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Abstract Research in automated planning tradition-

ally focuses on model-based approaches that often sac-

rifice expressivity for computational efficiency. For ar-

tificial agents that operate in complex environments,

however, frequently the agent needs to reason about the

beliefs of other agents and be capable of handling uncer-

tainty. We present Spectra, a STRIPS-inspired AI plan-

ner built atop automated reasoning. Our system is ex-

pressive, in that we allow for state spaces to be defined

as arbitrary formulae. Spectra is also designed to be

logic-agnostic, as long as an automated reasoner exists

that can perform entailment and question-answering

over it. Spectra can handle environments of unbounded

uncertainty; and with certain non-classical logics, our

system can create plans under epistemic beliefs. We

highlight all of these features using the cognitive calcu-

lus DCC. Lastly, we discuss that under this framework,

in order to fully plan under uncertainty, a defeasible (=

non-monotonic) logic can be used in conjunction with

our planner.

1 Introduction

Agents who interact with the physical world often en-

counter uncertainty in the environment. One strategy

to deal with uncertainty is to capture it in declara-

tive form. For example, consider a situation where in

the coming days the weather will either be rain (R),

snow (S), or sunny (S∗). One goal that a rational agent

might have is to ensure it stays dry while outside (D).

We can represent the initial state space (Γ0), with its

uncertainty w.r.t. weather conditions, as the formula

R ∨ S ∨ S∗. The agent can then attempt to find a plan

Rensselaer Polytechnic Institute (RPI) E-mail:
{Rozek.Brandon, Selmer.Bringsjord}@gmail.com

or sequence of actions that takes an agent from Γ0 to a

state space that satisfies its goal D.

Model-based automated planning has primarily fo-

cused on environments wherein complete state infor-

mation is provided to the agent as a collection of facts.

This is standardly enabled through the usage of the

closed world assumption (CWA), which states that any

fact not specified in the state description is assumed

to be false. Model-based conformant planning extends

this by replacing an individual state with a finite col-

lection of states otherwise known as a belief state. Each

state within the belief state is individually closed un-

der CWA. We take this a step further in our work: we

allow and handle uncertain situations that can be cap-

tured by a collection of arbitrary (potentially higher-

order and modal) formulae. This allows us to not only
plan over a finite set of states, but potentially over an

infinite set in the quantified case. We allow for the us-

age of arbitrary theories, such as Peano Arithmetic, to

consider problems that require complex actions to reach

the goal. We achieve this by making use of automated

reasoning within the planning process itself.

Automated planning through reasoning was first in-

vestigated by Green [20] in 1981. Work continued through-

out the early 2000s, where the planning problem was

represented using the event calculus [11, 30, 31, 43]

and/or the situation calculus [13, 39, 42]. Model-based

approaches, however, have gained more traction over

the years due to efficient implementations such as Fast

Downward [23] with strong heuristics like delete relax-

ation [4], lm-cut [24], cost partitioning [26], and poten-

tial heuristics [38]. Mikhail and Ryan recently devel-

oped a planner that makes use of both heuristic search

and reasoning over the situation calculus [45]. We be-

lieve this direction deserves additional attention; how-

ever, we are primarily concerned with problems that re-
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quire non-classical, specifically intensional,1 reasoning.

Examples of such problems arise in modeling miscon-

ceptions of beliefs between multiple agents; such mod-

eling must for instance require sufficient expressivity to

formalize the propositions that Agent 1 believes that

Agent 2 believes that Agent 1 believes there is a stack

of blocks that are to be unstacked, even when no such

belief on the part of Agent 2 is veridical.2 In addition,

we’re interested in looking beyond deductive logics and

toward inductive ones to allow for careful treatment of

information gathered and its likelihood [8, 9]. For exam-

ple, one might wish to have an artificial agent assign a

belief derived from perception a higher likelihood than

a belief derived from agent communication. These are

examples of issues that the relevant non-classical-logic

community aims to tackle.

We introduce Spectra3, a planner founded on auto-

mated reasoning. We designed Spectra to be logic ag-

nostic, allowing one to plug in any logic that has an

associated automated reasoner capable of determining

entailment and question-answering. This allows the user

to model the planning problem in a logic they’re accus-

tomed to. We showcase Spectra with the non-classical,

specifically intensional cognitive calculi DCC, a frag-

ment of DCEC (which has been used in numerous prior

papers and simulations; e.g. [18]). We provide an exam-

ple of how Spectra with DCC can solve epistemic plan-

ning problems. Finally, we discuss how defeasible (=

non-monotonic) logics can be used in our framework to

create plans over a large range of uncertain scenarios.

