will) we would not be
able to tell them from humans: they would be able to pass what is now known as
the Turing Test (TT).! Well, New Year’s Eve of 1999 has come and gone, all the
celebratory pyrotechnics have died, and the fact is: Al hasn’t managed to produce
a computer with the conversational punch of a toddler.

But the really depressing thing is that though progress toward Turing’s dream
is being made, it’s coming only on the strength of clever but shallow trickery.
For example, the human creators of artificial agents that compete in present-day
versions of TT (like those seen at the Dartmouth conference at which a precursor to
this paper was presented) know all too well that they have merely tried to fool those
people who interact with their agents into believing that these agents really have
minds. The agents in question seem to fall prey, utterly and completely, to Searle’s
(1980) well-known Chinese Room Argument: These agents are designed by their
creators to mindlessly manipulate symbols that are perceived by “naive” observers
to be indicative of an underlying mind — but “underneath” there is little more than

* We are indebted to Jim Moor, Saul Traiger, Jack Copeland, Doug Lenat, and many others who
attended the Turing 2000 conference at Dartmouth.
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Searle’s infamous rulebook. In such scenarios it’s really the human creators against
the human judges; the intervening computation is in many ways simply along for
the ride.

It seems to us that a better test is one that insists on a certain restrictive epistemic
relation between an artificial agent A, its output o, and the human architect H of A
— a relation which, roughly speaking, obtains when H cannot account for how A
produced o. We call this test the “Lovelace Test” in honor of Lady Lovelace, who
believed that only when computers originate things should they be believed to have
minds.

Our plan herein is as follows. In Section 2 we explore Lovelace’s complaint
in more detail, and we discuss both Turing’s first response (from Turing, 1964)
and a like-minded one given recently by the roboticist Hans Moravec. As you'll
see, both responses are anemic. Section 2 also refutes Turing’s second response
to Lovelace, in which he points out that computers surprise him. Section 3 is
devoted to getting on the table a workable characterization of the Lovelace Test. In
Section 4 we subject three artificial agents to the Lovelace Test. The trio we select
fall into the category of those agents intended by their designers to be, in some
sense, creative. (Clearly, creative computer systems would have the best chance of
avoiding the complaint that a system competing in TT is simply following shallow
symbol manipulation tricks devised by its human creator.) One of the three agents
was designed and built by Bringsjord and Ferrucci; it is known as BRUTUS. The
other two systems, LETTER SPIRIT and COPYCAT, are “creative” systems designed
by Douglas Hofstadter, probably the world’s leading authority on computational
creativity. In Section 5 we refute the rhird response Turing gives (again in Turing,
1964) to Lovelace — a response that appeals to neural net-based “child machines.”
In Section 6, we consider a final possibility for a system that can move beyond
shallow symbol manipulation toward passing LT: oracle machines. We show that
such machines still fall prey to Searle’s CRA: they do nothing more than mindlessly
manipulate symbols in accordance with instructions, and hence fail to do what the
LT demands: viz., think for themselves. In the final Section, 7, we briefly describe
what may be the moral of the story: in order to pass LT and think for itself, a system
may have “free will” in the “agent cansation” sense. If this is right, it will be rather
difficult to build an LT-passing machine.

2. Lovelace’s Objection from Origination

Lady Lovelace’s was perhaps the most powerful objection pressed against TT.
Paraphrased, it runs like this:
Computers can’t create anything. For creation requires, minimally, originating
something. But computers originate nothing; they merely do that which we
order them, via programs, to do.?

How does Turing respond? Well, at best, mysteriously; at worst, incompetently.
Lady Lovelace refers here (in her memoirs) to Babbage’s Analytical Engine, which
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Turing gladly admits did not have the capacity to, as he puts it, “think for itself.”
So Turing concedes that insofar as Lovelace’s argument refers to this device, it
goes through. But the property of thinking for itself or of originating something is
a property Turing assumes to be possessed by some discrete state machines, that
is, by some computers — ones that arrived after Lovelace passed away. Suppose
that M is such a machine. Turing then points out that the Analytical Engine was
actually a universal digital computer, o if suitably programmed, it could perfectly
simulate M. But such a simulation would bestow upon the Analytical Engine the
ability to originate.

Turing’s reasoning here is amazingly bad, for the simple reason that Lovelace
would hardly have accepted the assumption that such an M exists. What machine
did Turing have in mind? What machine fits the bill? He doesn’t tell us, but the
fact is that the best he and his contemporaries had to offer were machines whose
crowning achievements were merely arithmetical.

Next, Turing inexplicably recasts Lovelace’s argument as one for the proposi-
tion that computers don’t superficially surprise us (Turing, 1964, pp. 21-22) — and
he then relates what he takes to be an immediate refutation, viz., “Machines take
me by surprise with great frequency.” Turing’s response here has been recently
recast by Hans Moravec, who believes that by 2040 not only will TT be passed, but
robots will pass the Total TT (TTT) as well. (In TTT, due to Stevan Hamad (1991),
a robot passes if it is linguistically and physically indistinguishable from a human
person.) Here is what Moravec says:

Lady Lovelace, the first programmer, never had a working computer to trouble
her programs. Modem programmers know better. Almost every new program
misbehaves badly until it is laboriously debugged, and it is never fully tamed.
Information ecologies like time-sharing systems and networks are even more
prone to wild behavior, sparked by unanticipated interactions, inputs, and at-
tacks. (Moravec, 1999, p. 85)

This is a terribly weak rejoinder. Sure, we all know that computers do things
we don’t intend for them to do. But that’s because we’re not smart and careful
enough, or — if we’re talking about rare hardware errors — because sometimes
microscopic events unfold in unforeseen ways. The unpredictability in question
does not result from the fact that the computer system has taken it upon itself
to originate something. To see the point, consider the assembling of your Toyota
Camry. Suppose that while assembling a bumper, a robot accidentally attaches a
spare tire to the bumper instead of leaving it to be placed in its designated spot
in the trunk. The cause of the error, assume, is either a fluke low-level hardware
error or a bug inadvertently introduced by some programmers. And suppose for
the sake of argument that as serendipity would have it, the new position for the
tire strikes some designers as the first glorious step toward an automobile that is
half conventional sedan and half sport utility vehicle. Would we want to credit the
malfunctioning robot with having originated a new auto? Of course not.
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Things are no different if we consider the specific relationship that impresses
Turing and Moravec, namely, the relationship between programmers and their mis-
behaving programs. Since the three of us both regularly program and regularly
teach programming, we may not be positioned badly to evaluate this relationship.

