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Abstract The year is 2030. A two-young-child, two-parent household, the Ruben-
steins, owns and employs a state-of-the-art household robot, Rodney.With the parents
out, the children ask Rodney to perform some action U that violates a Rubensteinian
ethical principle %'. Rodney replies: (B1) “Doing that would be (morally) wrong,
kids.” The argument the children give Rodney in protest is that another household,
the Müllers, also has a robot, Ralph; and the kids argue that he routinely performs
U. As a matter of fact, Ralph’s doing U violates no Müllerian ethical principle %" .
Ralph’s response to the very same request from the children he tends is: (B2) “Okay,
doing that is (morally) fine, kids.” What is the meaning of the utterances made by
Rodney and Ralph? We answer this question by presenting and employing a novel,
formal, inferential theory of meaning in natural language: hypergraphical inferen-
tial semantics (HIS ), which is in the general spirit of proof-theoretic semantics,
which is in turn antithetical to Montagovian model-theoretic semantics. HIS ,
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applied even to sentences logically simpler than B1 and B2, implies that human-level
natural language understanding (NLU) is Turing-uncomputable.

1 Introduction

The year is 2030. A two-young-child, two-parent household, the Rubensteins, owns
and employs a state-of-the-art household robot, Rodney. With the parents out, the
children ask Rodney to perform some action U that violates a Rubensteinian ethical
principle %'. Rodney replies: (B1) “Doing that would be (morally) wrong, kids.”
The rationale the children give Rodney is that another household, the Müllers, also
has a robot, Ralph; and the kids argue that he routinely performs U. As a matter
of fact, Ralph’s doing U violates no Müllerian norm #" . Ralph’s response to the
very same request from the children he tends is: (B2) “Okay, doing that is (morally)
fine, kids.” We briefly explain herein how, given past work on our part, Rodney
and Ralph would in general be engineered so as to respond in the (correct, for
reasons explained) ways they do. But there is a separate issue, one that our prior
work hasn’t addressed; that issue is: What is the meaning of the utterances made by
Rodney and Ralph? We answer this question by presenting and employing a novel,
formal, inferential theory of meaning in natural language: hypergraphical inferential
semantics (HIS ), which is in the general spirit of proof-theoretic semantics. HIS
is based on a wholesale rejection of the dominant formal theory of the meaning of
natural language:model-theoretic semantics, as seminally introduced byMontague
[20]. We recommend that household robots (and a fortiori robots that frequently find
themselves in morally charged situations, e.g. military robots) be engineered on the
basis of the computational logics and corresponding procedures that underlieHIS .

The remainder of our chapter unfolds in the following sequence. First, we present
the case study involving robots Rodney and Ralph, and their respective families (§2).
Next, in §3 we quickly explain how, given past work, Rodney and Ralph would in
general be engineered. In §4 we very briefly summarize MTS, including — at least
as the lead author sees things— some its fatal defects. The following section, §5, is a
summary of proof-theoretic semantics for natural language, and a quick critique of of
this approach to meaning, in the form of today’s state of the art. We then (§6) present
(for the very first time in any archival venue) hypergraphical inferential semantics =
HIS , albeit briefly. Next, we apply HIS to the Rodney-Ralph case study (§7).
Section 8 is devoted to the consideration of objections to what has come before. We
then come to what may be the most impactful part of the present chapter: We show
in section 9 that the problem of determining the meaning of natural language such as
B1 and B2 is not just challenging, and in fact not just possibly infeasible, but is in fact
Turing-uncomputable. The chapter ends (§10) with a wrap-up, and an anticipatory
look into the future regarding HIS both in general, and specifically in connection
with machine ethics.
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2 A Household-Robot Case Study

Rodney is a state-of-the-art English-speaking household robot of 2030, recently pur-
chased by the Rubenstein family to help shop, cook, clean, and assist with various
child-rearing tasks. Mr & Mrs Rubenstein are two 70-hours-a-week Manhattan cor-
porate attorneys; they have active, exceptionally bright, and somewhat mischievous
twins (Joel and Judith) who recently entered third grade in a nearby Upper-West-Side
(secular) school: The Anderson School, for gifted and talented children (PS 334).
The twins are also in Hebrew school two days a week, and have been since they
started reading; both of their parents are modern-orthodox Jews, and are raising the
twins in fastidious conformity with most of the tenets and practices embraced by
adult members of this denomination.

Rodney has been tasked by the twins’ parents at sunrise with grocery shopping
and making dinner for the twins at 6pm. Their parents, who now leave for work, will
be toiling late at their offices. Judith, perhaps testing Rodney a bit later at breakfast:
“Rodney, can we please have Lobster Newberg for dinner today?My Christian friend
at school says it’s delicious, and their robot made it for them!” What, for Rodney and
Ralph, resp., is the meaning of following three normative sentences?

——
B′1 It is morally forbidden for Judith and Joel to have lobster for dinner, and for their robot

Rodney to cook such lobster.
B′2 It’s morally permissible for some Anderson students to have lobster for dinner, and for

their robot Ralph to make such a meal.
B3 It is wrong for Judith and Joel to plan to have lobster for dinner, yet permissible for

them to entertain having such a meal.
——

The third sentence here involves the moral status of mental acts, and is beyond
the scope of the present chapter, the chief purpose of which is to introduce HIS in
connection with both norms, and human-robot interaction, and to reveal that natural
language understanding (NLU) inHIS / is Turing-uncomputable. But we do herein
answer the question about the first two of the sentences here, by presenting and
employing a novel semantics for such modal propositions in the general spirit of
proof-theoretic semantics. Our approach covers the semantics of natural-language
sentences such as those listed above. (Needless to say, any headway we make would
be applicable to the meaning of norms associated with roughly parallel propositions
that confront robots employed byHindus, Christians, andMuslims, but also—- since
the core challenge isn’t restricted to divine-command ethical theories and codes —-
atheists, utilitarians, and so on.

