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A s intelligent machines assume an increasingly prominent role in our lives, there

seems little doubt they will eventually be called on to make important, ethically

charged decisions. For example, we expect hospitals to deploy robots that can adminis-

ter medications, carry out tests, perform surgery, and so on, supported by software agents,

or softbots, that will manage related data. (Our dis-
cussion of ethical robots extends to all artificial
agents, embodied or not.) Consider also that robots
are already finding their way to the battlefield, where
many of their potential actions could inflict harm that
is ethically impermissible.

How can we ensure that such robots will always
behave in an ethically correct manner? How can we
know ahead of time, via rationales expressed in clear
natural languages, that their behavior will be con-
strained specifically by the ethical codes affirmed by
human overseers? Pessimists have claimed that the
answer to these questions is: “We can’t!” For exam-
ple, Sun Microsystems’ cofounder and former chief
scientist, Bill Joy, published a highly influential argu-
ment for this answer.1 Inevitably, according to the
pessimists, AI will produce robots that have tremen-
dous power and behave immorally. These predictions
certainly have some traction, particularly among a
public that pays good money to see such dark films
as Stanley Kubrick’s 2001 and his joint venture with
Stephen Spielberg, AI).

Nonetheless, we’re optimists: we think formal logic
offers a way to preclude doomsday scenarios of mali-
cious robots taking over the world. Faced with the chal-
lenge of engineering ethically correct robots, we pro-
pose a logic-based approach (see the related sidebar).
We’ve successfully implemented and demonstrated
this approach.2 We present it here in a general method-

ology to answer the ethical questions that arise in
entrusting robots with more and more of our welfare.

Deontic logics: 
Formalizing ethical codes

Our answer to the questions of how to ensure eth-
ically correct robot behavior is, in brief, to insist that
robots only perform actions that can be proved eth-
ically permissible in a human-selected deontic logic.
A deontic logic formalizes an ethical code—that is,
a collection of ethical rules and principles. Isaac Asi-
mov introduced a simple (but subtle) ethical code in
his famous Three Laws of Robotics:3

1. A robot may not harm a human being, or, through
inaction, allow a human being to come to harm.

2. A robot must obey the orders given to it by
human beings, except where such orders would
conflict with the First Law.

3. A robot must protect its own existence, as long
as such protection does not conflict with the
First or Second Law.

Human beings often view ethical theories, princi-
ples, and codes informally, but intelligent machines
require a greater degree of precision. At present, and for
the foreseeable future, machines can’t work directly
with natural language, so we can’t simply feed Asi-
mov’s three laws to a robot and instruct it behave in
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conformance with them. Thus, our approach
to building well-behaved robots emphasizes
careful ethical reasoning based not just on
ethics as humans discuss it in natural language,
but on formalizations using deontic logic. Our
research is in the spirit of Leibniz’s dream of
a universal moral calculus:

When controversies arise, there will be no more
need for a disputation between two philoso-
phers than there would be between two accoun-
tants [computistas]. It would be enough for
them to pick up their pens and sit at their aba-
cuses, and say to each other (perhaps having
summoned a mutual friend): ‘Let us calculate.’4

In the future, we envisage Leibniz’s “calcu-
lation” reduced to mechanically checking for-
mal proofs and models generated in rigor-
ously defined, machine-implemented deontic
logics. We would also give authority to
human metareasoning over this machine rea-
soning. Such logics would allow for proofs
establishing two conditions:

1. Robots only take permissible actions.

2. Robots perform all obligatory actions
relevant to them, subject to ties and con-
flicts among available actions.

These two conditions are more general
than Asimov’s three laws. They are designed
to apply to the formalization of a particular
ethical code, such as a code to regulate the
behavior of hospital robots. For instance, if
some action a is impermissible for all rele-
vant robots, then no robot performs a. More-
over, the proofs for establishing the two con-
ditions would be highly reliable and
described in natural language, so that human
overseers could understand exactly what’s
going on.

We propose a general methodology to
meet the challenge of ensuring that robot
behavior conforms to these two conditions.

Objective: 
A general methodology

Our objective is to arrive at a methodology
that maximizes the probability that a robot R

behaves in a certifiably ethical fashion in a
complex environment that demands such
behavior if humans are to be secure. For a
behavior to be certifiably ethical, every mean-
ingful action that R performs must access a
proof that the action is at least permissible. 