It seems to us that programs that surprise because of mere syntactic errors would
not be what Turing and Moravec have in mind. To see this, suppose that as part of
some larger program P we seek to write a simple Lisp function to triple a given
natural number by producing the following code.

(defun triple (n)
(*m 3))

Now suppose that at the Lisp prompt > we type (triple 6) and get back 75.
(Of course, a function as trivial as triple would in reality be called by another
function, but to ease exposition we can assume that we call it directly.) Obviously,
ceteris paribus, this will surprise us. What’s going on? Well, whereas the argument
to the function triple is said to be n in the argument list in the definition of this
function, in the body of the function it’s m, not n, that is multiplied by 3. This slight
difference, suppose, was the result of a misplaced keystroke. In addition, though
we don’t remember doing it, for some (smart, let’s assume) reason m is elsewhere
said to be a global variable whose value is 25.3

That this kind of surprise isn’t the kind of thing Turing and Moravec have in
mind should be beyond doubt. Presumably what they have in mind is a semantic
bug. What does such a thing look like? We provide an example that will set up later
discussion of the BRUTUS system. (This example is used to make a set of different
points in Bringsjord and Ferrucci (2000).)

Suppose that Bill is trying to build a system able to reason about the concept
of one person betraying another. And suppose, specifically, that in a rather naive
use of first-order logic, Bill has given to this system code that captures this (not
entirely implausible) definition:

Defp 1 Agent s, betrays agent s, iff there exists some state of affairs p such that

1. s; wants p to occur;

2. s, believes that s, wants p to occur;

3. s, agrees with s, that p ought to occur

4. s, intends that p not occur;

5. s, believes that s, believes that s, intends that p occur.
In fact, here is what the code might look like (along with relevant conditions instan-
tiated for Dave and Selmer, and with the assumption for contradiction that Selmer
doesn’t betray Dave):

set (auto).
formula_list(usable).

% DefB-2 in {\sc otter}:
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all x y (Betrays(x,y) <->
(exists z (Wants{y,z) &
Believes (x,Wants(y,z)) &
Agrees(x,y,z) &
IntendsNot (x,z) &
Believes(x,Believes(y,Intends(x,z})))))).

% Pretend facts of the case:

Wants (adave, agraduate) .

Believes (aselmer,Wants (adave,agraduate) ).

Agrees (aselmer,adave, agraduate) .

IntendsNot (aselmer,agraduate) .
Believes(aselmer,Believes(adave,Intends(aselnier,agraduate))).

% Assumption for indirect proof:
Betrays (aselmer, adave) .

end-of-list.

This is actual code (for the theorem prover known as OTTER).* Notice that this
code is using first-order logic in a way that just plain shouldn’t work. To see why,
consider the formula

Vx(P(x) » Q(P(x)).

This formula is non-sensical on the standard grammar of first-order logic. The
reason is that the antecedent, P(x), in this universally quantified formula must
be one that admits of truth or falsity. For the idea is that if it’s true (for some
instantiation to x), then the consequent, namely, that which is to the right of —,
must be true. (Put technically, P(x) is an atomic formula, not a term.) But this
implies that the consequent consists of an atomic formula whose argument is itself
an atomic formula, and this, again, is ungrammatical and non-sensical in first-order
logic.

But let’s suppose that Bill has his system run the betrayal code anyway, just for
the heck of it. Bill expects to receive some kind of error message. But what will
in fact happen? Well, a contradiction will be found, and Bill will be very surprised
to find that apparently his system has proved that Selmer betrays Dave. But there
is a serious semantic bug here. The bug is that OTTER has reinterpreted parts of
the code in such a way that (e.g.) Believes is at once a first-order predicate and a
functor.

So that you are sure to see what’s going on here, watch what happens when we
give an input file to OTTER containing the formula just isolated, along with the fact
that P(a), where a is a constant, and the assumption for indirect proof, =Q(P(a)).
Here is the input file:
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set (auto} .
formula_list(usable).

all x (P(x) > Q(P(x))).

P(a).

% Assumption for contradiction:
-Q(P(a)).

end-of-1list.

And here is the proof from the output file:

yper,3,1] Q(P(a)).
binary,4.1,2.1] SF.
———————————— end of proof -------------

This is the same semantic bug. OTTER hasn’t really proved what the naive human
programmer in this case is seeking. P is a functor in line 4 of the proof, but a
predicate in line 3. The same phenomenon takes place in the case of Bill.

Now that we have an example of a semantic bug giving rise to surprise, let’s
ask the key question: Does the fact that Bill’s system has surprised him in this way
constitute reason for him (or us) to hold that this system can originate anything?
Not at all, clearly.

How could Turing and Moravec have missed the mark so badly? Pondered as
charitably as possible, this question leads us to surmise that they had in mind a
sense of surprise that is deeper than the words they used. (On this reading of them,
their examples would simply be regarded as painfuily poor, for these examples,
by any metric of such things, show exceedingly mundane surprises.) That is, we
assume that when surprised in the shallow ways they describe, they felr as if they
were in fact deeply surprised. If when walking around a blind corner, you suddenly
spring out and shout, you may surpise one of us to the very core, emotionally
speaking — despite the fact that your behavior isn’t exactly subtle. As a way to
capture a species of surprise that approaches the feelings of Turing’s test-minded
heart, we suggest a variation on the TT. We call this variation the Lovelace Test
(LT).

3. The Lovelace Test

To begin to see how LT works, we start with a scenario that is close to home
for Bringsjord and Ferrucci, given their sustained efforts to build story generation
agents: Assume that Jones, a human Alnik, attempts to build an artificial compu-
tational agent A that doesn’t engage in conversation, but rather creates stories —
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creates in the Lovelacean sense that this system originates stories. Assume that
Jones activates A and that a stunningly belletristic story o is produced. We claim
that if Jones cannot explain how o was generated by A, and if Jones has no reason
whatever to believe that A succeeded on the strength of a fluke hardware error, etc.
(which entails that A can produce other equally impressive stories), then A should
at least provisionally be regarded genuinely creative. An artificial computational
agent passes LT if and only if it stands to its creator as A stands to Jones.