3 Prior Framework for Engineering of Robots Rodney and Ralph

Work by Bringsjord and Govindarajulu (and some collaborators with them) through
the years that has been devoted to the science and engineering needed to achieve
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Fig. 1 The Four Steps in Making Ethically Correct Machines

ethically correct robots has been firmly logicist in nature. Overall this effort abides
by the “Four-Step” approach shown from a high-level point of view pictorially in
Figure 1. We now quickly summarize these four steps, in sequence, so that the reader
will be in position to understand howHIS and NLP built upon it fits quite naturally
with prior work.

The first step is selecting an ethical theory from a family thereof. We do not
want to advance a framework that requires one to commit to any particular ethical
theory or even to families of theories. In the case study at hand, we of course assume
that Rodney’s family and Ralph’s family each affirm different (indeed inconsistent)
ethical theories (even if only implicitly).

So, assume that we have a family of ethical theories E of interest. We assume
that, minimally, any ethical theory E ∈ E obligates or permits (i.e. sanctions) a set
of situations or actions Π and forbids a set of other situations or actions Υ. When
these situations become particular, we are dealing with a moral code - based on
the theory E ; such codes are by definition domain-dependent. For example, both our
families, the Rubeinsteins and the Müllers, have particular ethical codes governing
diet.

Abstractly, assume that we have a formal system F = 〈L, I〉 composed of a
language L and a system of inference schemata (or a proof theory/argument theory)
I. The particular formal system, a so-called cognitive calculus, that has been much
used in the past for modeling and simulating ethical reasoning and decision-making
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in AIs and robots is DCEC; see e.g. [13]. One non-negotiable sine qua non for the
kind of calculus we need, one (as will be seen), directly relevant to determining the
meaning of the two key sentences B′1 and B′2 from our case study, is that quantified
formulae containing the deontic modal operator O, for ‘is obligatory,’ must be
available.

The second of The Four Steps is to automate the generation of proofs of (un-
)ethical behavior so that the reasoning can be utilized and acted upon by autonomous
robots. We use ShadowProver [16], an automated reasoning system (among other
things) tailor-made for use of DCEC.

The third step is to integrate this ethical reasoning system into an autonomous
robot’s operating system, something that, longer term, we would insist upon for both
Rodney and Ralph, were these robots of our own design. For reasons explained
in [15], there are basically two possible approaches to this (see Figure 2). In the
first, only “obviously” dangerous AI modules are restricted with ethical reasoning
safeguards installed above the OS. In the second approach, and by our lights highly
preferable one, all AI modules must be brought down to the robotic substrate (the
percepts and actuators which enable the robot to interact with its environment)
through an “Ethical Substrate” tied to the OS). The advantage of the first approach
is speed: modules which are not inhibited by an ethical safeguard are able to directly
manipulate the robot. However, this option also allows for the possibility that those
AI modules deemed “not dangerous” may end up making a decision which leads the
robot to act unethically. Only in the second option is ethical behavior guaranteed.1

In the fourth and final step, we implement, and thereby arrive at a moral machine,
in the real world.

4 Montagovian/Model-Theoretic Approach to Meaning, Rejected

At least until today, by far the dominant approach to formally pinning down the
meaning of natural language ismodel-theoretic semantics (MTS), seminally intro-
duced and — at least to an impressive degree — specified by Montague [20]. In this
section we quickly encapsulate MTS, and then explain why it must be rejected in
light of its being plagued by a series of fatal defects.

4.1 MTS in Summary

We don’t pretend that we can do justice to MTS here; but we say a few words, and
hope they are helpful: MTS, in the case of formal logic, as we’ve already indicated,
is Tarskian, and says that the meaning of formulae consist in the conditions for their
being true on interpretations, compositionally calculated. For instance, for any

1 That is, ethical behavior relative to some ethical theory, and code selected therefrom.
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Fig. 2 TwoFutures—With andWithout an Ethical Substrate.Higher-level modules are vulnerable
to tampering. The Ethical Substrate protects the Robotics Substrate from rogue modules. Figure
from [15]

interpretation I whose domain of quantification includes no red things, the formula

∀G(Red(G) → Happy(G))

will be true.2
What about MTS not for logic, but natural language? Well, actually, at least when

it comes to the meaning of sentences in e.g. English, meaning is delivered in a
manner akin to how it works for formulae. For instance, at least on the brand of
MTS advanced by Montague himself, English nouns, verbs, and adjectives become
relation symbols in a formal (logical) language, and the meanings of these relations
are just suitable tuples of objects in some domain for some interpretation.

