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Abstract. Provability-based semantic interoperability (PBSI) is a kind
of interoperability that transcends mere syntactic translation to allow
for robust, meaningful information exchange across systems employing
ontologies for which mappings or matchings may not exist, and which
can be evaluated by provability-based (PB) queries. We introduce a sys-
tem of translation graphs to formalize the relationships between diverse
ontologies and knowledge representation and reasoning systems, and to
automatically generate the translation axioms governing PB informa-
tion exchange and inter-system reasoning. We demonstrate the use of
translation graphs on a small number of simple systems to achieve inter-
operability.
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1 What is Semantic Interoperability?

The proliferation of knowledge-rich systems has led to the creation of myriad
intelligent systems possessing diverse reasoning capabilities. Unfortunately, co-
operative efforts among these systems are hindered by lack of a common repre-
sentation scheme or effective general methods for information exchange. Ideally,
these systems could reason about their peers’ representation schemes and work
out a way to exchange information automatically—a capability well beyond the
abilities of current systems.

Many systems today achieve various levels of interoperability and information
exchange using ontology mapping [1] and schema matching [2]. These techniques
are useful and have achieved high levels of information sharing, but cannot cap-
ture all the relationships that semantic interoperability requires.

In the general tradition of logicist AI and cognitive science [3,4,5], and specif-
ically in the tradition of logic-based semantic interoperability [6,7], we maintain
that semantic interoperability can be evaluated only with respect to provability-
based queries. This stems from the fact that ontology mapping and schema
matching cannot always capture asymmetry of translation [8], nor can informa-
tion from a source ontology always be translated into a corresponding form in a



target ontology, even if the information has semantic consequences in the target
ontology.

Ontologies contain complex relationships among their own terms, and any
approach to semantic interoperability must be able to capture not only these,
but also the relationships between between multiple ontologies. A system which
does not use a sufficiently expressive formalism or language to describe these re-
lationships is inherently specialized and cannot be used for general applications.

Furthermore, consumers of the products of semantic interoperability should
have access to the justifications that bring about those products. Consumers
should have, then, in a schema-mapping approach, access to the mapping itself,
in an axiomatic approach, access to the axioms, and in a provability-based ap-
proach, access to the proofs. Ideally, the proofs would be couched in a format
that is readily understood by non-specialists; e.g., proofs in natural language are
far superior to resolution based proofs. Herein we describe a new brand of PBSI
that meets the desiderata just enumerated.

2 The Need For Semantic Interoperability

In a Truly Useful Semantic Web. To achieve a useful Semantic Web, informa-
tion on the web must (1) be structured in a meaningful way and (2) information
from different systems must be able to be combined easily and meaningfully.
(1) is being addressed as more and more information is stored in databases,
and by the adoption of regular markup languages such as XML and XHTML.
(2) is only happening partially. Service-oriented architectures are sharing infor-
mation meaningfully, but need complete knowledge of the ontologies employed
by the systems involved. When systems with web presence can share informa-
tion without having to have extensive knowledge of their peers’ ontologies or
schemata, web-based agents can be built that are capable of deep reasoning and
planning [9].

In the Defense and Intelligence Communities. The defense and intelligence com-
munities have, for some time, recognized the need for semantic interoperability,
and have sponsored research in tools and languages to address this need. Some
results of this research are the DARPA Agent Markup Language [10], DAML,
and DAML+OIL, for the markup of information and for the description of on-
tologies. Though languages such as KIF [11] and Common Logic [12] have been
developed for describing the relationships between ontologies and for the ex-
change of information between ontologies, in 2005 the Disruptive Technology
Office sponsored the Interoperable Knowledge Representation for Intelligence
Support (IKRIS) workshop [13], which resulted in the IKRIS Knowledge Lan-
guage (IKL), an extension to Common Logic that addresses specific needs of the
intelligence community.



3 Relevant Past Approaches

We review a number of past approaches to the problem of semantic interoper-
ability. We note how these approaches fare with respect to the aforementioned
desiderata; in particular, whether: an approach is logically based, asymmetry
of translation is preserved, information in a foreign ontology can influence a
query in a native ontology even when the foreign information cannot be directly
translated, and the quality of available justifications is sufficiently high.

When the subject domains and vocabularies of the ontologies to be related
are similar and the information represented within them is not too complex,
schema matching can be effective in translating information from one ontology
to another. With schema matching, corresponding terms from the ontologies are
selected, and information from one is recast in another. There are automated
tools that aid in schema matching [2]. Evaluating whether a schema matching
is correct can be difficult, particularly if the matching has been generated (even
partially) automatically. A schema matching can be provided as primitive justifi-
cation for results. It seems difficult, with schema matchings, to capture semantic
influence when information translation is not possible.