LT relies on the special epistemic relationship that exists between Jones and A.
But ‘Jones,” like ‘A, is of course just an uninformative variable standing in for any
human system designer. This yields the following rough-and-ready definition.

Def, ; | Artificial agent A, designed by H, passes LT if and only if
1. A outputs o,
2. A’s outputting o is not the result of a fluke hardware error, but rather the result
of processes A can repeat;
3. H (or someone who knows what H knows, and has H’s resources’ ) cannot
explain how A produced o.

Notice that LT is actually what might be called a meta-test. The idea is that this
scheme can be deployed for any particular domain. If conversation is the kind of
behavior wanted, then merely stipulate that o is an English sentence (or sequence
of such sentences) in the context of a conversation (as in, of course, TT). If the
production of a mathematical proof with respect to a given conjecture is what’s
desired, then we merely set o to a proof.

Obvious questions arise at this point. Three that many have asked us upon
hearing ancestors of this paper are:

Q1 What resources and knowledge does H have at his or her disposal?
Q2 What sort of thing would count as a successful explanation?
Q3 How long does H have to cook up the explanation?

The answer to the third question is easy: H can have as long as he or she likes,
within reason. The proffered explanation doesn’t have to come immediately: H
can take a month, months, even a year or two. Anything longer than a couple of
years strikes us as perhaps unreasonable. We realize that these temporal parameters
aren’t exactly precise, but then again we should not be held to standards higher than
those pressed against Turing and those who promote his test and variants thereof.®
The general point, obviously, is that H should have more than ample time to sort
things out.

But what about QI and Q2? Well, these are rather difficult queries. To answer
them, we need to explicate the term ‘artificial agent,” which stands at the very
heart of Al Fortunately, as the century turns, all of Al has been to an astonishing
degree unified around a particular conception — that of an intelligent agent. The
unification has in large part come courtesy of a comprehensive textbook intended
to cover literally all of Al: Russell and Norvig’s (1994) Artificial Intelligence:
A Modern Approach (AIMA), the cover of which also displays the phrase “The
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sensors

percepts

actions

effectors

Figure . The Architecture of an Intelligent Agent.

function TABLE-DRIVEN-AGENT( percept) returns action
static: percepts, a sequence, initially empty
table, a table, indexed by percept sequences, initially fully specified

append percept to the end of percepis
action + LOOKUP( percepts, table)
return action

Figure 2. The Least Intelligent Artificial Agent.

Intelligent Agent Book.” The overall, informal architecture for an intelligent agent
is shown in Figure 1; this is taken directly from the AIMA text. According to this
architecture, agents take percepts from the enviromnent, process them in some way
that prescribes actions, perform these actions, take in new percepts, and continue
in the cycle.” In LT, the artificial agent’s actions, of course, consist in producing
outputs covered by the variable o.

In AIMA, intelligent agents fall on a spectrum from least intelligent to more
intelligent to most intelligent. The least intelligent artificial agent is a “TABLE-
DRIVEN-AGENT,” the program (in pseudo-code) for which is shown in Figure 2.
Suppose that we have a set of actions each one of which is the utterance of a color
name (“Green,” “Red,” etc.); and suppose that percepts are digital expressions of
the color of an object taken in by the sensor of a table-driven agent. Then given
Table 1 our simple intelligent agent, running the program in Figure 2, will utter
(through a voice synthesizer, assume) “Blue” if its sensor detects 100. Of course,

Table I. Lookup Table for TABLE-DRIVEN-AGENT

Percept Action
001 “Red”
010 “Green”
100 “Blue”
011 “Yellow”

111 “Black”
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function KB-AGENT( percept) returns an action
static: KB, a knowledge base
¢, a counter, initially 0, indicating time

TELL(KB, MAKE-PERCEPT-SENTENCE( percept, 1))
action < ASK(KB, MAKE-ACTION-QUERY(?))
TELL(K B, MAKE-ACTION-SENTENCE(action, )}
tet1+1

return action

Figure 3. Program for a Generic Knowledge-Based Agent.

this is a pretty dim agent. Any output from such an agent will be easy for the
designer of a such an agent to explain. So what about smarter agents, ones that
might in general be candidates for passing LT?

In AIMA we reach artificial agents that might strike some as architecturally rich
enough to tackle LT when we reach the level of a “knowledge-based” agent. The
program for such an agent is shown in Figure 3. This program presupposes an
agent that has a knowledge-base (K B) in which what the agent knows is stored in
formulae in first-order logic, and the functions

e TELL, which injects formulae (representing facts) into K B

e MAKE-PERCEPT-SENTENCE, which generates a first-order formula from a
percept and the time ¢ at which it is experienced; and

e MAKE-ACTION-SENTENCE, which generates a declarative fact (in, again, the
predicate calculus) expressing that an action has been taken at some time ¢

which give the agent the capacity to manipulate information in accordance with
first-order logic.

This little tutorial on the nature of intelligent artificial agents allows us to at
least make appreciable progress toward answering Q! and Q2, as follows.

Let’s start with

Q1 What resources and knowledge does H have at his or her disposal?