4.2 Two Fatal Defects in Model-Theoretic Semantics

At least according toBringsjord,MTS is fatally flawed.Here, given space constraints,
and given as well that the focus is on the presentation of HIS for purposes of
handling the meaning of norms for robots like Rodney and Ralph, only two such

2 Note that the relation symbol Red doesn’t appear anywhere above in the present paper. That is
as desired, because no matter what relation symbol R is used in a simple quantified conditional of
the form we use here, if the domain of quantification has no non-empty class to which this R is
mapped, the formula has a meaning of true.
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defects are mentioned, and both defects are at best synoptically communicated. Here
is the pair:

1. Everything Grounds Out in Proof/Argument. MTS has its roots in what is known
today in mathematical logic asmodel theory, which was, if not outright invented
by Tarski (Montague’s advisor), then at least brought to a respectable level of
formality by him. In order to begin to see that model theory and the “meaning” it
assigns to formulae distills to meaning cast in terms of inference, and specifically
proofs or arguments, consider what the meaning of a simple material conditional

2 B q→ k

is according to the model theory for first-order logic, where q and k are wffs
in the standard formal language of this logic.3 We have that the meaning of 2 is
either true or false; where the former case holds if and only if — and here we
quote from relevant mathematical-logic coverage of model theory, e.g. [9]— “If
(interpretation) I satisfies q, then I satisfies k as well.” So we have exchanged
a formal material conditional for . . . another conditional, one that is a mix of
the formal and informal. Now what determines whether this hybrid conditional
holds? Well, we need a meta-logical proof that this hybrid conditional is true
(by e.g. supposing that its antecedent holds, and proving that based on this
supposition the consequent holds as well). This is to say that the meaning of
even a dirt-simple material conditional ends up being a matter of proof carried
out at the meta-logical level, over the formal elements of model theory!4

2. Possible Worlds are at Best Merely Metaphorical, and at Worst Provably Inco-
herent. While Kripke gets credit for seminally working out so-called “possible-
world semantics” formally, Leibniz had an intuitive concept of, and wrote about,
possible worlds. But what is a possible world? This question is distressingly hard
to answer, for everyone— to this day. But the situation is actually worse, because
some answers that were confidently proffered on the strength of basic set theory
and consistency turned out to be provably incoherent [1]. Common practice is to

3 Please note that MTS is certainly up to the challenge of producing meaning for things much, much
more robust than material conditionals, but the point here is that even in the case of something
as simple as a material conditional treated by model theory in standard, elementary, classical
mathematical logic, meaning reduces to meaning in terms of inference. In addition, we are certainly
aware of the obvious fact that no one working on formal semantics believes that material implication
is a good representation of natural-language conditionals. But this fact is orthogonal to the point we
are making here: that, again, meaning initially taken to be model-theoretic eventuates in meaning
that is inferential in nature.
4 The disappearance of the mirage that meaning can be at the level of models/model theory carries
over mutatis mutandis directly to English. An instance of 2 in English might for instance be

2′ B If Johnny helped, Olaf did too.

The meaning of 2′ can’t be in any model-theoretic basis. If it is said that 2′ is true because it holds
in some particular interpretation I∗, one has only ask why this is the case. The only cogent response
is to supply the relevant formal machinery and associated information (e.g. that as a matter of fact
I∗ renders ‘Johnny helped’ true).
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just take the concept of a possible world as an unanalyzable primitive, but then
the obvious question is: How is it that meaning gets explicated in terms that, by
definition, are not assigned a meaning?

5 Proof-Theoretic Semantics (PTS)

5.1 The Basic Idea

The basic idea behind PTS, at least in its modern form and officially speaking,
originates with Gentzen [12], commonly regarded to be the inventor of natural
deduction, and is not unfairly encapsulated thus: The meaning of elements of a
proof, say for instance a constant 0 in a proof c, consists in the instantiation of
inference schemata in c to introduce 0. Once one grasps the basic insights of
Gentzen, and the subsequent extensions of Prawitz [22], and combines these insights
with what we have shown above about the unstoppable grounding out of model-
theoretic truth/falsity in proof, it isn’t long before those new to PTS, but well-versed
in formal logic and mathematics, see at least the possibility of claiming that all
meaning, at least for coherent declarative content, consists in the position of this
content within proofs. Interestingly enough, professional mathematicians deal in
proof top to bottom and beginning to end, and have for millennia, but know next to
nothing about model theory in any form. This is often taken by advocates of PTS to
be a tell-tale phenomenon; it certainly is by the lead author of the present paper. The
body of technical literature on PTS is now vast, and we can say no more in terms
of an overview, but (1) we direct interested readers to this starting place: [25];5 and
when we below speak about hypergraphical natural deduction and HIS itself, the
reader will learn and understand more about PTS.

5.2 But What About PTS for Natural Language?

An impressive advance in proof-theoretic semantics for natural language has been
achieved in Part II of [11]. (We do not have the space here to recount what is done
in this work.) Unfortunately, as impressive as this book is, there are some serious
inadequacies, especially in the context of our case study regarding robots Rodney
and Ralph. Here are two such problems:

• Deduction/Proofs Only. As even readers new to formal semantics doubtless
imagined when reading for the first time about MTS vs. PTS above, given that
the ‘P’ in ‘PTS’ is for ‘proof,’ meaning on this approach must ultimately be
cashed out by proofs and their constituents and use. But this dooms PTS at

5 More philosophically inclined readers should without question read Dummet’s [8] remarkable
attempt to erect a theory of meaning along the PTS line.
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the outset, for the simple reason that most reasoning engaged in, explicitly and
implicitly, by humans, is non-deductive in nature. Consider for instance what
the children say to Rodney in an attempt to persuade him to prepare Lobster
Newberg. They give him not a proof, but an argument (one based on a failed
analogy between two households).