2 Background and Related Work

Model-based automated classical planning can be cap-

tured by a propositional STRIPS model [12]. This is

a tuple ⟨P,O, I,G⟩ where P is a finite set of ground

atomic formulae, O is the finite set of operators, I ⊆ P

is the initial state, and G are the goals. Operators con-

sist of preconditions Pre ⊆ P , add effects Add ⊆ P , and

delete effects Del ⊆ P . Given a state s ⊆ P , an action

1 As a reminder, extensional logics are marked by the fact
that semantic values of “inner” parts of formulae composi-
tionally determine such values for these formulae. Hence if
it’s false that a is a block, ¬Block(a), then standard composi-
tionality in first-order logic dictates that Block(a) → Block(b)
is true. In contrast, despite the fact that ¬Block(a), it could be
that Jones believes the opposite, i.e. B(j,Block(a)). Efficient
coverage of the fundamental distinction between extensional
versus intensional logics is given in [14].
2 A traditional “engine” of demands for such intensional

expressivity from computational logics has been increasingly
demanding versions of the false-belief task. See e.g. [6]; and for
apparently the first formalization and simulation of the task
see [1] .
3 Code is available at https://github.com/rairlab/spectra

is applicable iff Pre ⊆ s. After performing an action o

on state s, the next state will be (s− Del) ∪ Add.

Alternatives to the STRIPS model include but are

not limited to Functional STRIPS [15], ADL [35], and

SAS+ [2]. However, often the more compact represen-

tation of PDDL [21] is used. This allows declarative

information to be captured through predicate logic as

opposed to only propositional logic, along with other

features such as conditional effects. However due to the

domain-closure assumption, this representation can be

translated to an equivalent STRIPS problem with an

exponential blowup of grounded operators compared to

the lifted ones described with predicate logic. When us-

ing PDDL, a finite list of object labels Obj are provided.

Formulae may include ∀ and ∃ statements; however,

these get grounded to their propositional form. The

domain-closure assumption takes all quantifiers and re-

places them using the truth-functional expansion over

the list of object labels Obj. That is, ∀x, P (x) is equiv-

alent to ∧
o∈Obj

P (o),

and ∃x, P (x) is equivalent to∨
o∈Obj

P (o).

Conformant planning extends the STRIPS model by

changing the initial state I to a finite set of possible

initial states, often called a belief state in the literature

[3]. Actions are then applicable at a given belief state b

if it is applicable for all states s ∈ b. Similarly, a belief

state b satisfies a goal G iff for all s ∈ b, G ⊆ s. In addi-

tion to CWA and domain-closure assumptions, classical

model-based planning also carries the unique-name as-

sumption and grounds all actions prior to search. This

assumption states that for any two distinct object la-

bels o1, o2 ∈ Obj, they do not refer to the same ob-

ject; i.e., obj(o1) ̸= obj(o2). Before the search algorithm

commences, a traditional classical model-based planner

will ground all actions to their propositional form. Over

the years, domains have been identified where the size

of their grounded representations are too large to con-

tain in device memory. [22, 28]. An alternate line of

research that addresses this is lifted planning.

We use a fragment of the Deontic Cognitive Event

Calculus (DCEC) (see e.g. [7]) in order to showcase our

planner solving epistemic tasks. DCEC is a quantified,

multi-modal,4 sorted cognitive-event calculus. Our frag-

4 For every substantive cognitive verb in the human case
(e.g., intends, desires, says/communicates, perceives, the epis-
temic verbs (the class most relevant to the present paper),
attends to, etc.), the approach of which this particular calcu-
lus is an example ultimately calls for a corresponding modal
operator to be present.
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DCC Signature

ϕ ::=


ψ : Predicate | ∀x : ϕ | ∃x : ϕ

¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | ϕ→ ψ | ϕ↔ ψ

B(a, ϕ) | K(a, ϕ) | C(ϕ) | S(a1, a2, ϕ) | P(a, ϕ)

DCC Inference Schemata (Subset)

B(a, Γ ) Γ ⊢ ϕ
B(a, ϕ)

IB
S(s, h, ϕ)

B(h,B(s, ϕ))
I12

C(P(a, ϕ) → K(a, ϕ))
I1

C(K(a, ϕ) → B(a, ϕ))
I2

ment DCC disregards time and treats all timepoints as

equivalent. The box labeled DCC Signature shows the

signature of our fragment. Cognitive operators here are

only: Believes, Common-knowledge, Says, Perceives,

and Knows. A sample reading for the formula

B(a,S(a, b,P(c, ϕ)))

is “agent a believes that a says to agent b that agent

c perceives ϕ.” The formula ∀x : ϕ reads that ϕ holds

for all bound variables x ranging over the domain of

discourse. A subset of our inference schemata are shown

in the box labeled ‘DCC Inference Schemata (Subset).’