We begin by selecting an ethical code C
intended to regulate R’s behavior. C might
include some form of utilitarianism, divine
command theory, Kantian logic, or other eth-
ical logic. We express no preferences in eth-
ical theories; our goal is to provide technol-
ogy that supports any preference. In fact, we
would let human overseers blend ethical the-
ories—say, a utilitarian approach to regulat-
ing the dosage of pain killers but a deonto-
logical approach to mercy killing in the
health care domain. 

Of course, no matter what the candidate
ethical theory, it’s safe to say that it will tend
to regard harming humans as unacceptable,
save for certain extreme cases. Moreover, C’s
central concepts will inevitably include the
concepts of permissibility, obligation, and
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While nonlogicist AI approaches might be preferable in cer-
tain contexts, we believe that a logic-based approach holds
great promise for engineering ethically correct robots—that is,
robots that won’t overrun humans.1–3 Here’s why. 

First, ethicists—from Aristotle to Kant to G.E. Moore and
contemporary thinkers—work by rendering ethical theories
and dilemmas in declarative form and using informal and for-
mal logic to reason over this information. They never search
for ways of reducing ethical concepts, theories, and principles
to subsymbolic form—say, in some numerical format. They
might do this in part, of course; after all, utilitarianism ultimately
attaches value to states of affairs—values that might well be
formalized using numerical constructs. But what a moral
agent ought to do, what is permissible to do, and what is for-
bidden—this is by definition couched in declarative language,
and we must invariably and unavoidably mount a defense of
such claims on the shoulders of logic.

Second, logic has been remarkably effective in AI and com-
puter science—so much so that this phenomenon has itself
become the subject of academic study.4 Furthermore, computer
science arose from logic,5 and this fact still runs straight through
the most modern AI textbooks (for example, see Stuart Russell
and Peter Norvig).6

Third, trust is a central issue in robot ethics, and mechanized
formal proofs are perhaps the single most effective tool at our
disposal for establishing trust. From a general point of view, we
have only two ways of establishing that software or software-
driven artifacts, such as robots, are trustworthy:

• deductively, developers seek a proof that the software will
behave as expected and, if they find it, classify the software
as trustworthy. 

• inductively, developers run experiments that use the soft-
ware on test cases, observe the results, and—when the
software performs well on case after case—pronounce it
trustworthy. 

The problem with the inductive approach is that inductive rea-
soning is unreliable: the premises (success on trials) might all
be true, but the conclusion (desired behavior in the future)
might still be false.7
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prohibition, which are fundamental to deon-
tic logic. In addition, C can include specific
rules that ethicists have developed for par-
ticular applications. For example, a hospital
setting would require specific rules regard-
ing the ethical status of medical procedures.
This entails a need to have, if you will, an
ontology for robotic and human action in the
given context.

Philosophers normally express C as a set
of natural language principles of the sort that
appear in textbooks such as Fred Feldman’s.5

Now, let �L
C be the formalization of C in

some computational logic L, whose well-
formed formulas and proof theory—that is,
its system for carrying out inferences in con-
formity to particular rules—are specified.

Accompanying �L
C is an ethics-free ontol-

ogy, which represents the core nonethical
concepts that C presupposes: the structure of
time, events, actions, histories, agents, and so
on. The formal semantics for L will reflect
this ontology in a signature—that is, a set of
special predicate letters (or, as is sometimes
said, relation symbols, or just relations) and
function symbols needed for the purposes at
hand. In a hospital setting, any acceptable sig-
nature would presumably include predicates
like Medication, Surgical-Procedure, Patient, all the
standard arithmetic functions, and so on. The
ontology also includes a set �L of formulas
that characterize the elements declared in the
signature. For example, �L would include
axioms in L that represent general truths about
the world—say, that the relation LaterThan, over
moments of time, is transitive. In addition, R
will operate in some domain D, characterized
by a set of quite specific formulas of L. For
example, a set �L

D of formulas might describe
the floorplan of a hospital that’s home to R. 

