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Abstract The original proof of the four-color theorem by Appel and Haken

sparked a controversy when Tymoczko used it to argue that the justification pro-

vided by unsurveyable proofs carried out by computers cannot be a priori. It also

created a lingering impression to the effect that such proofs depend heavily for their

soundness on large amounts of computation-intensive custom-built software. Contra

Tymoczko, we argue that the justification provided by certain computerized

mathematical proofs is not fundamentally different from that provided by survey-

able proofs, and can be sensibly regarded as a priori. We also show that the

aforementioned impression is mistaken because it fails to distinguish between proof

search (the context of discovery) and proof checking (the context of justification).

By using mechanized proof assistants capable of producing certificates that can be

independently checked, it is possible to carry out complex proofs without the need

to trust arbitrary custom-written code. We only need to trust one fixed, small, and

simple piece of software: the proof checker. This is not only possible in principle,

but is in fact becoming a viable methodology for performing complicated mathe-

matical reasoning. This is evinced by a new proof of the four-color theorem that

appeared in 2005, and which was developed and checked in its entirety by a

mechanical proof system.
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Introduction

A controversy started shortly after the appearance of the original ‘‘computer proof’’

of the four-color theorem by Appel and Haken (1977). The controversy was initiated

by Tymoczko (1979), and was mostly played out on the pages of the Journal of
Philosophy.1 Tymoczko’s article claimed that the work of Appel and Haken

heralded a radically new conception of mathematical proof. The reason, in his view,

was that the proof of Appel and Haken could not be surveyed in its entirety by

human mathematicians. Consequently, he maintained, the proof constituted

inherently a posteriori justification for the four-color theorem. He also regarded

the proof as a piece of experimental mathematics, in the same sense that

‘‘experimental’’ is understood in the natural sciences, and as demonstrating that

mathematical knowledge, far from being infallible, has a degree of certainty

comparable to the results of empirical sciences.

We argue that the justification provided by unsurveyable computerized formal

proofs is not epistemically different from the justification provided by surveyable

formal proofs, as long as the algorithms that the computers execute are known to be

correct in the traditional sense. Accordingly, computerized proofs can provide

a priori mathematical justification if surveyable proofs can. We introduce a new

notion of ‘‘computational a priori’’ knowledge that helps to clarify some of these

issues. Because proof-checking algorithms are small and simple, a priori knowledge

of their correctness seems possible, and therefore it might well be possible to know

a priori a result established by a proof that was checked by such an algorithm,

regardless of whether the algorithm was applied by a human or by a reliable

machine. From a practical perspective, we can use computers to attain this type of

knowledge if we draw a sharp distinction between discovery and justification, and

specifically if we require discovery software to emit low-level correctness proofs—

called ‘‘certificates’’—that can be verified by simple proof checkers. This

methodology is becoming increasingly feasible. Although the original proof by

Appel and Haken did not produce certificates that could be checked by small and

simple proof checkers, this was accomplished in 2005 by Georges Gonthier, who

formalized and completely checked the proof with the mechanical proof assistant

Coq (Gonthier 2005).

Beliefs About Proof Correctness

Tymoczko (1979, p. 59) wrote that ‘‘proofs are surveyable,’’ but that is ambiguous,

as it could be taken to mean that all proofs can be surveyed by humans, which is

plainly false. If the concept of proof was limited only to proofs that could actually

be surveyed, mathematics would cease to exist as we know it for the simple reason

that there is only a finite number of such proofs, no more, say, than the number of

atoms in the universe, call it n. But if there are only n theorems in mathematics, no

matter how large n might be, the field degenerates into a finite list of sentences.

1 See Detlefsen and Luker (1980) and Teller (1980) for some replies.
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Theoremhood would become mechanically decidable, since, trivially, any finite set

is decidable. In fact such a limitation would be inconsistent as long as we accepted

that there are infinitely many natural numbers, for with each number i we can

associate a true mathematical proposition (e.g., that i is even or odd, or that the ith
digit in the decimal expansion of p is such-and-such), each of which has a

straightforward demonstration. That there are infinitely many proofs is something so

fundamental and deeply woven into the fabric of mathematics that to reject it would

be to reject mathematics.2 Accordingly, Tymoczko was wrong to state categorically

that ‘‘proofs are surveyable.’’ What he should have said instead is that proofs are

surveyable in principle, but not necessarily in practice. Only some proofs can

actually be surveyed, just as only some natural numbers can actually be written

down and manipulated, only some Turing machines can actually be built, and so on.

But just as we do not let empirical limitations constrain our concept of natural

numbers, or our concept of Turing machines, or our concept of circles and squares,

or pretty much any other mathematical concept, so it is with proofs; we do not let

the limitations of our brains and the physical universe in general dictate what

constitutes a proof. Similar remarks apply to several other of Tymoczko’s

proclamations, e.g., his statement that ‘‘A proof is a construction that can be

looked over, reviewed, verified, by a rational agent’’ (1979, p. 59). What he should

have said is that a proof is an object that can be verified by an idealized rational

agent, not by any rational agent. Tymoczko elsewhere acknowledges the obvious

point that ‘‘formal proofs outrun surveyable proofs,’’ but he should have said simply

that proofs outrun surveyable proofs, because there are infinitely many informal

proofs as well.