The answer is that H is assumed to have at her disposal knowledge of the archi-
tecture of the agent in question, knowledge of the KB of the agent, knowledge of
how the main functions in the agent are implemented (e.g., how TELL and ASK
are implemented), and so on. H is also assumed to have resources sufficient to pin
down these elements, to “freeze” them and inspect them, and so on. We confess
that this isn’t exactly precise. To clarify things, we offer an example. This example
is also designed to provide an answer to the second question, which as you’ll recall
was

Q2 What sort of thing would count as a successful explanation?
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To fix the context for the example, suppose that the output from our artifi-
cial agent A’ is a resolution-based proof which settles a problem which human
mathematicians and logicians have grappled unsuccessfully with for decades. This
problem, suppose, is to determine whether or not some formula ¢ can be derived
from some (consistent) axiom set I'. Imagine that after many years of fruitless
deliberation, a human H’ encodes ' and —¢ and gives both to OTTER, and OTTER
produces a proof showing that this encoding is inconsistent, which establishes
I' = ¢, and leads to an explosion of commentary in the media about “brilliant”
and “creative” machines, and so on.? In this case, A" doesn’t pass LT. This is true
because H, knowing the KB, architecture, and central functions of A’ will be able
to give a perfect explanation for the behavior in question. This explanation will
in principle be no different than explaining the OTTER proof seen above; it will
just take longer. One of us (Bringsjord) routinely gives explanations of this sort.
The KB is simply the encoding of I" U {9}, the architecture consists in the search
algorithms used by OTTER, and the main functions consist in the rules of inference
used in a resolution-based theorem prover. Put in terms of the Chinese Room,
A here doesn’t pass LT because H, knowing what she knows, could manipulate
symbols in accordance with this knowledge and produce the proof in question.

Here, now, given the foregoing, is a better definition:

Def, r 2 Artificial agent A, designed by H, passes LT if and only if
1. A outputs o;
2. A’s outputting o is not the result of a fluke hardware error, but rather the result
of processes A can repeat;
3. H (or someone who knows what H knows, and has H’s resources) cannot
explain how A produced o by appeal to A’s architecture, knowledge-base, and
core functions.

4. How do Today’s Systems Fare in the Lovelace Test?

Today’s systems, even those designed to either be, or seem to be, creative, fail LT.
They are all systems whose designers can casily imagine “Chinese Roomifying,”
that is, these designers can imagine themselves generating the output in question by
merely manipulating symbols in accordance with the knowledge bases, algorithms,
and code in question. We give three examples of this kind of failure.

4.1. BRUTUS

Let’s turn first to the BRUTUS system (Bringsjord and Ferrucci, 2000). This is a
system designed to appear to be literarily creative to others. To put the point in the
spirit of TT, BRUTUS reflects a multi-year attempt to build a system able to play
the short short story game, or S*G for short (Bringsjord, 1998a). (See Figure 5 for
a picture of $3G.)
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Figure 4. A Typical Wumpus World.

"When Gregor woke, he found
that his arm was hard and
skinless, and where his hand
had been, there was now some

kind of probe.”
Human Al
_ < _
N > I
Story ? Story

Figure 5. The Short Short Story Game, or $3G for Short.

The idea behind S3G is simple. A human and a computer compete against each
other. Both receive one relatively simple sentence, say: “As Gregor Samsa awoke
one morning from uneasy dreams he found himself transformed in his bed into a
gigantic insect.” (Kafka, 1948, p. 67) Both mind and machine must now fashion
a short short story (about 500 words) designed to be truly interesting; the more
literary virtue, the better. The goal in building BRUTUS, then, is to build an artificial
author able to compete with first-rate human authors in S3G, much as Deep Blue
went head to head with Kasparov.

How does BRUTUS fare? Relative to the goal of passing S3G, not very well. On
the other hand, BRUTUS can “author” some rather interesting stories, €.g.,



14 SELMER BRINGSJORD ET AL.

“Betrayal in Self-Deception” (conscious)

Dave Striver loved the university. He loved its ivy-covered clocktowers, its
ancient and sturdy brick, and its sun-splashed yerdant greens and eager youth.
He also loved the fact that the university is free of the stark unforgiving trials of
the business world — only this isn’ a fact: academia has its own tests, and some
are as merciless as any in the marketplace. A prime example is the dissertation
defense: to earn the PhD, to become a doctor, one must pass an oral examination
on one’s dissertation. This was a test Professor Edward Hart enjoyed giving.

Dave wanted desperately to be a doctor. But he needed the signatures of three
people on the first page of his dissertation, the priceless inscriptions which,
together, would certify that he had passed his defense. One of the signatures
had to come from Professor Hart, and Hart had often said — to others and to
himself — that he was honored to help Dave secure his well-earned dream.

Well before the defense, Striver gave Hart a penultimate copy of his thesis. Hart
read it and told Dave that it was absolutely first-rate, and that he would gladly
sign it at the defense. They even shook hands in Hart’s book-lined office. Dave
noticed that Hart’s eyes were bright and trustful, and his bearing paternal.

At the defense, Dave thought that he eloquently summarized Chapter 3 of
his dissertation. There were two questions, one from Professor Rodman and
one from Dr. Teer; Dave answered both, apparently to everyone’s satisfaction.
There were no further objections.

Professor Rodman signed. He slid the tome to Teer; she too signed, and then
slid it in front of Hart. Hart didn’t move.

“Ed?” Rodman said.
Hart still sat motionless. Dave felt slightly dizzy.
“Edward, are you going to sign?”

Later, Hart sat alone in his office, in his big leather chair, saddened by Dave’s
failure. He tried to think of ways he could help Dave achieve his dream.

Note that we have placed the term ‘author’ in scare quotes. Why? The reason is
plain and simple, and takes us back to Lady Lovelace’s objection: BRUTUS didn’t
originate this story. He is capable of generating it because two humans, Bringsjord
and Ferrucci, spent years figuring out how to formalize a generative capacity suf-
ficient to produce this and other stories, and they then are able to implement part
of this formalization so as to have a computer produce such prose. This method is
known as reverse engineering. Obviously, with BRUTUS set to A and Bringsjord
and Ferrucci set to H in the definition of LT, the result is that BRUTUS fails this
test. Put in terms of the Chinese Room, both Bringsjord and Ferrucci could take
the place of a computer and mindlessly manipulate what they know (algorithms,
knowledge-base, etc.) in order to produce output that impresses human observers.
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Let’s now give you, briefly, a specific example to make this failure transpar-
ent. BRUTUS is programmed to produce stories that are, at least to some degree,
bizarre. The reason for this is that reader response research tells us that readers are
engaged by bizarre material. Now, in BRUTUS, (0 €xpress the bizarre, modifiers are
linked with objects in frames named bizzaro_modifiers. Consider the following
instance describing the bizzaro modifier bleeding.

instance bleeding is a bizzaromodifier
objects are {sun, plants, clothes, tombs, eyes}.