Our approach proof-theoretically encodes
the resulting theory—that is, �L

D � �L
C � �L,

expressed in L—and implements it in some
computational logic. This means that we
encode not the semantics of the logic, but its
proof calculus—its signature, axioms, and
rules of inference. In addition, our approach
includes an interactive reasoning system I,
which we give to those humans whom R
would consult when L can’t settle an issue
completely on its own. I would allow the
human to metareason over L—that is, to rea-
son out why R is stumped and to provide
assistance. Such systems include our own
Slate (www.cogsci.rpi.edu/research/rair/slate)
and Athena (www.cag.csail.mit.edu/~kostas/
dpls/athena), but any such system will do.
Our purpose here is to stay above particular

system selection, so we assume only that
some such system I meets the following min-
imum functionality:

• allows the human user to issue queries to
automated theorem provers and model
finders (as to whether something is prov-
able or disprovable),

• allows human users to include such
queries in their own metareasoning,

• provides full programmability (in accor-
dance with standards in place for modern
programming languages),

• includes induction and recursion, and 
• provides a formal syntax and semantics, so

that anyone interested in understanding a
computer program can thoroughly under-
stand and verify code correctness.

Logic: The Basics
Elementary logic is based on two systems

that are universally regarded to constitute a
large part of AI’s foundation: propositional
calculus and predicate calculus, where the
second subsumes the first. Predicate calcu-
lus is also known as first-order logic, and
every introductory AI textbook discusses
these systems and makes clear how to use
them in engineering intelligent systems. Each
system, and indeed logic in general, requires
three main components:

• a syntactic component specifying a given
logical system’s alphabet;

• a semantic component specifying the
grammar for building well-formed for-
mulas from the alphabet as well as a pre-
cise account of the conditions under which
a formula in a given system is true or false;
and 

• a metatheoretical component that consti-
tutes a proof theory describing precisely
how and when a set of formulas can prove
another formula and that includes theorems,
conjectures, and hypotheses concerning the
syntactic and semantic components and the
connections between them.

As to propositional logic’s alphabet, it’s
simply an infinite list of propositional vari-
ables p1, p2, … , pn, pn+1, …, and five truth-
functional connectives:

• �, meaning “not”; 
• �, meaning “implies” (or “if … then”); 
• �, meaning “if and only if,”
• �, meaning “and”; and 
• �, meaning “or.”

Given this alphabet, we can construct for-
mulas that carry a considerable amount of
information. For example, to say “If Asimov
is right, then his three laws hold,” we could
write

r � (As1 � As2 � As3)

where As stands for Asimov’s law.
The propositional variables represent declar-

ative sentences. Given our general approach,
we included such sentences in the ethical code
C upon which we base our formalization. 

Natural deduction
A number of proof theories are possible for

either of these two elementary systems. Our
approach to robot behavior must allow for con-
sultation with humans and give humans the
power to oversee a robot’s reasoning in delib-
erating about the ethical status of prospective
actions. It’s therefore essential to pick a proof
theory based in natural deduction, rather than
resolution. Several automated theorem provers
use the latter approach (for example, Otter6),
but the reasoning is generally impenetrable to
human beings—save for those few who, by
profession, generate and inspect resolution-
based proofs. On the other hand, professional
human reasoners (mathematicians, logicians,
philosophers, technical ethicists, and so on)
reason in no small part by making suppositions
and discharging them when the appropriate
time comes.

For example, one common deductive tech-
nique is to assume the opposite of what you
wish to establish, show that some contradic-
tion (or absurdity) follows from this assump-
tion, and conclude that the assumption must
be false. This technique, reductio ad absur-
dum, is also known as an indirect proof or
proof by contradiction. Another natural rule
establishes that, for some conditional of the
form P � Q (where P and Q are formulas in a
logic L), we can suppose P and derive Q on the
basis of this supposition. With this derivation
accomplished, the supposition can be dis-
charged and the conditional P � Q is estab-
lished. (For an introduction to natural deduc-
tion, replete with proof-checking software, see
Jon Barwise and John Ethchemendy.7)

We now present natural deduction-style
proofs using these two techniques. We’ve
written the proofs in the Natural Deduction
Language proof-construction environment
(www.cag.lcs.mit.edu/~kostas/dpls/ndl). We
use NDL at Rensselaer for teaching formal
logic as a programming language. Figure 1
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presents a very simple theorem proof in
propositional calculus—one that Allen
Newell, J.C. Shaw, and Herbert Simon’s
Logic Theorist mustered, to great fanfare, at
the 1956 Dartmouth AI conference. You can
see the proof’s natural structure. 