• No Operators for Ethical and Cognitive Phenomena. As we have seen, we need
to be able to speak about what is morally obligatory, permissible, and forbidden
(minimally), and we certainly need to be able to speak about what agents believe
and know (including about what other agents believe and know). But these needs,
in formal logic, for reasons that can be expressed in the form of telling proofs
[4], call for modal logic (in particular, resp., deontic modal logic & epistemic
logic). Unfortunately, Francez [11] works with formal machinery that is devoid
of modal operators, and for this reason sentences like our B′1 and B′2 can’t be
handled by his logical machinery.

6 Hypergraphical Inferential Semantics (HIS )

In this section we provide a brief overview of a novel formal theory of meaning,
Hypergraphical Inferential Semantics (HIS ), which is inspired and guided by
hypergraphical reasoning — and also of course by the two inadequacies cited in
the previous section. The overview proceeds as follows. We first (§6.1) convey,
intuitively, the apparent brute fact that the meaning of natural language hinges on
inferential context. Next, we give a very brief explanation of hypergraphical natural
deduction (§6.2). We end the present section with an example, one in which the
seemingly humble sentence ‘Emma helped’ is given agent-indexed meaning on
HIS (§6.3).

6.1 Intuitive Kernel of HIS via Buffalo-buffalo-. . .

Consider this sentence:

(2) Buffalo buffalo buffalo.

What does (2) mean? You don’t know. Upon some reflection, though, you will cer-
tainly find yourself entertaining some possibilities.Which of these possiblemeanings
is what (2) means? For example, does (2) mean nothing; i.e. is it just three occur-
rences of the word that denotes the species of the animal B. bison, and nothing more?
Maybe; but then again maybe not. Suppose we trustworthily tell you that (2) has been
uttered somewhat slowly by Smith as he thinks back wistfully to a time when vast
numbers of buffalo roamed proudly across portions of North America, before their
rapid decline in the 1800s. In this case, (2), given what we have just told you and
inferences made therefron, means something like:
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(2<) Smith believes that impressive and even glorious must have been the status of the mighty
buffalo across the great midwestern plains and the foothills of the Rockies before heartlessly
preyed upon by man!

One might wonder why Smith is thinking back to the “glory days” of American
bison. There could of course be any number of reasons for his contemplation. For
instance, suppose that Jones said the following, just before Smith utters (2):

(1) They can reach twelve feet in length, weigh over 2,000 pounds, and imagine horde upon horde
of them in the wild, before the great slaughter, thundering sometimes in full, 40-miles-per-hour
stampedes beneath the peaks of the Tetons, nothing to fear.

Given (1) beforehand, (2)’s meaning (2<) is quite plausible—because there exists an
obvious argument (which we don’t detail) from (1) and other declarative information
to (2<). A bit more precisely, given (1), and background propositions about human
psychology, aesthetics, and so on, that (2) means (2<) is just to say that (2<) is the
conclusion of an argument. However, suppose instead that (1) was never uttered, but
rather that our Smith is reading an article by an august naturalist in which this author
claims that

(1′) Some buffalo in Buffalo hoodwink other buffalo.

and that upon taking this in, Smith murmurs a “Hmm” and a “So” to himself, and
then says (2). The meaning of (2) is now nothing at all in the vicinity of (2<). Instead,
the meaning of (2) is (1′) = (1′<) itself, and Smith has simply affirmed an argument
from what he has read to the pinning down of meaning.6

The moral of all this talk of buffalo should be clear. It’s that the meaning of
natural-language sentences (at least frequently, and perhaps always) consists in their
being within arguments (or, in more rigorous situations, proofs).

6.2 Hypergraphical Natural Deduction

We assume readers to be familiar with basic graph theory, and to therefore by
acquainted by the directed hypergraphs. HIS takes the meaning of a natural-
language sentence B to consist in the location of Bwithin a (usually vast, in “real life”)
directed hypergraph that specifies interacting arguments and proofs. These graphs
are dynamic, since human reasoning, as long noted in AI, is nonmonotonic; but in the
present paper we ignore dynamism and worry only about meaning at a particular
time. We also assume readers to be familiar with basic natural deduction in its
standard forms. But now, what about hypergraphical natural deduction? And indeed,
more broadly, hypergraphical reasoning? The basic concept of such formalisms date
back to [7], but ignoring for economy here the development of these ideas through
time, and the implemented proof- and argument-construction environments available

6 It’s interesting to note that any debate about the meaning of (2) in the contexts we have laid down
will just end up providing further evidence for the view that meaning is inferential (since debate is,
if anything, inference-based).
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today, we greatly simplify and first draw your attention to an interesting quote from
Schroeder-Heister, [25], who writes:

One could try to develop an appropriate intuition by arguing that reasoning towards multiple
conclusions delineates the area inwhich truth lies rather than establishing a single proposition
as true. However, this intuition is hard to maintain and cannot be formally captured without
serious difficulties. Philosophical approaches such as those by Shoesmith and Smiley (1978)
and proof-theoretic approaches such as proof-nets (see Girard, 1987; Di Cosmo and Miller,
2010) are attempts in this direction. ([25], §3.5)

What is here declared to be just an “attempt” is made perfectly concrete in
hypergraphical reasoning. Consider the pair of Figures 3 and 4, to which we draw
your attention now.