What Bringsjord and Ferrucci call literary augmented grammars, or just a
LAGs, may be augmented with constraints to stimulate bizarre images in the mind
of the reader. The following LAG for action analogies,

e BizarreActionAnalogy — NP VP like ANP

e NP — noun_phrase

e ANP —» modifier (isa bizzaro_modifier) noun (isa analog of NP)
in conjunction with bizzaro_modifiers can be used by BRUTUS to generate the
following sentence.

Hart’s eyes were like big bleeding suns.

Sentences like this in output from BRUTUS are therefore a function of work carried
out by (in this case) Ferrucci. Such sentences do not result from BRUTUS thinking
on its own.

4.2. COPYCAT

Douglas Hofstadter, as many readers know, has thought a lot about creativity, and
has built systems in order to explore and validate the result of that thought. So what
sort of creativity does Hofstadter focus on? And what are the relevant systems?
One representative system is COPYCAT, described at length in (Hofstadter, 1995).
COPYCAT is supposed to solve problems like the following two by coming up with
“creative analogies.”

Problem 1 Suppose the letter-string abc were changed to abd; how would you
change the letter-string ijk in “the same way”?

Problem 2 Suppose the letter-string aabc were changed to aabd; how would you
change the letter-string ijkk in “the same way”?

COPYCAT settles in on ijl as an answer for Problem 1, and in the process
“considers” ijd and ijj. For Problem 2, the program arrives at ijll, and “considers”
ijkl, jjlck, hjkk, jkkk, ijkd, ijdd, ijkk, and djkk. Are these good answers? Are they
creative? Hofstadter answers “Yes” to both questions. But he seems not to notice
that he answers in this way only because COPYCAT has been designed to mirror
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the answers he (and many other humans) would be inclined to give, and for this
reason COPYCAT fails LT. COPYCAT gives the kind of answers it does because
rules like “Replace the rightmost letter with its successor” are employed. But what
recommends these rules, rather than others which COPYCAT has no “awareness”
of? COPYCAT seems thoroughly ad hoc.

As evidence for the capricious nature of COPYCAT’s answers, consider the fact
that the answers one of us gave, after seeing these problems for the very first
time, were §jj and ijkj. (Notice that the second of these isn’t even “considered”
by COPYCAT.) The rule that produced these answers was one based on rhyming. In
abc, the second and third letters rhyme. When this string is replaced with abd, this
rhyme is preserved. In the string #jk, the second and third letters thyme. To follow
the rule in question, k must be replaced with a different letter that rhymes with j,
the second letter. The only possibility is J hence ifj is produced. The same rule, for
obvious reasons, yields ijkj.

That COPYCAT fails LT is transparent when you consider how the system would
look if couched in theorem proving terms. It would seem that the rules of letter-
string replacement to which Hofstadter is drawn can be effortlessly expressed as
formulas in first-order logic. For example, let / be a function mapping character
triples (cy, ¢2, ¢3) into letter-strings, so that /(a, b, ¢) is abe. Now let s be the
successor function for the 26 lower-case letters {a,b,c,...,z). Then here is a
rule for the replacement function r:

VxVyVz(r(l(x, y,2)) = l(x, y, 5(z))).

Itis easy to capture letter-replacement with rules like this, and to assign weights
to these rules. (It can be done with OTTER, the theorem prover discussed above.)
Producing a solution would then consist in the production of proofs after starting
strings (e.g., §jk in Problem 1) are given as additional input to the system. Obvi-
ously, a designer of the theorem proving version of COPYCAT would know exactly
why the system produces the output it does. Or, to couch the point in Searlean
terms, the formulae in the theorem proving version could be used as a correlate
to the “rulebook™ in the Chinese Room, and one of us, using it as such, could
get inside a box and fool people on the outside into believing that the system is
“thinking for itself.”

4.3, LETTER SPIRIT

Things are no different when we (briefly) consider LETTER SPIRIT, another system
from Hofstadter (1995). Whereas the domains dealt with by COPYCAT and BRUTUS
are textual in nature, LETTER SPIRIT deals with a visual one. LETTER SPIRIT is SO
named because it is intended to capture the essence of a letter (columns in Figure 7)
and the “spirit” of a font (rows in Figure 7). More specifically, LETTER SPIRIT
works within the space of the Roman alphabet.® Originally, LETTER SPIRIT was
intended to invent new fonts within the space of Roman alphabets, but early on
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Figure 6. Various Letter A’s.

-

Hofstadter (and his collaborator in this endeavor: McGraw) decided that that was
too difficult. So they decided instead to have LETTER SPIRIT take in a few “seed”
letters in a certain font as percepts, and yield as output the remaining letters in
this font; and they decided that the fonts in question would all have to come from
a restricted class of fonts, “gridfonts” as Hofstadter and McGraw call this class.
(Each gridfont letter is created by selecting from among 56 quanta. See Figure 8.)
This retreat is a pity, for it would seem that an agent able to cook up brand new fonts
in the unrestricted space of the Roman alphabet might have a chance at passing LT.
But LETTER SPIRIT has no such chance. The reason is that Hofstadter and McGraw
can explain exactly how it is that LETTER SPIRIT gives the remaining letters in
a particular font, by appeal to the relevant ingredients (knowledge-base, central
algorithms, etc.). In Searlean terms, the two of them, upon being given some seed
letters, can use these ingredients to mindlessly complete the font. !

At this point it’s time to consider the objection no doubt many of our readers
are itching to press against us.

5. The Objection From Learning

Here is how the objection in question runs: “Gentlemen, this much is sure: You
will never win any awards as Turing scholars. For you conveniently neglected to
note earlier that just before recasting Lady Lovelace’s argument as one aimed at
substantiating the view that computers never surprise us, there is a paragraph con-
sisting of a lone sentence, namely: “The whole question will be considered again
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under the heading of learning machines.’ (Turing, 1964, p. 21) By ‘whole question’
Turing is referring to none other than the question with which the three of you,
following Lovelace, are concerned, that is, whether or not a computer can originate
anything. The heading in question is “Learning Machines,” and it stands atop the
final section, 7, of Turing’s seminal paper. What Turing says in that section destroys
Lovelace’s complaint, and likewise it destroys your own complaint that machines
originate nothing. In fact, modern-day embodiments of what Turing envisions in
this section, namely connectionist neural network systems, pass your supposedly
grueling LT with flying colors. Let me explain.