Now consider a mathematical proposition all of whose proofs happen to be

humanly unsurveyable in practice (in the actual world). Does it make sense to say

that such a proposition is knowable a priori? We believe that a moderate rationalist

could cogently argue for an affirmative answer, and in what follows we will briefly

sketch a picture of what kind of sense can be made of such a claim.3 But it should be

stressed that such questions can easily get sidetracked into futile terminological

disputes. Different philosophers have quite different understandings of aprioricity,

after all. In Chisholm’s conception, for instance, only propositions that are

themselves evident or else follow from evident propositions via evident entailment

are knowable a priori (Chisholm 1989). Roughly, a proposition is knowable a priori

only if it can be apprehended as true by way of direct and immediate rational

insight, to use the terminology of Bonjour (1998). Long deductions are substan-

tively underwritten by memory and the physical underpinnings of various mental

states, and therefore the demonstrative justification they provide cannot be priori. In

such a view, even humanly surveyable proofs do not constitute a priori justifications

for their conclusions if they are long or complicated. And Kitcher (1983) put forth

2 Strict finitists and adherents of other extreme forms of constructivism might take issue with that, but we

will subscribe to what has been the received view ever since Cantor and endorse the existence of infinitely

many mathematical objects of various types, including proofs. To the extent that it is possible, we will try

not to let this prejudge any epistemological questions, particularly in connection with aprioricity.
3 Burge(1998) and others have expressed similar positions, and we owe a debt to them, but our analysis

here will take a different route.
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an analysis of aprioricity that requires infallibility and indefeasibility, so that if

subsequent experiences could undermine what we previously held to be a justified

belief, the justification could not have been a priori after all—a conception that was

criticized as somewhat of a strawman, given that few apriorists today would

consider mathematical knowledge to be either infallible or indefeasible.4 Alterna-

tively, one could argue that memory (or a computer, for that matter) is a physical

mechanism that is crucial in causing us to believe that a proof demonstrates a certain

proposition, but that the warrant provided by the proof itself is a priori. We will now

explore these ideas further, but keeping in mind that there is no widely accepted

analysis of aprioricity, and that the correct view of the matter might ultimately turn

out to be deflationary.

Suppose a mathematician X checks a long and complicated formal proof D of a

mathematical result P, and convinces himself that the proof is sound and hence that

P is true. The verification was long and tedious, requiring a lot of paperwork and

patience. On what grounds does X now say that he knows P? Is it on the grounds of

his properly functioning memory, his good eyesight, his powers of attention and

mental concentration, his patience and meticulousness? Suppose he does say that.

Now Y and Z and other mathematicians also check the proof and convince

themselves of its soundness. Y now also says that she knows P on the basis of her
memory and eyesight and so on, and Z says that he knows P on the basis of his
memory and eyesight, and so forth. But there now seems to be little in common

among all these cases on the basis of which P is known. So a causally oriented

epistemologist (e.g., a reliabilist) might instead say that the grounds on which X
believes P consist in the psychological process that occurs when one reads,

understands, and assents to a mathematical proof. But note that this is not what

mathematicians themselves usually say. What they say is that P is known on the
grounds of the proof D, not on psychological grounds. Empirical aspects of the

psychological process of reading a mathematical proof of P do not enter into the

epistemic warrant that justifies P. The psychological process in question is indeed

essential in causing us to acquire the belief that D is a correct proof that establishes

P. But we should not confuse the physical etiology of a mathematical belief with its

epistemic warrant. When we are asked to justify our belief we do not point to any set

of contingent facts; we point to a set of necessary facts. Of course, we might be

mistaken. Any belief-fixation process, being physical, can lead us astray. But the

warrant itself, when one is to be had, is a priori.

This is, in fact, the standard rationalist view of mathematical proofs, which takes

them to provide a priori knowledge of the implication between premises and

conclusion.5 Even if we do not adopt this view, however, an argument can be made

4 In ‘‘a mixture of penitence and intransigence,’’ Kitcher has more recently revised his earlier account

(2000), but continues to maintain that mathematical knowledge cannot be a priori, and that any

philosophically interesting account of aprioricity must entail infallibility and indefesability.
5 In the present paper, when we speak of the proposition established by a proof we will mean the

conditional proposition to the effect that the premises entail the conclusion. Whether or not the premises

are known a priori is another question. We believe that quite a few mathematical truths can be known

a priori by direct rational insight instead of inference (Peano’s axioms, for example), even though some

others (such as certain set-theoretic axioms) might not be so knowable.
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that if we regard surveyable proofs as providing a priori justification, or at least

justification that is not essentially dependent on experience, then we should also also

regard the justification provided by certain kinds of computer-checked proofs as

a priori in the same sense, because there are no significant epistemic differences

between the two cases. This would undercut Tymoczko’s argument, because even

though he did allow for a priori mathematical knowledge on the basis of

traditionally surveyable proofs (unlike, say, Kitcher, who thinks that there is no

a priori knowledge in mathematics whatsoever), he nevertheless ruled out a priori

justification issuing from unsurveyable computer-checked proofs. If our analysis is

correct, this combination of positions is untenable. Some unsurveyable computer-

checked proofs can provide a priori justification if any surveyable proofs can.

Let us return to the scenario of mathematician X who verifies that a formal proof

D soundly leads to the conclusion that P. Suppose we ask X what justifies him in

believing P. The dialogue would most likely proceed along the following lines:

Q1: On what grounds do you claim to know P?