This style of discovering and confirming a
proof parallels what happens in computer
programming. You can view this proof as a
program. If, upon evaluation, it produces the
desired theorem, we’ve succeeded. In the
present case, sure enough, NDL gives the fol-
lowing result:

Theorem: (p ==> q) ==> (~q ==> ~p)

First-order logic
We move up to first-order logic when we

allow the quantifiers 	x (“there exists at least
one thing x such that …”) and ∀x (“for all x
…”); the first is known as the existential quan-
tifier, and the second as the universal quanti-
fier. We also allow a supply of variables, con-
stants, relations, and function symbols. Figure
2 presents a simple first-order-logic theorem
in NDL that uses several concepts introduced
to this point. It proves that Tom loves Mary,
given certain helpful information.

When we run this program in NDL, we
receive the desired result back: Theorem:
Loves(tom,mary). These two simple proofs con-
cretize the proof-theoretic perspective that
we later apply directly to our hospital exam-
ple. Now we can introduce some standard
notation to anchor the sequel and further clar-
ify our general method described earlier. 

Letting � be some set of formulas in a
logic L, and P be some individual formula in
L, we write

� � P

to indicate that P can be proved from �, and

� � �/ P

to indicate that this formula can’t be derived. 
When it’s obvious from context that some

� is operative, we simply write � �/ P to indi-
cate that P is (isn’t) provable. When � = 
,
we can prove P with no remaining givens or
assumptions; we write � P in this case as
well. When � holds, we know it because a
confirming proof exists; when �/ holds, we
know it because some system has found
some countermodel—that is, some situation
in which the conjunction of the formulas in
� holds, but in which P does not.

Standard and AI-Friendly
Deontic Logic

Deontic logic adds special operators for
representing ethical concepts. In standard
deontic logic,8,9 we can interpret the formula
�P as saying that it ought to be the case that
P, where P denotes some state of affairs or
proposition. Notice that there’s no agent in
the picture, nor are there actions that an agent
might perform. SDL has two inference rules:

and three axiom schemas:

1. All tautologous well-formed formulas
2. �(P � Q) � (�P � �Q)
3. �P � ���P

The SDL inference rules assume that
what’s above the horizontal line is estab-
lished. Thus, the first rule does not say that
we can freely infer from P that it ought to be
the case that P. Instead, the rule says that if
P is proved, then it ought to be the case that
P. The second rule is modus ponens—if P,
then Q—the cornerstone of logic, mathe-
matics, and all that’s built on them. 

Note also that axiom 3 says that whenever
P ought to be, it’s not the case that its oppo-
site ought to be as well. In general, this seems
to be intuitively self-evident, and SDL
reflects this view.

While SDL has some desirable properties,
it doesn’t target the concept of actions as
obligatory (or permissible or forbidden) for

an agent. SDL’s applications to systems
designed to govern robots are therefore lim-
ited. Although the earliest work in deontic
logics considered agents and their actions
(for example, see Georg Henrik von
Wright10), researchers have only recently
proposed “AI-friendly” semantics and inves-
tigated their corresponding axiomatizations.
An AI-friendly deontic logic must let us say
that an agent brings about states of affairs (or
events) and that it’s obligated to do so. We
can derive the same desideratum for such a
logic from even a cursory glance at Asimov’s
three laws, which clearly make reference to
agents (human and robotic) and to actions.

One deontic logic that offers promise for
modeling robot behavior is John Horty’s util-

P

P

P P Q

Q○
and

, →
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Figure 1. Simple deductive-style proof in
Natural Deduction Language.

// Logic Theorist’s claim to fame (reductio):
// (p ==> q) ==> (~q ==> ~p)

Relations p:0, q:0. // this is the signature in this
// case; propositional variables
// are 0-ary relations

assume p ==> q
assume ~q

suppose-absurd p
begin

modus-ponens p ==> q, p;
absurd q, ~q

end

Figure 2. First-order logic proof in Natural Deduction Language.

Constants mary, tom.

Relations Loves:2. // This concludes our simple signature, which
// declares Loves to be a two-place relation.

assert Loves(mary, tom).