“Turing’s strategy for building a machine capable of passing TT is not to pro-
gram a machine from scratch, injecting knowledge (and, yes, trickery) into it. His
strategy, expressed in the “Learning Machines” section, is instead to first bnild
what he calls a “child-machine,” and to then teach it in much the same way that we
teach our own youth. Here is a quote that hits you two rather hard.”

An important feature of the learning machine is that its teacher will often be
very largely ignorant of quite what is going on inside, although he may still
be able to some extent to predict his pupil’s behavior. This should apply most
strongly to the later education of a machine arising from a child-machine of
well-tried design (or program). This is in clear contrast with normal procedure
when using a machine to do computations: one’s object is then to have a clear
mental picture of the state of the machine at each moment in the computation.
This object can only be achieved with a struggle. The view that “the machine
can only do what we know how to order it to do” appears strange in the face of
this. (Turing, 1964, p. 29)
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This objection is actually rather easily surmounted, as follows. Presumably the
child-machine in question develops its abilities by virtue of training of artificial
neural networks (ANNs). Now, the information processing of an ANN corresponds
in all cases to standard computation (e.g., Turing machine computation), or stand-
ard deduction (e.g., proofs in first-order logic), as Bringsjord (1991) has explained
elsewhere. To fix this point we can appeal to the notion of representability, used
in some contemporary proofs of Godel’s first incompleteness theorems (e.g., see
section §7 of Chapter X of Ebbinghaus, Flum and Thomas, 1984). Here is the
relevant definition:!!

A function f : N — N is called representable in a set & of first-order

formulas about arithmetic if there is a formula ¢ (v, ... , Uny1) (i€, 2 formula
whose free variables are only vy, ... , V,41) about arithmetic such that for all
My, Amy) €N,

° iff(}’l],... ,I’lm):Hm_H then<I>l—¢(ﬁ1,... ,I’~lm+])

(] iff(nl,... ,nm) ;ﬁan thend>|——1¢(ﬁ1,... ,;lm+1)

o ®+IF v, 10, .. Tim, Uns1)
Here we say that ¢ (vy, ... , Uny1) Tepresents f in @.

Now, suppose that the child-machine M., on the strength of ANNSs, computes some
function f. This function is representable in some ®. You can think of @ in this
case as a knowledge-base. But then there is no longer any “thinking for itself” going
on, for if we assume a computer scientist to be in command of the knowledge-base
@ and the relevant deduction from it, the reasons for this scientist to declare the
child-machine a puppet are isomorphic to the reasons that compel the designer
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of knowledge-based systems like BRUTUS to admit that such a system originates
nothing.

6. Do Oracle Machines Pass the Lovelace Test?

So what kind of system can pass LT? How can a system break the bounds of
mere symbol manipulation to do something on its own? It might be thought that
so-called “oracle machines” can pass LT; here is how this idea would run: Jack
Copeland (1998) has recently argued that oracle machines (or, as he calls them,
‘O-machines’) are immune to Searle’s (1980) CRA-based claim that mere symbol
manipulation is insufficient for genuine mentation. Since those systems that fail LT
appear to be failing because it’s clear that they are merely manipulating symbols in
predictable ways, the idea is that oracle machines might pass LT because they do
more than manipulate symbols.

Unfortunately, oracle machines are not immune to the Chinese Room. Cope-
land’s characterization of these machines is just plain wrong. When one is clear and
correct about oracle machines, it becomes obvious that they fall prey to the Chinese
Room. And given that, it becomes obvious as well that they provide nothing that
might help to pass LT.

6.1. GETTING STRAIGHT ABOUT ORACLE MACHINES

Copeland’s account of O-machines should prove to be a shocker to those logicians
and mathematicians familiar with the formal terrain in question. He tells us that
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O-machines are “digital computing machines” (Copeland, 1998, p. 128); he says
that

They generate digital output from digital input by means of a step-by-step pro-
cedure consisting of repeated applications of a small, fixed number of primitive
operations, the procedure unfolding under the control of a finite program of
instructions which is stored internally in the form of data on the machine’s
tape. (Copeland, 1998, pp. 128-129)

This is just simply false. Again, the ‘O in ‘O-machine’ stands for ‘oracle’; these
machines, accordingly, work by way of oracles. They mark a way of creating, in
one avowedly mysterious stroke, a portal to an interesting realm: the realm which
opens up once problems proved to be mechanically unsolvable (= unsolvable by
Turing machines = beyond the so-called Turing Limit) are assumed to be some-
how solvable. Oracle-machines are simply Turing machines augmented with an
oracular ability to solve the halting problem; they are nothing more. They are not
computing machines. They don’t work exclusively “by means of a step-by-step
procedure consisting of repeated applications of a small, fixed number of primitive
operations.” No such procedure exists for solving the halting problem; that’s why
the problem is said to be unsolvable.

Textual confirmation of the claim that Copeland is just fundamentally mistaken
about the nature of O-machines is easy to come by. Here is how a recently updated
classic textbook on computability and uncomputability introduces oracles:

Once one gets used to the fact that there are explicit problems, such as the halt-
ing problem, that have no algorithmic solution, one is led to consider questions
such as the following:

Suppose we were given a “black box™ or, as one says, an oracle, which can tell
us whether a given Turing machine with given input eventually halts. Then it
is natural to consider a kind of program that is allowed to ask questions of our
oracle and to use the answers in its further computation ... (Davis, Sigal and
Weyuker, 1994: 197; emphasis ours)

Notice what we have emphasized in this quote. The idea is that computation
calls the oracle; the oracle itself is not part of the computation.