A1: There is a sound proof for it, D, and I know that the conclusion of any

sound proof is valid.

Q2: And what are your grounds for believing that D is sound?

A2: The fact that I inspected a copy of it and verified that it soundly produces

the right conclusion.

Let us try to unpack these answers in greater detail. First it will help to

distinguish between a formal proof D,6 which we will view as an abstract type, and

some concrete physical token of it, bD: Proof tokens are physical instantiations of the

corresponding abstract proofs; they can be written down on paper or other media,

they can be read, inspected, erased, marked, copied, transmitted (potentially

incorrectly), and so on. So X did not check a proof D per se, but rather some

particular token bD of such a proof (this was reflected in X’s comment about being

given ‘‘a copy’’ of the proof). We will make a similar distinction between a formula

F and a token bF of that formula. We will write FP for a formula that expresses a

proposition P.7 We write � F to mean that the formula F is valid. We will not

analyze validity in detail, but will assume that any proposition expressed by a valid

formula is true. Further, implicit in X’s foregoing remarks is that there is a proof-

checking algorithm, which we will call PC, and which can be used to check any

given proof D. We write PCðDÞ F to mean that applying the algorithm PC to D
eventually produces the formula F, which indicates that D is sound, and that the

proposition expressed by F is the conclusion that D establishes. We write

PCðDÞ error to indicate that the application of PC to D revealed an error, and that

6 We assume that proofs are expressed in a sufficiently expressive formal system, and that there is a

simple proof-checking algorithm that can be used to verify such proofs. That is the case, e.g., for first-

order logic and for several higher-order type theories.
7 We distinguish between formulas and propositions, the latter being what the former express, but

nothing of what we say here hinges on the metaphysical status of propositions.
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consequently D is unsound.8 These are the only two output possibilities for any

given D: either PCðDÞ F for some F which represents the conclusion of D; or else

PCðDÞ error:The proof-checking algorithm PC is also an abstract object, and

when we write PCðDÞ F; the designated relationship should be understood

completely mathematically, without reference to any physical realizations of these

objects. We will write cPCð bDÞc bF to indicate that a putative token of the proof-

checking algorithm (say, one that is stored in someone’s brain, or one that is stored

in a text file on a hard disk) is applied to a particular token of the proof and results in

a particular token of formula F. Finally, we write BX[P] to mean that X believes P,

for any proposition P. With this background, we can now graphically depict the

justification process that was described in the foregoing dialogue as shown in Fig. 1.

The arrows indicate justificational support. The left-to-right ordering signifies

temporal procession, culminating in the belief of X that P holds. This order is

therefore the reverse of that in which the answers of X were given in the dialogue.

The middle nodes, in particular, B2 and B3, correspond to answer A1. Two beliefs of

X were cited there: First, that ‘‘there is a sound proof for P, D.’’ This is analyzed as

, .

Fig. 1 Justificational structure of knowledge produced by surveying a proof

8 Some have expressed puzzlement as to how a proof can be unsound. In the words of Rota (1997,

p. 183). ‘‘The expression ‘correct proof’ is redundant. Mathematical proof does not admit degrees. A

sequence of steps in an argument is either a proof, or else it is gibberish.’’ However, the expression

‘correct proof’ is no more redundant than the expression ‘correct computer program’. Both proofs and

programs have rich, recursive syntactic structure (a fact that is obscured in the preceding passage, which

suggests that proofs are linear sequences of steps). Both can be given inputs and evaluated, and the

evaluation can generate an error, or it can generate an output (in the case of proofs, the output is the

conclusion). Correctness is always relative to specification. A proof can perfectly correctly derive a

conclusion C1, but we might still call it incorrect if we expected it to derive some other conclusion C2

instead. Moreover, even if it does derive the desired conclusion, the question is what assumptions it

requires in order to do so. A proof could correctly generate a conclusion with respect to one set of

assumptions and fail with respect to others. Sets of assumptions are the primary ‘‘inputs’’ to proofs. This

view of proofs as complex syntactic objects with formal evaluation semantics over assumption bases is

developed at length by Arkoudas (2000). In this paper, by a ‘‘proof’’ D we will generally mean a syntactic

object, essentially an abstract syntax tree (AST) in some appropriate abstract grammar (Reynolds 1998).

We will be quite liberal on what counts as a token bD of such a proof D; it could be either (a token of) a

linear string over some alphabet that can be parsed into an AST, or (a token of) a two-dimensional picture

of an AST, and so on. If a token bD is incorrectly mutated, then the resulting physical object might fail to

be a token of any proof, or it might become a token of some other proof. Precise identity criteria for

proofs can be given but need not concern us here.
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PCðDÞ FP; ð1Þ

which is to say that applying the proof-checking algorithm to D to it yields a

formula that expresses P. Second, that ‘‘the conclusion of any sound proof is valid.’’

This is in turn analyzed as

8D;F : PCðDÞ F ) � F; ð2Þ

i.e., whenever the application of the proof-checking algorithm to a proof D yields a

formula F, F is valid. From these two propositions it follows logically that FP is

valid, and therefore that P is true. X is aware of these implications, and is thus led to

B4, the belief in P.