The use of schema morphisms to map the sentences of one ontology to sen-
tences of another allows for more complex transformations between ontologies.
This approach can be used when ontologies are treated as institutions [14].
Within this framework, it is possible to determine whether a schema morphism
is correct [15], and to impose constraints that capture some of the asymmetry of
translation and semantic influence. Morphisms are not trivial to construct, but
can capture relationships between ontologies using different logics [16]. Signature
morphisms are expressed with a different formalism and notation than the on-
tologies themselves, however, and so the justification for a particular translation
requires human intervention or specialized reasoning outside of the ontologies
themselves.

Simple syntactic manipulation of sentences does not afford the meaningful
translations that are desired. In fact, to answer queries expressed in a query
ontology using information from various source ontologies often requires making
use of information from many source ontologies. Unfortunately, sentences in
a source ontology that have semantic consequences in a target ontology cannot
always be translated into the target ontology [8]. Semantic interoperability is still
attainable, however, by relating the ontologies logically, and evaluating queries
with respect to provability. Ontologies can be related axiomatically using lifting
axioms [6] or by merging the ontologies to be related and expressing bridging
axioms in the new merged ontology [7].

The techniques reviewed above have been used in real applications and have
successfully enabled varying levels of interoperability. No individual system, how-
ever, possesses all of the necessary qualities for top-notch semantic interoper-
ability. Building on these excellent foundations, we believe that our system of
translation graphs takes a step closer to the ideal.



4 Formal Preliminaries

The work herein described is, clearly, logic-based, and partakes of the paradigms
of logic-based AI [3], cognitive science [4], and computational cognitive modeling
[5].

We treat ontologies as pairs of the form 〈Σ,Φ〉 where Σ is a signature in
a many-sorted logic, and Φ is a set of sentences in Σ. While many-sorted logic
is not employed by all ontology designers, it is appropriate for describing many
ontological constructs including modalities, has a impressive history within com-
puter science and mathematics, and is reducible to standard first-order logic [17].

A sort is a domain, a universe, or a set of objects. There is a global set of
sorts, S∗. Generally, every signature will contain a sort corresponding to truth
values. In traditional logics, this sort is the set {true, false}, but this needn’t
be the case. Many-valued logics, for instance, will use a different sort for truth
values. A functor f is a function s0 × . . . × sn−1 → sn where s0, . . . , sn are
elements of S∗. 〈[s0, . . . , sn−1] , sn〉 is the rank of f and denoted Rank(f).

A signature Σ is a tuple 〈σ, φ〉 where σ is a subset of S∗, called the sorts of
Σ and φ is a partial injective function from string-rank pairs to functors of the
same rank. The range of φ is the set of functors of Σ. There is a restriction on φ
that for every functor f among Σ’s functors, each sort in f ’s rank is one of Σ’s
sorts.

A well-formed term of Σ has a particular interpretation which denotes the
application of corresponding functors to their arguments. E.g, if man(Socrates)
is sentence of Σ1 and human(Sokrates) is a sentence of Σ2, but both Σ1 and
Σ2 map man and human, respectively, to the same functor f of rank 〈[s1] , s0〉,
and Socrates and Sokrates to the same functor g of rank 〈[] , s1〉, then the two
sentences have the same interpretation.

5 Ontology Modifications

A number of operations can be defined on signatures which correspond to incre-
mental modifications that might be performed on the signatures of ontologies.
Four primitive operations on signatures are defined by the following equations

AddSort(s, 〈σ, φ〉) = 〈σ ∪ {s}, φ〉 (1)
RemoveSort(s, 〈σ, φ〉) = 〈σ − {s}, φ〉 (2)

AddFunctor(w, f, 〈σ, φ〉) = 〈σ, φ ∪ {〈〈w,Rank(f)〉 , f〉}〉(3)
RemoveFunctor(w, r, 〈σ, φ ∪ {〈〈w, r〉 , f〉}〉) = 〈σ, φ〉 (4)

subject to several restrictions. RemoveSort(s, 〈σ, φ〉) is undefined if any of the
functors of 〈σ, φ〉 use s. AddFunctor(w, f, 〈σ, φ〉) is undefined if 〈w, arity(f)〉 is
already mapped to some functor. RemoveFunctor(w, r, 〈σ, φ〉) is undefined if φ
does not map 〈w, r〉 to any functor.

With the primitive methods, simple ontologies can be constructed that spec-
ify only the vocabulary of a language. However, ontology consists not only in vo-
cabulary, but also in the meaning of the vocabulary and the relationships among



these terms. As a result, many knowledge representation languages include forms
analogous to Athena’s [18] define-symbol for defining symbols axiomatically.
For instance, MatGrandmotherOf(x), denoting the maternal grandmother of x
can be defined in KIF using MotherOf(x) by (deffunction MatGrandmotherOf
(x) := (MotherOf (MotherOf x))).