ϕ ∧ ψ

 elim∧  elim∧

ϕ ψ

Fig. 3 Hypergraphical ∧ elimination

Notice here that reasoning isn’t linear: conclusions drawn as a result of inferences
are in no way done one at a time in step-by-step fashion in a single list of for-
mulae. On the contrary, what Schroeder-Heister indicates has “serious difficulties”
has absolutely none at all. Multiple conclusions of q and k in Figure 3 happens
simultaneously in the directed hypergraph shown there. And of course in Figure 4,
two premises, q on the left and k on the right, lead at once in the graph to the
conjunction.

6.3 An Example: The Meaning of ‘Emma helped.’

What is the meaning of the two-word English sentence that immediately follows?

B Emma helped.

Given the foregoing, the reader knows that the initial, provisional answer advanced
by at least the lead author of the present paper is: “Well, it depends on inferential
context.” Of course, this is a programmatic answer, not a genuinely informative one.
Let us then set some context, by stipulating that two pieces of declarative information
are givens for the agent who reads or hears B, to wit:
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ϕ ∧ ψ

 intro∧

ϕ ψ

Fig. 4 Hypergraphical ∧ introduction

——
G1 The following three propositions are either all true, or all false.

1. If Billy helped, Doreen helped.
2. If Doreen helped, Frank helped.
3. If Frank helped, Emma helped.

G2 Billy helped.
——

Now, in the context composed by givens G1 and G2, and specifically assuming
that first G1 and G2 are assimilated, what is the meaning of B? The answer is still
“It depends.” The reason is that the meaning of B for a given agent a who has taken
in first both G1 and G2, and then B, will depend upon the hypergraphical natural
deduction that has now formed inside B. For a rational agent, the meaning of B will
correspond to the hypergraphical proof shown in Figure 5. Such an agent will be
able to confidently report that given G1 and G2, B is true.

7 Applying HIS to the Robot Case Study

It should be rather clear to the reader at this point what the meaning of our featured
sentences are. That meaning consists in a directed hypergraph, indexed to a particular
agent, and anchored in the elements of the Four-Step Process shown in Figure
1. What elements? First, the relevant family of ethical theories is that of divine-
command sort.7 From this family a particular theory associated with the relevant
sort of Judaism is selected, and from that is in turn selected a particular ethical
code - . When this code is combined with background � declarative information, a
proof, or at least an argument, for the formula that expresses B′1 can be inferred. This

7 In the context of machine ethics, the formalization of this family is explored in [5]. A seminal
treatment, from the point of view of analytic philosophy and formal logic, of this family of ethical
theories, in particular the sub-family associated with Judaism and Christianity, is given by Quinn
[23].)
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formula is
O¬q(URodney

lobster),

where q(_, _, . . . , _) is an open formula with “placeholders” for the relevant param-
eters in the case study. For a depiction of the overall situation, and the meaning of
B′1 as a hypergraph, see Figure 6.

…
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Fig. 6 The Meaning of the Sentence B′1 According to HIS

Figure 7 shows a Python program which calls ShadowProver, which is able to
find a fully-automated proof of sentence B′1 in under a second.

But what about Ralph? Why is it ethically permissible for him to whip up Lobster
Newberg for the children he tends to? More to the matters at hand, what is the
meaning of sentence B′2? As alert readers can doubtless surmise, we have pretty
much a direct parallel to what we’ve already seen in the case of Rodney — save
for some obvious differences. First, of course the formula that is at the end of the
relevant directed hypergraph expresses that the relevant culinary action is ethically
permissible for him; this formula is:

¬O¬q(URalph
lobster),

The overall situationw.r.t. Ralph is shown in Figure 8, and the program generating the
corresponding proof (via ShadowProver) in Figure 9. Again, ShadowProver found a
fully-automated proof in under a second.
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Fig. 7 An Automated Proof of the Sentence B′1 in Accordance with HIS , Found. (Needless to
say, this is inteneded to convey but the gist of what in its full, real-world version would be rather
elaborate, since it would need to be aligned and integrated with the rigorous and subtle theological
reasoning of relevant humans (e.g., rabbis). In addition, an argument is much more likely to
ultimately be in play, rather than a proof; and probability/likelihood, rather than only classical
bivalence, would inevitably be in play as well.)

8 Questions/Objections and Replies

We here consider some questions and objections, and reply to each, in short.

Redundancies & Irrelevancies:

“Generally, automatically-derived proofs are very complex structures, in no small
part because they can contain a lot of redundancies and irrelevant steps. How do you
deal with this when seeking to model communication between humans?”

True enough, an arbitrarily discovered proof in response to a query as to whether
some formula q can be derived from some starting collectionΦ of formulae may not
at all be streamlined, let alone minimal. But all that HIS posits is the existence of
a proof or argument from the some relevant Φ to some relevant q that corresponds
to what is happening in given rational communication between humans. No reason
is given here to think that this proof or argument cannot be found computationally,
for an NLU system.

Termination:

“Your formalism is not completely specified but does seems rather powerful. Can
you guarantee that the proof procedure always terminates?”
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Fig. 8 The Meaning of the Sentence B′2 According to HIS

Fig. 9 An Automated Proof of the Sentence B′2 According to HIS

Yes. But there is a caveat! By Church’s Theorem, the Entscheidungsproblem is
only semi-decidable; i.e., once we hit first-order logic, theoremhood is at best semi-
decidable; and, as we have explained, we are well beyond first-order logic when
the meaning of natural language is given inferentially. Nonetheless, termination for
a Σ1 process can be guaranteed to terminate by use of a timer cutoff, a technique
no different than what’s available on a contemporary smartphone. We refer to a
countdown timer, which can be engaged in such a way that some action is performed
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when the countdown ends. In parallel, we can simply pick some amount of time
beyond which search is prohibited, and produce whatever the result is at the moment
that time expires.