The first node, B1, corresponds to answer A2, where X claims to have verified that

‘‘a copy’’ of D ‘‘soundly produces the right conclusion.’’ This is understood to

mean that he has faithfully applied cPC to a token of that proof and obtained the

result bFP: cPC should be regarded as a putative token of the proof-checking

algorithm PC to which X attributes the pleasant property (2). It is presumably stored

in X’s brain. X believes that he really was following PC during his verification

effort, which is to say that he believes that cPC is a faithful instantiation of an

algorithm PC that satisfies (2), and thus he feels justified in moving from B1 to B2.

Strong apriorists might deny that belief B1 provides justification for B2. By their

lights, the arrow from B1 to B2 indicates causal dependence only, not justificational

dependence. There might well be a very strong case to be made for this view. We

will not adopt this view here, however. Let us instead grant that the physical process

of successfully applying cPC to input bD provides actual justification for B2, so that,

ultimately, the belief in P rests on empirical facts.9 Even if we concede that some

empirical facts need to be invoked in order to justify a belief in the correctness of a

proof, this does not make the justification a posteriori in the customary sense of the

term ‘‘a posteriori.’’ The dependence on experience that is at work here is of a very

different sort from the dependence on experience that is typically found in the

natural sciences. Whereas the a posteriori knowledge of the natural sciences has an

essential dependence on empirical propositions, the dependence discussed here is

not essential. We will later explain this in terms of the multiple realizability of

algorithms. But for now we will sketch an intuitive outline of the sense in which the

justification provided by a formal proof D is usually understood to be a priori.

We assume that an idealized mathematician, who has an understanding of P and

knowledge of the proof-checking algorithm and its correctness, is equipped with:

1. Unbounded quantities of paper, part of which contains a token of the proof D,

the rest being blank paper for auxiliary use.

2. Potentially infinite amounts of ink, time, and patience.

9 Such facts will include both specific observations and generalizations, e.g., an assertion to the effect

that humans can reliably carry out algorithms.
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It is not necessary to assume that the mathematician is capable of intellectual

feats impossible for mere mortals, or that he is infallible. Cognitively, he is an

ordinary mathematician. He simply happens to have sufficiently large time and

space resources, along with patience.10 Given these, he can mechanically check the

given proof and eventually, after an indefinitely long but finite period of time, will
reach one of two verdicts: ‘‘Yes, D is sound and P holds’’ or ‘‘No, D is erroneous,

and thus P might not be true.’’ It is in that sense that the warrant supplied by D is

usually understood to be a priori. Our mathematician need never leave his armchair

and need never make any empirical inquiries about the world in order to accomplish

his task. His existing mental states along with his paper and ink form a closed

epistemic system. No contingent empirical information about the outside world is

necessary in order to acquire the knowledge that P,11 no measuring devices, no

microscopes, no field work, no experiments. This is in obvious contrast to scientific

knowledge (in the natural sciences), whose hallmark method of acquisition is

empirical testing rather than armchair calculation. To us this seems to mark a very

clear distinction, regardless of whether we view it as epistemological or merely

methodological. Under this understanding, every provable mathematical proposition

is a priori knowable and the issue of computer assistance is tangential to the matter;

the four-color theorem is knowable a priori, whether or not we actually enlist the

help of a computer in verifying it.

The preceding idealization is consistent with the intuition that surveyability is not

an essential epistemological property of proofs. Indeed, if we say that the

justification afforded by a surveyable mathematical proof is a priori in that it has no

essential dependence on experience or on facts about the world, it is very hard to see

why a longer proof would be a posteriori. In what sense would the justificational

powers of longer proofs be essentially dependent on empirical evidence? Of course

one could simply deny that longer proofs even exist, but we think it obvious that

doing so would be decidedly unmathematical. One might as well deny that large

integers exist. Alternatively, one might admit that longer proofs exist, perhaps as

meaningless strings in a free monoid do, but deny that they are capable of providing

any justification, in effect equating justificational capacity with surveyability. But

10 These are, of course, very similar to the idealizations made by Turing in his analysis of computation.

An important difference is that Turing did not require any understanding beyond the ability to follow

rules.
11 There are some subtle issues here. If we require direct understanding of a proposition P in order for P
to be known, then propositions expressed by very large formulas cannot be known at all—and a fortiori

cannot be known a priori—by an ordinary person, even one who is equipped with unbounded time, paper,

ink, and patience (although they could be known by persons with arbitrarily—but finitely—larger

intellectual capacities than ours). Even instances of tautologies such as x = x would be unknowable for

sufficiently large values of x, such as

3295787320212553400048257362 ¼ 3295787320212553400048257362; ð3Þ

since we cannot directly comprehend the proposition expressed by such a formula. However, ordinary

persons can know a proposition indirectly, by description, as in ‘‘the proposition expressed by (3)’’ or

‘‘the proposition established by the proof I just checked,’’ provided we know that such definite

descriptions designate unique propositions, and in that sense arbitrarily large proofs can indeed provide

knowledge.

192 K. Arkoudas, S. Bringsjord

123



where would that surveyability line be drawn, after which proofs lose all epistemic

value and become syntactic junk? At 10 pages of text? At 100 pages? At whatever

length can be agreed upon by the mathematical community at some fixed point in

time? It seems clear that any such limit would be ad hoc. The capacity of a proof to

serve as an epistemic warrant is not something that derives from its size, but from its

logical properties.