How do Davis et al. transform this figurative scheme into a mathematically
respectable one? To answer this question, note that instead of Turing machines,
Davis et al. use an equivalent programming language £, the programs of which
are composed of lists of statements with optional labels. £ allows for three types
of statements: adding one to a variable V(V < V + 1), subtracting one from a
variable V(V <« V — 1), and moving by a conditional to a line labeled with L
in a program (IF V 3 0 GOTO L). With just these three statements it is possible
to write a program that computes every Turing-computable function. Traditionally,
to make it easier to see this, “macros” V < V' and GOTO L are allowed. The
first macro moves the contents of variable V' to variable V; the second is an un-
conditional branch that moves the active line to the one with label L; both macros
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can be easily decomposed into a program written with only the three fundamental
statements. As an example of a simple program in .£, consider a program that
computes the function f (x|, x5) = x; + x,:'?

Y « X,
Z < X,

[B] IFZ # 0GOTO A
GOTO E

(A] Z <~ Z -1
Y <~Y+1
GOTO B

Now we’re in position to see how Davis et al. formalize oracles. The trick is
simply to allow a new statement (an oracle statement) of the form

V < 0WV)

into the syntax of .£. “We now let G be some partial function on N (the natural
numbers) with values in N, and we shall think of G as an oracle” (Davis et al., 1994:
198). So if the value of variable V is m before an oracle statement is encountered,
when the statement is then reached, the value of V changes to G (m) (assuming that
G is defined for this argument). As should be plain, there is absolutely no sense in
which G is computed. G is just a placeholder for what at this point is, to say it
yet again, oracular. In connection, specifically, with the halting problem, where
M, M,, ... enumerates all Turing machines, the function

h( ) 1 if M, halts with input n
m,n) =
0 otherwise

can be “solved” by a program in £ in which a godel encoding of m and n is given
as an argument to G.

How did Copeland go so wrong? How did he come to describe O-machines as
standard computing machines? It would seem that Copeland fell prey to two con-
fusions. To see the first, and to feel its pull, note that if you have an oracle on hand,
at your beck and call, you can certainly treat your submission of a question to the
oracle as a “fixed, primitive” step; and you can treat the return of an answer from
the oracle similarly. After all, this is why formalization of “oracle consultation”
can be symbolized in the manner we have just seen. But “fixed, primitive steps”
should not be confused with computation or calculation, as is easy enough to see:
If God exists, presumably He can be petitioned in one simple step, and can return
an answer in one simple step as well. But ascertaining whether or not a Turing
machine halts courtesy of the Almighty would seem to exceed computation by just
a tad. If God routinely (oracularly) answered the fixed “queries” of Turing machine
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M with a fixed verdict, we could stipulatively define a composite “O-machine”
M 4+ God, but this “machine” wouldn’t be, to use Copeland’s language, a “digital
computing machine.”

Can the appeal to the oracular be removed in favor of detailed logico-mathemat-
ical devices? Yes. In fact, many thinkers occupied with the philosophy and logic of
minds and machines have produced and discussed such devices, so it’s somewhat
odd that Copeland believes O-machines to be “little known among philosophers of
mind” (Copeland, 1998, p. 129). (As we’ll see in moment, the philosopher Hilary
Putnam long ago introduced an informative substitution for O-machines.) Indeed,
one of us has recently written about a potential explosion in the intersection of
philosophy and super-computation (Bringsjord, 1998). O-machines, in our exper-
ience, are well-known among technical philosophers of mind, but are generally
ignored because their role, as we indicated above, is to simply open the portal
to processing above the Turing Limit. They provide no substance relative to the
powers of minds and machines.

So, what logico-mathematical devices are options, and who has discussed them?
Just as there are an infinite number of mathematical devices that are equivalent to
Turing machines (machines running programs from the language £ visited above,
Register machines, the A-calculus, abaci,...; these are all discussed in the context of
an attempt to define computation in Bringsjord 1994), there are an infinite number
of devices beyond the Turing Limit. As you might also guess, a small proper subset
of these devices dominate the literature. In fact, three kinds of super-computational
devices — analog chaotic neural nets, trial-and-error machines, and Zeus machines —
are generally featured in the literature. In the interests of reaching a wider audience,
we discuss only the latter two devices here.'?

Trial-and-error machines have their roots in a paper by Hilary Putnam (1994),
and one by Mark Gold (1994); both appeared in the same rather famous volume
and issue of the Journal of Symbolic Logic. So what are trial-and-error machines?
Well, they have the architecture of Turing machines (read/write hear tapes, a fixed
and finite number of internal states), but produce output “in the limit” rather than
giving one particular output and then halting. Here is a trial-and-error machine M
that solves the halting problem. Take some arbitrary Turing machine M with input
u; let nM# be the Godel number of the pair M, u; place nM-* on M's tape. Now
have M print 0 immediately (recall the function h, defined above), and then have it
simulate the operation of M on u. If M halts during the simulation, have it proceed
to erase 0 in favor of 1, and then have it stop for good. It’s as easy as that.'

Zeus machines (or “Weyl Machines” from Weyl, 1949); see also Bertrand Rus-
sell’s (1936) discussion of the possibility of his embodying such devices) are based
on the character Zeus, described by Boolos and Jeffrey (1989). Zeus is a superhu-
man creature who can enumerate N in a finite amount of time, in one second, in
fact. He pulls this off by giving the first entry, 0, in % second, the second entry,
1, in 1 second, the third entry in 1 second, the fourth in 7= second...., so that,

1 8 16
indeed, when a second is done he has completely enumerated the natural numbers.
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Obviously, it’s easy to adapt this scheme so as to produce a Zeus machine that
can solve the halting problem: just imagine a machine which, when simulating an
arbitrary Turing machine M operating on input «, does each step faster and faster ...
(There are countably many Turing machines, and those that don’t halt are trapped
in an unending sequence of the same cardinality as N.) If, during this simulation,
the Zeus machine finds that M halts on u, then a 1 is returned: otherwise 0 is given.