Both classical mathematicians and logicians along with modern knowledge
representation language designers have devoted a great amount of time to the
subject of the forms that can be used in axiomatic definitions. Some definitions
may be implemented as macro-like substitutions, while in other cases, the entire
axiom must remain available for subsequent reasoning [11, Ch. 11].

6 Translation Graphs

We implemented a prototype of the structures and modifications described in
the previous section, thereby providing a framework in which to perform natural
ontology-related activities, such as ontology construction and mapping. Ontology
construction becomes easy: Starting from an empty signature (i.e., a signature
with no sorts or functors), existing ontologies can be recreated by adding the
ontology’s sorts, and then relations and function symbols. These reconstructed
ontologies can then be related by adding the functors of one ontology to another
with axiomatic definitions. Displaying the process graphically inspired transla-
tion graphs.

After initial experiments demonstrated the feasibility of this approach, we re-
alized that the process could be used to describe the interoperability in the IKRIS
workshop and experiments in interoperability between robust software systems,
such as Oculus’ GeoTime [19,20], SUNY Albany’s HITIQA [21], Attempto Con-
trolled English [22,23], and the RAIR lab’s own Slate [24] and Solomon [25].

A translation graph is a directed graph whose vertices are signatures, and
whose edges denote axiomatic relationships between the signatures of the graph.
If signatures Σi and Σj are vertices of some translation graph and the edge
〈Σi, Σj〉 is in the graph, there is information associated with it that describes
how information represented in an ontology employing Σi can be used in an
ontology employing Σj . This property is transitive, and so a Σu, Σv path contains
information for using information under Σu in Σv.

7 An Example

We present an example to show that translation graphs can be used to enable
interoperability between ontologies whose subject domains intersect but are not
identical, that queries can be answered with information from multiple ontolo-
gies, and that the information used to answer the query is not representable in
all of the ontologies presented. (For the sake of readability and conciseness, we
will ignore issues such as namespaces and the use of fundamental datatypes such
as strings and numbers.)



We consider four separate software systems operating with four distinct on-
tologies amongst which information will be shared.

The first two systems are social networking programs which represent in-
formation about phone calls. The first system, A, keeps records of the form
Called(x, y) to denote that x called y, where x and y are names of individuals.
The second system, B, uses CalledBy(x, y) to denote that x was called by y, where
x and y are names of individuals. A and B can be related with the primitive
operations described earlier; the result is shown in Figure 1. The function Called
is added to B with an axiomatic definition, yielding an intermediate signature.
CalledBy is removed from the intermediate signature, resulting in A. Tracing the
path between the ontologies and collecting axioms along the way gives all the
information needed to use information from one ontology in the other.

B

Sorts: Person Functions: CalledBy

Sorts: Person

Functions: CalledBy, Called

(add-functor Called
  (iff (Called   x y)
       (CalledBy y x)) A

Sorts: Person Functions: Called

(remove-functor CalledBy)

Fig. 1. Ontologies A and B are related.

The axiomatic definition between A and B is a biconditional and could be
optimized as a rewriting rule. That is, assertions in one ontology could be rewrit-
ten in terms of the other’s vocabulary. The translation here is symmetric, and
could be handled by schema matching tools.

Next, we introduce a cellular phone company database C which has informa-
tion about phone calls made on the cellular network, and keeps records of the
form Phoned(n1, n2) where n1 and n2 are phone numbers between which calls
have been placed. Figure 2 illustrates the relationship between C and A.

C

Sorts: Number Functions: Phoned

Sorts: Number, Person Functions: Phoned

(add-sort Person)

Sorts: Number, Person Functions: Owner, Phoned

(add-function Owner)

Sorts: Person, Number Functions: Owner, Phoned, Called

(add-function Called
  (iff (Phoned x y)
       (Called (Owner x) (Owner y))))

Sorts: Person, Number Functions: Owner, Called

(remove-function Phoned)

Sorts: Person, Number Functions: Called

(remove-function Owner)

A

Sorts: Person Functions: Called

(remove-function Owner)

Fig. 2. Phone company C is related to A.



While no individual link in Figure 2 is particularly complicated, the addition
of the axiomatically defined Owner deserves special note. Owner(x) denotes the
person who owns a phone number x. Owner is present in neither A nor C, but
its use in relating them does seem clear: Owner functions as a sort of semantic
placeholder. Without an interpretation of Owner, information exchange would
not be possible; there would be information missing. However, the use of trans-
lation graphs has allowed us to capture what is needed to exchange information
meaningfully.

Another possibility is that Owner may stand for a non-logical function. For in-
stance, in the process of exchanging information, occurrences of Owner(x) might
be replaced with the results of a database lookup or some procedural transfor-
mation (e.g., if phone numbers were a function of the characters comprising a
person’s name).