Computational A Priori Knowledge

The above characterization is an abstract specification of one prominent sense in

which the justification provided by formal mathematical proofs is often understood

to be essentially independent of empirical evidence. We will now go further by

introducing a new notion of a priori knowledge that we call computational a priori
knowledge, which will pertain to knowledge obtained not just from the application

of proof-checking algorithms to proofs, but from the application of a much wider

class of algorithms to a much wider class of inputs. According to this conception,

and contra Tymoczko, the four-color theorem not only can but actually is known

a priori at present (2007).12 We nevertheless agree with Tymoczko that the proof of

Appel and Haken (1977) did not result in a priori knowledge of the theorem,

although, as we will explain, our reasons for that contention are very different from

his.

There are some details that need to be handled with care, but the core idea is

simple: Knowledge obtained by computations is a priori as long as we know what

the relevant algorithms do and can prove mathematically—using traditional,

surveyable proofs—that the algorithms produce correct results. If that is the case,

then the justificational structure of our knowledge is similar to that which obtains for

knowledge produced by surveyable proofs. We will thus argue that if one accepts

that surveyable proofs result in a priori knowledge, then one should accept that

knowledge obtained by implemented algorithms which are a priori known to be

correct is also a priori. Indeed, the particular hardware platform on which an

algorithm is implemented is entirely immaterial, as long as we have good reason to

believe that the underlying physical mechanism is reliable. An algorithm can be

carried out in silicon, in DNA, in human brains, using vacuum tubes, via electricity

or via completely mechanical means (e.g., wheels and cards, as in Babbage’s

Analytical Engine), bottles and buckets, quantum mechanical phenomena, the

population of China, toilet paper and stones (Weizenbaum 1976, p. 51) or an

indefinite number of other extremely diverse physical systems ranging from

macroscopic to microscopic. This property of algorithms is commonly known as

multiple realizability, and has been the linchpin of functionalism in the philosophy

12 Assuming that the usual axioms about the real numbers and some other equally evident truths are

known a priori. In this paper we are not concerned with non-inferential a priori knowledge, so we will not

try to establish that the premises of Gonthier’s proof of the four-color theorem are known a priori. We

emphasize, nevertheless, that our position is not simple if-thenism. As mentioned earlier, we do believe

that some mathematical truths can be known a priori without inference.
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of mind for decades.13 We believe that Tymoczko did not fully recognize the

importance of the distinction between software and hardware, and consequently

failed to see that the results we obtain by actual computations in the real world have

no essential dependence on any particular hardware platform, as long as we have

a priori knowledge of the correctness of the underlying algorithms—algorithms

being, after all, thanks to Turing’s work, mathematical objects amenable to rigorous

analysis and proof. Whenever we come to know a proposition by virtue of a

concrete computation of a particular implementation of an algorithm, there are

counterfactual situations in which we could have learned the same result by a

computation of an entirely different implementation of that algorithm, underwritten

by altogether different physical laws.

The notion of a physical implementation or realization of an algorithm plays a key

role in our analysis. We will not provide a detailed account of that notion (for an

attempt at such an account see, e.g., Chalmers (1996), Sect. 9.2)14), but the basic idea is

simple, and is based on the work of theoretical computer scientists over the last forty

years who studied what it means for one formal computational process to implement

another. Essentially, the computational structure of one process must mirror the

structure of the other, which is formally captured by requiring that there is an

appropriate homomorphism mapping any computation—sequence of states—of one

system to one of the other. The same idea is used for a physical system implementing a

formal one, only now it is the causal structure of the physical system that must mirror

the computational structure of the formal system, and the morphism must relate

physical states to formal states. In addition, the implementation must be lawful, i.e., the

morphism must obtain counterfactually for different inputs.

Further, we will say that an algorithm is statement-generating if all of its normal

outputs15 are formulas of some recursively enumerable logical system16 having a

fixed formal syntax and semantics, with the latter picking out a certain subclass of

formulas as valid. We do not impose any restrictions on the form of the inputs. We

assume that once the logic is interpreted, every formula expresses a unique

proposition that is either true or false, and that valid formulas are true in every

interpretation. We will say that a statement-generating algorithm A is correct if no

terminating computation of it produces a formula that is not valid.

Finally, we will say that an agent X has computational a priori knowledge of a

proposition P at time t iff there is a statement-generating algorithm A and a physical

system M such that:

1. X knows a priori that A is correct.

2. X knows that M implements A.

13 Of course one need not subscribe to functionalism (neither author does) in order to recognize the

multiple realizability of algorithms.
14 However, see Rapaport (1999) for an alternative account of implementation.
15 That is, apart from error messages.
16 This simply means that there is an algorithm for listing all and only the theorems of the system. We do

not wish to consider, for instance, systems with uncomputable inference rules, and the recursive

enumerability proviso blocks such systems.
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3. X knows that a computation of M was carried out prior to t and resulted in a

statement expressing P.

We take it as a given that if the first condition does not obtain then X’s knowledge

of P could not be said to be a priori in any meaningful sense. For instance, if X
knows of the correctness of A because he has read about it in a journal or heard

about it from a reliable friend, then he might have knowledge of it but it is not

a priori,17 and in view of the last two conditions, that would make his knowledge of

P a posteriori. Note that the type of a priori knowledge required by this condition is

not necessarily computational a priori (that would make the definition circular), but

it is important to point out that it could be, as long as as the recursion eventually

bottoms out in knowledge of some algorithm’s correctness that is non-computa-

tional a priori. This allows us to bootstrap the epistemic process and obtain a priori

mathematical knowledge justified by extremely complicated proofs (humanly

unsurveyable) by anchoring our warrants on very simple algorithms whose proofs of

correctness are humanly surveyable.