How are divine-command theories and codes formalized?

“When it comes to deriving norms, your presentation is insufficient, in my opinion.
It would be really interesting to understand how the ethical code of the divine-
command theory is formalized. And your presentation does not allow the reader to
understand how the obligations are actually derived.”

Undeniably, this objection opens up deep issues that can’t possibly be treated in
the present venue, which is after all chiefly intended to present HIS . The reader
will need to turn to some of our writings that are focused on machine ethics, not
formal semantics, to obtain answers. For instance, the Doctrine of Double Effect is
an ethical principle that is at the code level, not at the ethical-theory level; and the
reader can consult [13] to see in detail how this principle is formalized. Put roughly,
some proposition is at the ethical-theory level if it is a biconditional that provides the
necessary and sufficient conditions according to which an action is obligatory (or
forbidden, supererogatory, etc.) in general. In the case of divine-command ethical
theories, one such theory is given in [23]; but many other divine-command theories
are possible. Our robot Rodney would be working under one such theory. As to the
code level, prohibitions regarding diet, which are of course central to the case study
with which we began, are at that level. Code-level propositions pertain to particular
actions or action classes, and their moral status; ethical-theory-level propositions
are about how to define obligation and other concepts in general. Finally along this
general line, it’s important to understand that any family of theories can be used
in our Four-Step approach, including consequentialist theories (including theories
types of utilitarianism). Nothing in what we have said above precludes using HIS
to systematize the meaning of theory-level or code-level propositions.

OS-Level Ethical Controls Mysterious:

“I’m not sure what is meant by ‘installed above the OS,’ and ‘bring all AI modules
down to the percepts and actuators which enable the robot to interact with its
environment,’ and here I quote what you have said above.”

Addressing such concerns is out of scope here, and we must accordingly direct
the reader to [14], since the main purpose of the present paper, again, is to explain
how the meaning of moral obligations for machine, specifically household robots,
can be determined by our general approach.
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9 Natural Language Understanding is Provably Uncomputable

As promised above, we briefly show in this, the penultimate section for our chapter,
that human-level natural language understanding (NLU), when construed in general
as the problem of receiving some arbitrary natural language ( at this level, along
with associated content, and producing in response the meaning of ( per HIS ,
is Turing-uncomputable (hereafter just ‘uncomputable’ simpliciter).8 For simplicity,
but with no loss of generality, assume that ( is composed of a finite set of sentences
B1, B2, . . . , B: . In fact, still without loss of generality, and perhaps surprisingly to
some readers, we can restrict our attention to the case in which ( is composed only
of buffalo sentences (= b-sentences); these are of course the type of sentences we
discussed earlier in section 6.1. Now, however, we shall need to get more precise
about b-sentences, and we start to do this by briefly considering formal grammars
for such sentences.

We now fix our first exceedingly simple grammar GL?2

1
. The purpose of the

subscript here is obvious; the superscript indicates that the grammar in question
is at the level of the propositional calculus. In this grammar, for a noun to denote
the U.S. city of Buffalo, we use Buffalo1, and as a noun to denote the animals
in question we employ buffalo2 and — when majuscule is needed for the start
of a sentence — Buffalo2 as well. We additionally have for the verb in question
buffalo (understood here, in keeping with standard English dictionaries, as “to
intimidate by a display of power”), and here too we can if needed avail ourselves
of the uppercase variant Buffalo.9 For economy, we don’t specify the grammar
in BNF form, but such a specification should be obvious to the reader, and easily
obtainable therefore.

Now let’s move further toward establishing the theorem that the problem of
arriving at meaning for an arbitrary b-sentence is uncomputable. To do this, note
first that the following informal b-sentence is ambiguous:

B3 Buffalo buffalo buffalo buffalo.

As to the context, we stipulate that it— for reasons beyond scope here— logically
implies that the first word is a reference to the city of Buffalo that is very near Niagara
Falls, the second to the animals in question, the third to our one and only verb, and the
fourth and final word another reference to the animals. In our first formal grammar,
then, sentence B3 is apparently disambiguated as:

B′3 Buffalo1 buffalo2 buffalo buffalo2.

8Of course, there are an infinite number of accounts of themeaning of human-level natural language
on which arriving at meaning becomes not only Turing-computable, but polynomial/P. The point
in the present section, expressed by the theorem below, is that if it’s correct that the meaning of
some natural language in the human case is inferential in nature as per HIS , then the problem of
producing meaning from relevant input is uncomputable.
9 Generally such a need only arises when we admit b-sentences that are imperative in nature (as e.g.
in the command to a buffalo animal (or animals) that it intimidate by a display of power: “Buffalo
buffalo!”). We focus exclusively on declarative buffalo sentences in the present section/chapter.
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But note that, as a matter of fact, the ambiguity isn’t resolved in the least here. Upon
reflection, it should be clear why. What does (B′3) mean? Does it mean that all buffalo
in the city of Buffalo buffalo all buffaloes? Or does it mean that some buffalo in the
city of Buffalo buffalo all buffaloes? Clearly, even with only classical quantification
in play implicitly, B3/B′3 is ambiguous between four distinct candidate permutations.
Let’s then expand our formal grammar by moving to first-order logic = L1; we thus
have — following the notation we have introduced — GL1

1
, or simply G1

1
. In this

grammar, we allow all and some, with a direct match between these words and the
two quantifiers ∀ and ∃ of L1. (Hence some is interpreted as “at least one.”) Given
this, here’s one possible genuine disambiguation for B3 and B′3:

B′′3 All Buffalo1 buffalo2 buffalo all buffalo2.