6.2. COPELAND’S ARGUMENT FOR WHY O-MACHINES DODGE CRA

Here is Copeland’s argument for the claim that Searle’s CRA is powerless against
a view of the mindbrain according to which it’s an O-machine rather than a Turing
machine:

An O-machine’s program may call for primitive operations that a human clerk
working by rote and unaided by machinery is incapable of carrying out (for
otherwise, by the Church-Turing thesis, whatever can be calculated by an O-
machine can be calculated by a Turing machine — a contradiction). It follows
that there is no possibility of Searle’s Chinese Room argument [CRA] being
successfully deployed against the new functionalism offered by hypothesis (la).
(Copeland, 1998, p. 132)

Alas, this argument fails, as is easy to see. An O-machine, in calling for the

I, &¢

oracular, certainly does call for something that a clerk (i.e., Turing’s “computists”
or Post’s “workers”) will have a hard time providing. (And Searle, as mere sym-
bol manipulator, will have a similarly hard time simulating an O-machine.) But
then again, only an oracle, by definition, can meet the challenge. Copeland’s “new
functionalism” is really mysticism; and CRA was never billed as a refutation of
any such doctrine. When O-machines are specified, Copeland’s argument is re-
vealed as invalid. For example, suppose that rather than O-machines we talk of
Zeus machines. It’s easy to imagine that Searle in the Chinese Room manipulates
symbols in order to parallel the operation of a Zeus machine — and doing so would
no more guarantee the appropriate phenomenal consciousness (e.g., grasping that
when a native Chinese speaker outside the room sends in a squiggle-squoggle he
is asking if Searle savors perfectly grilled hamburgers) than would Searle’s symbol
manipulation in the original gedanken-experiment. The only difference is that in
(what we might call) the “Zeus Room,” Searle works much faster. But this speed-
up makes no difference with respect to true understanding. After all, Zeus could be
a pigeon. And a pigeon trained to move symbols around, even if blessed with the
ability to carry out this movement at Zeus-level speeds, would still have the mental
life of a bird, which of course falls far short of truly understanding Chinese.

The upshot of this for oracle machines and LT is plain. If one designs a “su-
per pigeon” to produce some output, one will be no more inclined to believe that
this bird is thinking for itself than one would be inclined to believe that a slower,
“standard” pigeon would have the kind of autonomy Lady Lovelace demands.
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7. What Then Does it Take to Pass LT?

Many readers will doubtless ask: So what do you have to say, constructively speak-
ing? So far, everything you’ve given us is negative; how about something positive?
What should Alniks do to build an LT-passing system that breaks the bounds of
mindless symbol manipulation to think for itself? We end with some brief specula-
tion arising from such questions.

Unfortunately, it seems to us (or at least to one of us: Bringsjord) that the moral
of the story may be irredeemably negative. There may simply not be a way for a
mere information-processing artifact to pass LT, because what Lovelace is looking
for may require a kind of autonomy that is beyond the bounds of ordinary causation
and mathematics. The notion that creativity requires autonomy is one anticipated,
at least in nascent terms, by Hofstadter (e.g., sce Hofstadter, 1995, pp. 411), who
seems confident that computation will ultimately be up to the task of capturing the
kind of autonomy creative humans exploit. But what if the kind of “thinking for
oneself’ required by LT entails a form of autonomy known as agent causation? The
doctrine of agent causation, which is set out, defended, and shown to be beyond
ordinary computation in “Chapter VIII: Free Will” of Bringsjord (1992), entails
the view that persons bring about certain states of affairs (e.g., mental events like
decisions) directly, with no ordinary physical causal chain in the picture. Though
some famous philosophers have affirmed this view (e.g., Richard Taylor and Roder-
ick Chisholm), it hasn’t been all that popular. This paper isn’t intended to promote
agent causation; no argument for the view has been articulated herein. The point
in this last paragraph is only to raise the possibility that the difficulty we have in
conceptualizing (let alone building) an LT-passing artificial agent may inhere in
the fact that such an agent must have a rather radical kind of autonomy. To put the
point another way, the difficulty in question may provide inductive evidence for the
view that agent causation is real in our creative lives."?

Notes

! Actually, some understand Turing’s prediction to be a more circumspect one, viz., that by 2000 we
wouldn’t have more than a 70% chance of making a person/machine determination in five minutes.
2§cholars take note: We have paraphrased Lady Lovelace in a way that implies her position to be
that computers only do that which we order them, via programs, to do. See Turing’s footnote 4 on
p. 29 of Turing (1964).

30f course, no competent Lisp programmer would use ‘m’ in this way. Some kind of mnemonic
would doubtless be employed.

4OTTER can be obtained at http: //www-unix .mes.anl.gov/AR/otter/

SFor example, the substitute for H might he a scientist who watched and assimilated what the de-
signers and builders of A did every step along the way.

51n (Bringsjord, 1995), Bringsjord refutes propositions associated with TT by assuming for the sake
of argument that some reasonable parameters 7 have been established for this test. But Turing didn’t
specify 7, and neither have his present-day defenders.

TThe cycle here is strikingly similar to the overall architecture of cognition described by Pollock
(1995).
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8For a “real life” counterpart, we have OTTER’s settling the Robbins Problem, presented as an open
question in (Wos, 1996).

A part of a part of this space is shown in Figure 6. By Hofstadter’s lights, the pace in question may
be uncountable: see Hofstadter (1982). For a discussion of this possibility, see Bringsjord and Zenzen
(2001).

10This comes as no surprise given the method used by Hofstadter and McGraw: They based LETTER
SPIRIT on studies of how humans create and complete gridfonts. Some human-created gridfonts are
shown in Figure 9.

e simplify this definition for the present context. The phrase “about arithmetic” is of course made
precise in the formal version. A tilde above a character indicates that that character is one in the logic,
s0 7 is a constant used in the logic to refer to the number 7.

"’Note that a conditional or unconditional branch that directs flow to a label not present in the
program causes halting. [n the program here, then, the label E can be read as “exit.”

13Anallog chaotic neural nets are characterized by Siegelmann and Sontag (1994). For cognoscenti,
analog chaotic neural nets are allowed to have irrational numbers for coefficients. For the uniniti-
ated, analog chaotic neural nets are perhaps best explained by the “analog shift map,” explicated by
Siegelmann (1995), and summarized in Bringsjord (1998b).

4For full exposition, along with arguments that human persons are trial-and-error machines, see
Kugel (1986), a seminal paper that situates trial-and-error machines nicely within both the formal
context of the Arithmetic Hierarchy and the philosophical context of whether minds are computing
machines.

I5The point expressed this way bears an interesting resemblance to Moor’s (1976) stance on TT.
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