We are using the term ‘‘algorithm’’ liberally, including both algorithms in the

traditional pretheoretical sense, as in a high-level informal description of, say,

Euclid’s procedure, using a mixture of natural language and mathematical

terminology; as well as programs in formal languages such as variants of the k-

calculus. Proofs of correctness are possible for both, only in the former case the

proofs are informal while in the latter case they can be either informal or formal.

That rigorous, surveyable, and convincing proofs of correctness are possible for

some algorithms is not controversial; it has been established by the work of

theoretical computer scientists and logicians such as Hoare, Dijkstra, Manna, and

Scott.

The knowledge required by the two last conditions is a posteriori. It can be had

with different degrees of certainty. For instance, if I have myself keyed in a token of

the program to which the first condition refers, have repeatedly checked to make

sure that the program has been correctly entered, have tested its behavior in sample

runs and found it to conform to its abstract specification, and so on, then I will

probably have higher confidence in the second claim than if I receive such

testimony by someone else.

Let us now consider the claim that the type of knowledge singled out by this

analysis is a species of a priori knowledge. Suppose that X does indeed satisfy all

three conditions for some proposition P at some time point t, and we ask him for his

reasons for believing P. The dialogue would most likely go as follows:

Q1: On what grounds do you claim to know P?

A1: I know P because A gives FP as an output, and I know a priori that A is

correct. So FP is valid, and P is true.

Q2: And what are your grounds for believing that A gives FP as output?

17 Some philosophers (Williams 1972) have denied that mathematical knowledge can ever result from

testimony. Most hold that reliable testimony produces a posteriori knowledge. Burge (1993) has

tendentiously argued that not only can one come to know a mathematical proposition via someone else’s

testimony, but can come to do so a priori. Burge’s arguments are subtle and deserve careful attention, but

his position is prima facie implausible.
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A2: The fact that A is implemented in this machine, and I know that a

computation of that implementation produced FP.

Accordingly, the process that resulted in X’s belief that P can be graphically

depicted as shown in Fig. 2, where, as before, we write bA to indicate a token of

algorithm A. The middle beliefs, B2 and B3, represent the content of the first answer A1.

In particular, B2 corresponds to X’s claim that ‘‘A gives FP as an output’’ (for a certain

input), while B3 corresponds to the claim that ‘‘A is correct.’’ The propositional

contents of these beliefs logically entail P. X is aware of this implication and is thus led

to B4. The first node, B1, corresponds to answer A2, where X claims to know that a

certain machine ‘‘implements A’’ and that ‘‘a computation of that implementation

produced FP.’’ The content of these beliefs is analyzed as bAðbiÞc bFP:
We thus see that the structure of the epistemic situation here is virtually identical

to that of knowledge that results from a surveyable proof, as depicted by the

diagram in Fig. 1. In this case, too, X feels justified in believing P by virtue of the

existence of an appropriate mathematical object that serves as input to a

computation of A, and more importantly, because he knows a priori that A is

correct, i.e., that all terminating computations of it yield valid formulas. Let us

compare the contents of the first empirical beliefs in the two cases. They are:

cPCð bDÞc bFP ð4Þ

in one case and

bAðbiÞc bFP ð5Þ

in the other. In the first case, that is, X believes that the instance of the proof-

checking algorithm PC that he had in his mind/brain and which he applied to a

certain proof token correctly yielded the result bFP: In the second case, X believes

that the instance of the algorithm A that was realized in the machine at hand

correctly produced the result bFP: The only difference lies in the first-person

perspective that is present in one case but not in the other. Otherwise, both beliefs

are based on physical experience and on empirical considerations. And given that

certain computers are much more reliable than human brains, it would be eminently

rational for X to believe (5) with higher confidence than (4), particularly if the proof

token bD that he surveyed was large.

Consider the following passage from Tymoczko (1979, p. 72):

[Belief in] formal [objects] cannot be used to legitimize the appeal to

computers. Rather, we believe that the formal [object] exists only because we

, .

Fig. 2 Justificational structure of knowledge produced by a computerized proof
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accept the appeal to computers in the first place. It is important to get the order

of justification correct. Some people might be tempted to accept the appeal to

computers on the ground that it involves a harmless extension of human

powers. On their view the computer merely traces out the steps of a

complicated formal proof that is really out there. In fact, our only evidence for

the existence of the formal proof presupposes the reliability of computers.

That is surely right, even if Tymoczko’s complaint is somewhat out of place

because no one tried ‘‘to legitimize the appeal to computers’’ by citing any beliefs in

the existence of the formal proofs which the computers presumably verify. The use

of computers is legitimate simply and only because computers are reliable and,

more importantly, because we know what they have been programmed to do.

Beyond that, it is important to realize that what Tymoczko says above applies just as

well to traditional surveyable proofs that do not involve computers, a fact that is

made plain if we look at the leftmost justificational arrow of the diagram in Fig. 1.