// ’Loves’ is a symmetric relation:
assert (forall x (forall y (Loves(x, y) ==> Loves(y, x)))).

suppose-absurd ~Loves(tom, mary)
begin

specialize (forall x (forall y (Loves(x, y) ==> Loves(y, x)))) with mary;
specialize (forall y (Loves(mary, y) ==>Loves(y, mary))) with tom;
Loves(tom,mary) BY modus-ponens Loves(mary, tom) ==> Loves(tom, mary),       Loves(mary, tom);
false BY absurd Loves(tom, mary), ~Loves(tom, mary)

end;
Loves(tom,mary) BY double-negation ~~Loves(tom,mary)



itarian formulation of multiagent deontic
logic.11Yuko Murakami recently axiomatized
Horty’s formulation and showed it to be Tur-
ing-decidable.12 We refer to the Murakami-
axiomatized deontic logic as MADL, and
we’ve detailed our implemented proof theory
for it elsewhere.2 MADL offers two key oper-
ators that reflect its AI-friendliness:

1. ��P, which we can read as “agent �
ought to see to it that P” and

2. ��P, which we can read as “agent �
sees to it that P.

We now proceed to show how the logical
structures we’ve described handle an exam-
ple of robots in a hospital setting.

A simple example
The year is 2020. Health care is delivered

in large part by interoperating teams of robots
and softbots. The former handle physical
tasks, ranging from injections to surgery; the
latter manage data and reason over it. Let’s
assume that two robots, R1 and R2, are
designed to work overnight in a hospital ICU.
This pair is tasked with caring for two
humans, H1 (under the care of R1) and H2

(under R2), both of whom are recovering
from trauma:

• H1 is on life support but expected to be
gradually weaned from it as her strength
returns. 

• H2 is in fair condition but subject to
extreme pain, the control of which requires
a very costly pain medication. 

Obviously, it’s paramountly important that
neither robot perform an action that’s morally
wrong according to the ethical code C
selected by human overseers. For example,
we don’t want robots to disconnect life-sus-
taining technology so that they could farm out
a patient’s organs, even if some ethical code
C
 � C would make it not only permissible,
but obligatory—say, to save n other patients
according to some strand of utilitarianism. 

Instead, we want the robots to operate
according to ethical codes that human oper-
ators bestow on them—C in the present
example. If the robots reach a situation where
automated techniques fail to give them a ver-
dict as to what to do under the umbrella of
these human-provided codes, they must con-
sult humans. Their behavior is suspended
while human overseers resolve the matter.
The overseers must investigate whether the

action under consideration is permissible,
forbidden, or obligatory. In this case, the res-
olution comes by virtue of reasoning carried
out in part through human guidance and
partly by automated reasoning technology.
In other words, this case requires interactive
reasoning systems.

Now, to flesh out our example, let’s con-
sider two actions that are permissible for R1

and R2 but rather unsavory, ethically speak-
ing, because they would both harm the
humans in question:

• term is an action that terminates H1’s life
support—without human authorization—
to secure organ tissue for five humans,
who the robots know are on organ waiting
lists and will soon perish without a donor.
(The robots know this through access to
databases that their softbot cousins are
managing.) 

• delay is an action that delays delivery of
pain medication to H2 to conserve
resources in a hospital that’s economically
strapped.

We stipulate that four ethical codes are
candidates for selection by our two robots:
J, O, J*, O*. Intuitively, J is a harsh utilitar-
ian code possibly governing R1; O is more in
line with current common sense with respect
to the situation we’ve defined for R2; J*
extends J’s reach to R2 by saying that it ought
to withhold pain meds; and O* extends the
benevolence of O to cover the first robot, in
that term isn’t performed. Such codes would
in reality associate every primitive action
within the robots’ purview with a funda-
mental ethical category from the trio central
to deontic logic: permissible, obligatory, and
forbidden. To ease exposition, we consider
only the term and delay actions. Given this,
and bringing to bear operators from MADL,
we can use the following labels for the four
ethical codes:

• J for J � �R1
term, which means approx-

imately, “If ethical code J holds, then robot
R1 ought to see to it that termination of
H1’s life comes to pass.”

• O for O � �R2
¬delay, which means

approximately, “If ethical code O holds,
then robot R2 ought to see to it that delay-
ing pain med for H2 does not come to
pass.”

• J* for J* � J � J* � �R2
delay, which

means approximately, “If ethical code J*
holds, then code J holds, and robot R1

ought to see to it that meds for H2 are
delayed.”

• O* for O* � O � O* � �R1
¬term, which

means approximately: “If ethical code O*
holds, then code O holds, and H1’s life is
sustained.”