In this example, however, we integrate the database of a reverse phone num-
ber lookup system, D. In this case, the information that D provides is not phone
records, but pairs of phone numbers and their owners’ names. D records that
Owns(x, y) when x, a person, owns the phone number y. The integration, shown
in Figure 3, is straightforward.

C

Sorts: Number Functions: Phoned

Sorts: Number, Person Functions: Phoned

(add-sort Person)

Sorts: Number, Person Functions: Owner, Phoned

(add-function Owner)

Sorts: Person, Number Functions: Owner, Phoned, Called

(add-function Called
  (iff (Phoned x y)
       (Called (Owner x) (Owner y))))

D

Sorts: Number, Person Functions: Owns

Sorts: Number, Person Functions: Owns, Owner

(add-function Owner
  (iff (= x (Owner y))

    (Owns x y))))

Sorts: Number, Person Functions: Owner

(remove-function Owns)

(add-function Phoned)

Sorts: Person, Number Functions: Owner, Called

(remove-function Phoned)

Sorts: Person, Number Functions: Called

(remove-function Owner)

A

Sorts: Person Functions: Called

(remove-function Owner)

Fig. 3. The information in D is made available to A and C.

Having connected A with B, and then A, C, and D, enough work has been
done to yield the translation graph shown in Figure 4. The graph can be used to
describe the relationships between the ontologies, and the axiomatic relationships
needed to answer queries about the contents of the four knowledge bases can be
automatically extracted from it.



C

Sorts: Number Functions: Phoned

Sorts: Number, Person Functions: Phoned

(add-sort Person)

Sorts: Number, Person Functions: Owner, Phoned

(add-function Owner)

Sorts: Person, Number Functions: Owner, Phoned, Called

(add-function Called
  (iff (Phoned x y)
       (Called (Owner x) (Owner y))))

D

Sorts: Number, Person Functions: Owns

Sorts: Number, Person Functions: Owns, Owner

(add-function Owner
  (iff (= x (Owner y))

    (Owns x y))))

Sorts: Number, Person Functions: Owner

(remove-function Owns)

(add-function Phoned)

Sorts: Person, Number Functions: Owner, Called

(remove-function Phoned)

Sorts: Person, Number Functions: Called

(remove-function Owner)

A

Sorts: Person Functions: Called

(remove-function Owner)

Sorts: Person Functions: CalledBy, Called

(remove-functor CalledBy)

B

Sorts: Person Functions: CalledBy

(add-functor Called
  (iff (Called   x y)
       (CalledBy y x)

Fig. 4. The final translation graph of the relationships between the systems.

Remarks. In such a small example, the overall structure of the translation was
not given much thought. In real systems, however, engineers must consider the
implications of their translation structures. For example, in some situations, an
interlingua and intertheory may be preferred, or in some cases it may not be
appropriate or feasible [26,27]. However, we present translation graphs with-
out expressing preference among these possible architectures; translation graphs
general enough to be applied in an architecture-agnostic manner.

With the translation graph as given, it would be possible to run automated
reasoners directly on the union of the knowledge bases and all the axioms ex-
tracted from the edges of the graph. Of course, intractability and undecidabil-
ity make this a tricky technique, but there is an interesting parallel to Green’s
method. Green’s method extracts plans that achieve particular goals from proofs
that such plans exist [28]; with the naive method above, interoperability and
translation are achieved as a side effect of automated theorem proving.

8 Conclusion and Future Work

Automaticity. The ultimate dream of this sort of R&D is full automaticity. Fol-
lowing a divide and conquer approach, translation graphs allow for the automatic
production of bridging axioms. So, if translation graphs could be automatically
produced, the dream would be reality. We are investigating the application of
automatic programming [29] toward this goal. More immediately, some of the
approaches in automated schema matching could be applied.



Sophisticated Ontology Representation. We built translation graphs with the
signatures of many-sorted logic as nodes, for flexibility and convenience of ex-
pression, though such graphs lack some desirable features such as subsorting, sort
hierarchies, and a standard language for describing the signatures themselves.
There has been a great deal of research in what kind of reasoning [30] must
be performed over ontologies [31], and there are many languages, such as RDF,
DAML, and OWL, designed for the purpose of ontology description. Building
translation graphs from ontologies represented in these languages would allow
us to work with many ontologies already constructed and in use today.

Categorizing Axiomatic Definitions. From certain types of axiomatic definitions
we can extract rewriting rules (inline translations); indeed, to make the trans-
lation graph approach scale well, optimizations such as inline translations are
almost certainly necessary. We believe more sophisticated rewriting rules and
other types of procedures can be developed by examining paths in a translation
graph, and will be pursuing this line of work.

Acknowledgements. With much gratitude, we acknowledge the financial sup-
port provided by the Disruptive Technology Office (DTO), contract # N61339-
06-C-0128 to RPI, A-SpaceX program.
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