Our ‘‘only evidence’’ for the existence of a traditional surveyable formal proof D
‘‘presupposes the reliability’’ of our senses and our general cognitive abilities—yet

Tymoczko did not argue on those grounds that the conclusion of such a proof is

known a posteriori.

A second set of considerations suggesting that the type of knowledge specified by

our analysis is a species of a priori knowledge falls out of the multiple realizability

of algorithms. X could have had computational knowledge of P at t in a way that is

not essentially dependent on M. In particular, A could have been implemented by a

physical mechanism M0 entirely different from M. So although X’s knowledge needs

some physical realization of A, it is not essentially dependent on any particular

realization. To see this, consider two entirely different physical systems M and M0,
both implementing A, and underwritten by different sets of empirical laws, E and E0.
Suppose that X uses both M and M0 to perform the same computation, and obtains

the same answer in both cases, some formula expressing P. On which set of

empirical regularities is the justification of X’s belief in P essentially dependent, on

E or on E0? The two have nothing in common, so to say that it essentially depends

on both would be gerrymandering (although it would be sensible to say that both

computations contributed to X’s justification). And it would be arbitrary to say that

it essentially depends on either E or E0 but not on the other. There is no essential

dependence on either. The essential evidential factor is the algorithm that they both

executed—the abstract object which both physical systems implemented.

We believe that such considerations show that what we have called computa-

tional a priori knowledge does not essentially depend on empirical factors, at least

no more than surveyable proofs do. Nevertheless, whether we call one type of

knowledge a priori and the other a posteriori is ultimately of little practical interest.

The distinction itself, although genuine in our opinion, seems to us to be of

secondary importance when it comes to computerized proofs. It might have been

very important to Tymoczko, and it might still be of importance to other social

constructivists, mainly, we think, because they often confuse aprioricity and

infallibility, and perhaps because they have a postmodern ax to grind against any

type of knowledge that might come across as ensconced in a lofty epistemic throne.
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But what we think of as more important is the confidence with which we accept a

proposition. Here there are no obscure distinctions between empirical and non-

empirical sources of justification, only the brute fact of a simple partial order: We

are more confident in our acceptance of some propositions than in others. And what

is particularly interesting is the question of whether we can maximize these degrees

of confidence for certain types of knowledge, and if so, how. It is in that light, we

believe, that the subject of computer-assisted proofs should be considered—as a

matter that calls for good engineering backed by solid metamathematics. And it is

that perspective to which we will now turn our attention.

Maximizing our Confidence in the Correctness of Proofs

Our starting observation is that the Appel and Haken proof of the four-color

theorem, by its very nature (heavily computational), in tandem with the controversy

started by Tymoczko’s paper, gave rise to a persistent misconception about

computer proofs. It is this:

The fox view Computer proofs of non-trivial results, such as the four-color

theorem, invariably depend on large amounts of computation performed by

complicated custom-written software.

This view portrays the computer as a fox: It knows many different things in the

sense that it executes an arsenal of various clever algorithms implemented for the

explicit purpose of obtaining the result in question. This immediately raises very

significant issues of trust. Even if we assume that all these algorithms are correct,

how can we be sure that they are correctly implemented? Computer programs are

notoriously prone to bugs. How can we trust page after page of C code written by

the authors for the express purpose of verifying their results? This heavily

computational view also conjures up a strong impression of experimentalism: We

write some code, start executing it, and see what happens. Later on we might run the

code again on a different machine and compare results; and so on. It sounds very

experimental and empirical.

One result of this misconception was instilling an undue and non-discriminating

distrust of computers in mathematics, as well as a blurring of the distinction

between genuinely experimental mathematics (where only inductive evidence is

provided for mathematical propositions) and computer-verified deductive proofs.

For instance, more that a dozen years after the appearance of the Appel and Haken

proof, we have statements such as the following one by Cohen (1991, p. 328)

[a]dmitting the computer shenanigans of Appel and Haken to the the ranks of

mathematics would only leave us intellectually unfulfilled.18

The misconception arises from a confusion between proof search and proof

checking, or, in more traditional philosophical terms, between the context of
discovery and the context of justification (Reichenbach 1938). A computer-

conducted search for a deductive proof (in a fixed logical framework such as a

18 Quoted by MacKenzie (1999, pp. 46–47), who provides an interesting sociological discussion of the

four-color theorem.
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Gentzen calculus or a Fitch-style system for classical first-order logic) can indeed

carry out arbitrary amounts of computation, performed by arbitrary code. It can

match patterns, unify terms, iterate without bounds, perform huge case analyses, etc.

Indeed, if the underlying logic is interesting then the search might not even

terminate. However, if and when a proof is actually found, checking that proof is

trivial, and more importantly, it is not done by an arbitrary process. There is one
fixed piece of code that can check any given proof. We use the term certificate to

refer to a low-level formal proof produced by an arbitrarily complicated proof

search.

If an arbitrarily complicated proof search produces a certificate, then, for

justification purposes, the search has rendered itself obsolete. We no longer care

how the search was performed, in how many pages of C code it was encoded, or

what resources it used; our only care is whether the certificate is valid. This entitles

us to think of the computer as a hedgehog, in that it only needs to know one thing,

namely, how to check certificates in some appropriately rich logical framework

(say, first-order predicate calculus with equality). To put it roughly, the computer

only needs to know how to check applications of modus ponens and a small number

of other trivial rules such as equality reflexivity and transitivity, and how to decide

whether two formulas are identical. In terms of trust and justification, the hedgehog

view implies that we only need to have faith in one algorithm: the proof-checking

algorithm. This algorithm is of trivial conceptual and computational complexity. It

can be implemented in a page or two of an advanced programming language such as

ML or Haskell, and has linear-time average-case complexity in the size of the proof.