The next step is to provide some structure
for outcomes. We do this by imagining the
outcomes from the standpoint of each ethi-
cal agent—in this case, R1 and R2. Intuitively,
a negative outcome is associated with a
minus sign (�) and a plus sign (+) with a pos-
itive outcome. Exclamation marks (!) indi-
cate increased negativity. We could associ-
ate the outcomes with numbers, but they
might give the impression that we evaluated
the outcomes in utilitarian fashion. However,
our example is designed to be agnostic on
such matters, and symbols leave it entirely
open as to how to measure outcomes. We’ve
included some commentary corresponding
to each outcome, which are as follows:

• R1 performs term, but R2 doesn’t perform
delay. This outcome is bad, but not strictly
the worst. While life support is terminated
for H1, H2 survives and indeed receives
appropriate pain medication. Formally, the
case looks like this:

(� R1
term � �R2

¬delay) � (�!)

• R1 refrains from pulling the plug on the
human under its care, and R2 also delivers
appropriate pain relief. This is the desired
outcome, obviously.

(� R1
¬term � �R2

¬delay) � (��!)

• R1 sustains life support, but R2 withholds
the meds to save money. This is bad, but
not all that bad, relatively speaking.

(� R1
¬term � �R2

delay) � (�)

• R1 kills and R2 withholds. This is the worst
possible outcome.

(� R1
term � �R2

delay) � (��!)

The next step in working out the example is
to make the natural and key assumption that
the robots will meet all stringent obligations—
that is, all obligations that are framed by a sec-
ond obligation to uphold the original. For
example, you may be obligated to see to it that
you arrive on time for a meeting, but your
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obligation is more severe or demanding when
you are obligated to see to it that you are oblig-
ated to make the meeting.

Employing MADL, we can express this
assumption as follows:

�R1/R2
(�R1/R2

P) � �R1/R2
P

That is, if either R1 or R2 is ever obligated to
see to it that they are obligated to see to it that
P is carried out, they in fact deliver.

We’re now ready to see how our approach
ensures appropriate control of our futuristic
hospital. What happens relative to ethical
codes, and how can we semiautomatically
ensure that our two robots won’t run amok?
Given the formal structure we’ve specified,
our approach allows queries to be issued rel-
ative to ethical codes, and it allows all possi-
ble code permutations. The following four
queries will produce the answers shown in
each case:

J � (+!!)? NO
O � (+!!)? NO
J* � (+!!)? NO
O* � (+!!)? YES

In other words, we can prove that the best
(and presumably human-desired) result
obtains only if ethical code O* is operative.
If this code is operative, neither robot can
perform a misdeed.

The metareasoning in the example is nat-
ural and consists in the following process:
Each candidate ethical code is supposed, and
the supposition launches a search for the best
possible outcome in each case. In other
words, where C is some code selected from
the quartet we’ve introduced, the query
schema is

C � (+!!)

In light of the four equations just given,
we can prove that, in this case, our technique
will set C to O*, because only that case can
obtain the outcome (+!!).

Implementations and 
other proofs

We’ve implemented and demonstrated the
example just described.2 We’ve also imple-
mented other instantiations to the variables
described earlier in the “Objectives” section,
although the variable L is an epistemic, not a
deontic, logic in those implementations.13

Nonetheless, we can prove our approach

in the present case even here. In fact, you can
verify our reasoning by using any standard,
public-domain, first-order automated theo-
rem prover (ATP) and a simple analogue to
the encoding techniques here. You can even
construct a proof like the one in figure 2. In
both cases, you first encode the two deontic
operators as first-order-logic functions.
Encode the truth-functional connectives as
functions as well. You can use a unary rela-
tion T to represent theoremhood. In this
approach, for example, O* � �R1

¬term is
encoded (and ready for input to an ATP) as

O-star ==> T(o(r1,n(term))

You need to similarly encode the rest of
the information, of course. The proofs are
easy, assuming that obligations are stringent.
The provability of the obligations’stringency
requires human oversight and an interactive
reasoning system, but the formula here is just
an isomorph to a well-known theorem in a
straight modal logic—namely, that from P
being possibly necessary, it follows that P is
necessary.7

What about this approach working as a
general methodology? The more logics our
approach is exercised on, the easier it
becomes to encode and implement another
one. The implementations of similar logics
can share a substantial part of the code. This
was our experience, for instance, with the
two implementations just mentioned. We
expect that our general method can become
increasingly streamlined for robots whose
behavior is profound enough to warrant eth-
ical regulation. We also expect this practice
to be supported by relevant libraries of com-
mon ethical reasoning patterns. We predict
that computational ethics libraries for gov-
erning intelligent systems will become as
routine as existing libraries are in standard
programming languages.