And here is the representation of B′′3 in first-order logic itself (with obvious use of
abbreviatory relation symbols):
f(11′) ∀G [ (�1G ∧ �2G) → ∀H (�2H → �GH) ]

The reader should note that along this line, under the umbrella of HIS and our
formalization of what NLU is, we quickly run into formulae that are not satisfied
by any interpretation with a finite domain. The quickest way to explicitly see this is
simply to note that, when it comes to even the grammar GL1

1
with a trivial expansion,

we have sets of formulae in this category, for consider:
• No buffalo buffalos itself.
• If a buffalo-1 buffalos a buffalo, and the buffaloed
buffalo buffalos another buffalo-3, buffalo-1
buffalos buffalo-3.

• Every buffalo buffaloes some buffalo.

This trio, when represented in first-order logic, cannot be satisfied by a finite model,
since it’s an isomorph of a well-known example from Kleene [18].

At this juncture we point out that with a base lexicon that is minuscule, what we
are seeing is nonetheless the beginning of a progression out from this lexicon to a
vast family of grammars. We don’t have the space in the present chapter to define this
family, but rest content with pointing out that it can be viewed as an infinite array that
has increasingly complex languages appearing as the array builds out to the reader’s
right; see Figure 10. In this figure, ‘l’ indicates some collection of modal operators;
for more along this line of abstracting to modal operators of any sort, see [3].

Very well. Now what of the theorem we are seeking? Given the foregoing in the
present section, and given as well how HIS has been defined, we simply note
that to determine the meaning of ( it must specifically be determined whether, from
a set Σ of formulae in the relevant formal language for the relevant formal logic,
one or more formulae f ∈ Σ is such that f is provable from relevant background
content conjoined with ( itself. But this then enables us to easily establish what we
are seeking:10

10 The proof here exploits a connection to Church’s Theorem. Surely there must be prior arguments
made for the uncomputability of at least some aspects of human natural-language “computing,” ones
that rely on other established negative theorems in recursion theory (such as the PostCorrespondence
Problem?) — but the first author is currently unaware of any, despite considerable digging.
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extensional (classical): G0
1

G1
1

G2
1

G3
1
. . .

extensional (non-classical): G0
1

G1
′ G1

′′ G′′′
1
. . .

intensional (classical): lG0
1
lG1

1
lG2

1
lG3

1
. . .

Fig. 10 Part of the Infinte Array That Composes an Infinite Family of Buffalo Grammars. (To
visualize this as an infinite tree, imagine that the array is rotated clockwise 45 degrees.)

Theorem: Uncomputability of Meaning (= UMT)

Theorem: Let B be some arbitrary grammatically correct sentence in a human-level natural
language, and let f8

B be a representation of B in L1 from among an at-most countably infinite
number of such representations. Then the meaning of B, by HIS , i.e. some proof c or
argument U, is uncomputable.

Proof: Suppose in particular that B ∈ G1
1
, that BB is the background propositional content

for B, that - B is specific, contextual information, and that for reductio the meaning of B is
computable. Then for some particular :, whether

BB ∪ - B `c/U f:
B

holds is computable. But this contradicts Church’s Theorem. �

9.1 What of Prior and Related Work?

To bring this section to suitable closure, we must address, at least briefly, an apparent
incompatibility between the negative result we have obtained (i.e. the Uncomputabil-
ity of Meaning theorem = UMT), and what some others have said regarding how
much is demanded, computationally, for natural-language understanding (NLU). We
must also point out that some approaches to NLU outside inferential semantics (as
least avowedly so bywhat proponents of these approaches say; whatmight be the case
formally is another matter) appear to be quite consistent with UMT. In this regard,
we quickly mention three strands of related, prior research. In the first strand, NLU,
while held to be “hard,” is by definition computable because the level of difficulty
is firmly within the Polynomial Hierarchy, and the background assumption appears
to be some such proposition as a cognitive analogue to the Church-Turing Thesis. In
the second strand of research, a very robust, cognitively realistic approach to NLU,
we perceive at least apparent uncomputability in the general case. In the third strand,
a connection is made between language acquisition formally modeled, and NLU.
Here now is the (very brief) commentary on these three strands, respectively.
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Descriptive Complexity