In addition, it is completely domain-independent; the proof being checked could be

about graphs or about polynomial roots or about metric spaces or about anything

else whatsoever (e.g., an arbitrary proof in ZFC).

It is true that we still need to trust other things. To begin with, apart from the

proof-checking algorithm, we need to believe that if a proof in the logic at hand

exists, then the corresponding proposition holds. That is, we need to believe that the

proofs are properly connected to the semantics.19 We will take such fundamental

theoretical beliefs as the lowest common denominator, and will assume that there is

sufficient justification for them. Above that level, and more concretely, we need to

trust the following components:

1. The various algorithms used by the underlying operating system (e.g.,

algorithms for implementing file operations on disk in terms of inode schemes).

2. The implementation of the underlying operating system (even if the

aforementioned algorithms are mathematically correct, their implementation

might have bugs).

3. The semantics of the programming language L in which the checker is

implemented (e.g., does type soundness hold in L?).

4. The implementation of the compiler for L (bugs might creep into the compiler

even if the semantics are theoretically sound).

19 Of course we also need to believe that the semantics are right, that the system is consistent, and so on.

But the deeper we go the more conceptual the issues become, and the less they have to do with the role of

computers.

Computers, Justification, and Mathematical Knowledge 199

123



5. The integrity of the particular machine—hardware, operating system, and

compiler for L—in which the checking is performed (e.g., we need to know that

no malicious agents have tampered with the system).

6. General causal factors—random hardware malfunctions, influence of cosmic

rays, and so on.

But we can do even better. We can eliminate the first four factors completely by

implementing the proof-checking algorithm directly in silicon. That is, we can build

special-purpose hardware whose only function is to check formal proofs in a

particular logical framework. The design of that hardware can then be thoroughly—

and easily—verified mathematically.20 The only remaining possible seeds of doubt

would then be of the fifth and sixth categories: hardware or software compromise by

malicious intervention, and general ‘‘physical stuff’’ that could go wrong. The first

can be dealt with by enforcing vigilant security measures. The second is inevitable,

but it is also exceedingly unlikely. In any event, it is optimal, modulo the current

state-of-the-art in hardware. We cannot do any better in this world. The possibility

of error would then be far smaller than the possibility of error even in moderately

complicated proofs that have been surveyed by humans.

One could object that the hedgehog view might be plausible in principle, but in

practice, computer proofs such as the one by Appel and Haken do not output

certificates that can be independently checked. We reply that this is a matter of

engineering. When the Appel and Haken proof was developed in the 1970s, the

required proof-engineering technology was not sufficiently mature.21 But at present

there are several proof systems that combine powerful proof search with proof

checking, and are capable of producing certificates. For instance, many state-of-the-

art resolution-based automated theorem provers—such as Vampire (Voronkov

1995) or Spass (Weidenbach 2001)—output linear deductions in the resolution

calculus that can be independently checked by a very small program. Coq (Coquand

and Huet 1998) is a proof system based on higher-order intuitionist type theory that

also combines proof search with proof checking, and outputs certificates in the form

of k-calculus terms representing formal low-level deductions that can be checked

independently.

The fact that Gonthier was able to use Coq to prove the four-color theorem

constitutes solid evidence for the feasibility of the hedgehog view; sophisticated

systems now exist that can carry out very demanding mathematical proofs and

justify them using an extremely small domain-independent trusted base. (The

original proof of Gonthier was developed in a slightly older version of Coq that is

incompatible with the independent Coq proof checker that was recently developed

at the University of Bologna, but Gonthier has recently finished porting his proof to

20 Hardware verification can be challenging, so some have wondered whether we are substituting one

difficult problem for another. But in the scenario we are envisaging we would not be concerned with the

verification of arbitrary hardware. We would only be concerned with the verification of a specific, fixed

hardware device, the one implementing the proof-checking algorithm. Moreover, since the specification

of that device is so simple (assuming that it is mostly trust and simplicity that we are after, rather than

efficiency), many of the complications that often arise in hardware verification—such as cache coherence

protocol correctness—would not be an issue at all.
21 The ideas were already there, but implementations were not powerful enough.
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the new version, which will enable the independent proof checking.22) Another such

system is our own Athena (Arkoudas n.d), which was designed and implemented

with a view to minimizing the overall trusted base. Athena enables both proof

search and proof checking in a Fitch-style system for polymorphic multi-sorted first-

order logic, which, apart from making proofs more readable and writable, facilitates

proof automation significantly. For technical reasons, certificates in Athena tend to

be more compact than those of Coq, and can be optimized heavily using aggressive

proof-simplification algorithms that do not perform cut elimination (Arkoudas

2005). But regardless of what system one chooses to use, the point remains that

when it comes to trusting computerized proofs, we do not need to think of

computers as foxes. They are hedgehogs. This is an important message that is well-

known to researchers in the field of mechanized proof (Slaney 1994), but has yet to

be conveyed to the wider mathematical and philosophical communities with

sufficient clarity.
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