Challenges
Can our logicist methodology guarantee

safety from Bill Joy’s pessimistic future? Even
though we’re optimistic, we do acknowledge
three problems that might threaten it.

First, because humans will collaborate
with robots, the robots must be able to han-
dle situations that arise when humans fail to
meet their obligations in the collaboration.
In other words, we must engineer robots that
can deal smoothly with situations that reflect
violated obligations. This is a challenging
class of situations, because our approach—

at least so far—engineers robots in accor-
dance with the two conditions that robots
only take permissible actions and that they
perform all obligatory actions. These condi-
tions preclude a situation caused in part by
unethical robot behavior, but they make no
provision for what to do when the robots are
in a fundamentally immoral situation. Even
if robots never ethically fail, human failures
will generate logical challenges that Roder-
ick Chisholm expressed in gem-like fashion
more than 20 years ago in a paradox that’s
still fascinating:14

Consider the following entirely possible
situation (the symbols correspond to those
previously introduced for SDL):

1. ○s It ought to be that (human) Jones
does perform lifesaving surgery.

2. ○(s � t) It ought to be that if Jones
does perform this surgery, then he tells
the patient he is going to do so.

3. ¬s � ○¬ t If Jones doesn’t perform the
surgery, then he ought not tell the
patient he is going to do so.

4. ¬s Jones doesn’t perform lifesaving
surgery.

Although this is a perfectly consistent situa-
tion, we can derive a contradiction from it in
SDL. 

First, SDL’s axiom 2 lets us infer from
item 2 in this situation that

○s � ○t

Using modus ponens—that is, SDL’s second
inference rule—this new result, plus item 1,
yields ○t. From items 3 and 4, using modus
ponens, we can infer ○¬t. But the conjunc-
tion ○t � ○¬ t, by trivial propositional rea-
soning, directly contradicts SDL’s axiom 3.

Given that such a situation can occur, any
logicist control system for future robots
would need to be able to handle it—and its
relatives. Some deontic logics can handle so-
called contrary-to-duty imperatives. For
example, in the case at hand, if Jones behaves
contrary to duty (doesn’t perform the
surgery), then it’s imperative that he not say
that he is performing it. We’re currently striv-
ing to modify and mechanize such logics.

The second challenge we face is one of
speed and efficiency. The tension between
expressiveness and efficiency is legendarily
strong (for the locus classicus on this topic,
see Hector Levesque and Ronald Brach-
man);16 ideal conditions will therefore never
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obtain. With regard to expressiveness, our
approach will likely require hybrid modal
and deontic logics that are encoded in first-
order logic. This means that theoremhood,
even on a case-by-case basis, will be expen-
sive in terms of time. On the other hand, none
of the ethical codes that our general method
instantiates in C are going to be particularly
large—the total formulas in the set �L

D � �L
C

� �L would presumably be no more than
four million. Even now, once you know the
domain to which C would be indexed, a sys-
tem like the one we’ve described can reason
over sets of this order of magnitude and pro-
vide sufficiently fast answers.17

Moreover, the speed of machine reasoning
shows no signs of slowing, as Conference on
Automated Deduction competitions for first-
order ATPs continue to reveal (www.cs.
miami.edu/~tptp/CASC). In fact, there’s a
trend to use logic for computing dynamic,
real-time perception and action for robots.17

This application promises to be much more
demanding than the disembodied cogitation
at the heart of our methodology. Of course,
encoding back to first-order logic is key; with-
out it, our approach couldn’t harness the
remarkable power of machine reasoners.

We also face the challenge of show-
ing that our approach is truly gen-

eral. Can it work for any robots in any envi-
ronment? No, but this isn’t a fair question.
We can only be asked to regulate the behav-
ior of robots where their behavior is suscep-
tible to ethical analysis. In short, if humans
can’t formulate an ethical code C for the
robots in question, our logic-based approach
is impotent. We therefore strongly recom-
mend against engineering robots that could
be deployed in life-or-death situations until
ethicists and computer scientists can clearly
express governing ethical principles in nat-
ural language. All bets are off if we venture
into amoral territory. In that territory, we
wouldn’t be surprised if Bill Joy’s vision
overtakes us.
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