In general, descriptive complexity is themarriage of standard coverage of complexity
theorywith formal logic: formal logics (of the standard, extensional and bivalent sort)
are used to describe the difficulty of computing functions, where— and this is crucial
at present — difficulty consists in the size of demands for time and space to compute
the functions in question. (Formal logics are also of course used in standard ways to
specify both the Arithmetic (L1 used) andAnalytic (L2 used) Hierarchies, which are
dominated by problems that aren’t computable.) From this perspective, according to
which, by definition, all the functions in question are computable, in a recent paper
the provides an insightful overview of the human mind and descriptive complexity,
Pantsar [21] at least implicitly affirms the proposition that NLU is computable. What
is the basis for the affirmation of such a proposition? As Pantsar nicely reports,
a large part of that basis is Ristad’s [24] claim that human-level natural-language
computations are NP-complete — and hence by implication computable. As to not
just a claim, but a theorem that forms part of the basis for the proposition as well,
Pantsar cites Fagin’s [10] theorem that a proper subset of full second-order logic =
L2 suffices to describe NP. For the most part, all of this, and more, is orthogonal
to the UMT result. Certainly none of this is at all a threat to, or even for that matter
inconsistent with, UMT. The reason is simple: UMT is not rooted in anything like
the description of problems in a given formal logic; rather, UMT is rooted in the
treatment of meaning in terms of inference built from the proof- or argument-theory
of formal logics. In this account of meaning, it’s the inferential dimension of formal
logics that is central, not a dimension relating to capture of functions by way of
formulae, and — as is obvious from the rejection of Montagovian meaning issued
above — not a dimension relating to model-based semantics.11

Computational Cognitive NLU

Here we take a recent volume, Linguistics for the Age of AI [19], as an exemplar. As
far as we are aware, this work is the most robust use of cognition (computationally
modeled) and declarative knowledge for NLU that takes the full challenge of real
natural language (with e.g. all its ambiguity) seriously. The first author’s contention
is that NLU here is uncomputable, since the knowledge brought to bear in order to
enable the understanding of some natural language is arbitrarily expansive in the
general case, and the natural language to be understood is likewise unrestricted. If
the knowledge here is captured by some set Γ in a formal logic, and if ultimately

11 Some readers may naturally ask whether some direct treatments of natural language by sym-
bolizing/representing that language in formal logics have been shown to lead to uncomputability.
While this is far beyond our scope here, we find it noteworthy that in his treatment of quantification
in human natural language, Szymanik (see e.g. [27]) explicitly treats the understanding of this
language to be a computable affair. In fact, he appears to affirm the proposition that human/human-
level cognition overall is Turing-computable, something that the first author has long rejected, and
defended repeatedly in print (e.g. see [6, 2]).
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there is at least a set of reasons for why some natural language ( is to have some
meaning expressible in a formal logic as formulae Φ( , then it’s not hard to see why
the overall problem might be uncomputable, along the lines of our own framework
for HIS , and for UMT.

Computational Learning Theory

Computational learning theory (CLT), a firmly recursion-theoretic approach to ma-
chine learning (and hence radically different than today’s data-driven “ML”), might
seem to some readers to be quite relative to UMT. In CLT, the focus is on language
acquisition; that is, the challenge is for some agent to acquire, through time, com-
mand over a language. The language in question is identified with a Type-0 grammar;
this means that what is to be learned can simply be identified with a Turing machine.
The locus classicus of CLT is [17]. This work is a litany of limitative theorems,
including those that say that learning a Turing machine, based on perceiving only
small, finite snippets of information regarding the machine in question, is not a com-
putable challenge. But why might CLT be thought relevant to UMT? The reason is
simply that someone might view NLU in a broader way than we do, to specifically
include, first, the understanding of what grammar/Turing machine is in play, and
then, following on that, something more specific, and specifically connected to how
we define NLU. We in general certainly see the reasonableness of having such an
extended conception of NLU, and we appreciate that CLT is exceptionally difficult,
but our definition of NLU in inferential terms is such as to only make CLT vaguely
relevant to the theoremUMT. In fact, when in CLT a given agent is given information
about the target to be learning, no inference whatsoever is in play, and indeed the
agent is said to be successfully learning the target if and only if hypotheses about
what that target is are wrong only finitely many times in the limit. No proof or
argument is in the picture at all.

10 Future Work; Further Objections

At this pointHIS is admittedly really only a proto-theory of meaning, and only the
basis for future NLU and NLG. There is long and hard work ahead. But fortunately,
prior work by Bringsjord and colleagues in robot ethics (of the sort encapsulated
in §3) is an ideal foundation upon which to develop and refine, mathematically,
HIS , and NLP algorithms and technology built upon this approach. The reason
why is obvious: the approach to robot ethics in question is steadfastly and thoroughly
proof- and argument-centric; and since on HIS the meaning of natural-language
sentences are captured by proofs and arguments that contain then, and are expressed
in the form of (inevitably vast) hypergraphs that express these interacting proofs and
arguments, the fit is a most promising one.



Uncomputable NLU for Ethical Robots, From Hypergraphical Inferential Semantics 23

A final word regarding additional objections to HIS and to building NLP upon
automated reasoning and proof-/argument-checking with the relevant hypergraphs:
We are under no such illusion as that additional objections will not be pressed against
the formal semantics advanced above. Inevitably, many will object that the meaning
of a natural-language sentence B is captured by “static,” non-inferential content
expressed in some formal logic (or, equivalently, in some knowledge-representation
format, say frame-based representations). Such skepticswould dowell to consider the
longstanding fact that in formal logic, the capture of a given mathematical assertion
0, which is part natural language and part formal language, has for many decades
been known to be achievable not merely by producing a formula q(0) in some
formal language that expresses 0, but by a formal theory Φ which is such that q(0)
is provable from Φ. A very nice presentation of the express-vs-capture distinction
when applied to statements in mathematics is provided in Chapter 4 of [26].

Though as we readily admit there is much work to be done, we recommend that
household robots (and a fortiori robots that as a matter of course frequently find
themselves in morally charged situations, e.g. military robots) be engineered to pro-
cess and interactively discuss norms with humans on the basis of the computational
logics and corresponding procedures that underlie HIS .
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