Regarding related work, Soutchanski & Young [45]

designed an automated planner that also performs a

heuristic search guided by automated reasoning. Their

work is specific to the situation calculus and instead of

states, they transition over situations which are for-

mulae in the situation calculus. The Planning Tech-

niques and Action Languages (PLATAS) project inte-

grates planning and the GOLOG action language by

embedding the planning description language PDDL

into GOLOG, which uses an extended version of the

situation calculus [10].5 Our work differs in that our

system is logic-agnostic, and our state spaces consist of

5 Readers unfamiliar with GOLOG can start with [27].
A number of interesting questions arise from comparison of
PLATAS with our approach, for future analysis and engineer-
ing. We mention two very briefly: (1) As mentioned in [10],
and discussed at some length lucidly in the complementary
[41], in this line of work it is often desirable to consider restric-
tions in underlying declarative expressivity (e.g. to the PDDL
fragment ADL). In contrast, we find such restrictions to be in
considerable tension with human cognition, in planning. (2)
An inferential backbone of resolution (GOLOG is written in
Prolog) is in many ways incontestably advantageous, but we
are guided by the fact that first-rate human deductive rea-
soning is almost invariably carried out in natural deduction,
first invented for the extensional case in 1935 [16, 25].

a set of arbitrary formulae that may get added to and

deleted in keeping with performed actions. Answer-set

planning, recently surveyed in [46], translates planning

problems to logic problems whose answer sets corre-

spond to solutions or plans for the original planning

problem. Instead of finding proofs that actions are ap-

plicable or that the goal is reached, answer-set planners

find an answer set or logical model that corresponds

to a solution. Approaches within answer-set planning

typically require the grounding of predicates prior to

search. For conformant problems, the number of states

within a belief state may grow exponentially with the

number of unknown predicates. In our work, it is of-

ten the case that the state space does not increase in

size with the number of unknown formulae, since a tau-

tology ϕ ∨ ¬ϕ does not need to be included within a

state space. Multiple techniques have been introduced

to compile conformant planning problems into classical

planning problems via a sound yet incomplete method

[33], a complete method for a bounded contingent width

[34], and a linear translation for problems of contingent

width 1 [5]. All these methods require knowing ahead of

time the contingent width of the problem, or in other

words the maximum number of uncertain state vari-

ables that interact through conditional effects.

3 STRIPS-inspired Planning over Automated

Reasoning

Taking inspiration from STRIPS, we model our plan-

ning problem with actions having addition and dele-

tion effects. The main difference is that we’re operat-

ing over state spaces as opposed to a single state. A

planning-with-formulae (PwF) problem Π is the tuple

⟨L,A, Γ0, G⟩ where L is some logic, A is the set of lifted

actions that take an agent from one state space to an-

other, Γ0 ⊂ L is the initial state space characterized by

formulae from the logic, and G ⊂ L is a partial state

space that represents a goal. Care must be taken to en-

sure that the initial state space is consistent; otherwise,

for logics including the principle of explosion, the goal

will be satisfied.

A lifted action a ∈ A is a tuple ⟨χ, Pre, Add, Del, C⟩
where χ is a set of variables and Pre a partial state

space, parameterized by χ and required to be be sat-

isfied in order for an action to be taken. Add is the

set of formulae, parameterized by χ that get added to

the state space Γ when the action is taken. Del is the

set of formulae, parameterized by χ, that gets removed

from the state space Γ when the action is taken. Lastly,

C ∈ N is the cost of the action, assumed to be 1 if left

unspecified. A substitution is a mapping from a variable
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to a term. Let Dom(σ) return the domain of a substi-

tution σ. Then for a given action a, a substitution σ

is valid iff it has a mapping for all the variables in χ

within the action. That is, ∀v ∈ χ(a), v ∈ Dom(σ).

A ground action ground(a, σ) from an action a and

valid substitution σ is the tuple ⟨∅, Pre′, Add′, Del′, C⟩.
In this tuple, Pre′ = {fσ | f ∈ Pre}. A similar for-

mulation is defined for Add′ and Del′. We denote ag
to be an arbitrary grounding of an action a. A state

space Γ satisfies a partial state space γ iff Γ ⊢ γ. A

ground action ag is applicable in state space Γt iff Γt

satisfies Pre(ag). If an applicable ground action ag is

executed on state space Γt, then the next state space

is Γt+1 = (Γt − del(ag)) ∪ add(ag). A solution to the

PwF problemΠ is a plan π = (a1, . . . , an) that takes an

agent from an initial state space to a state space that

satisfies the goal, where each ai ∈ π is an applicable

action.

There are two key points in this formulation where

an automated reasoner is crucial; the first is in decid-

ing whether or not a given state space Γt satisfies the

goal G. This is determined as an entailment check in

an automated reasoner (e.g. Γt ⊢ G). Secondly, we rely

on the automated reasoner to find the set of applicable

grounded actions Ag for a given action a. This is equiv-

alent to finding the set of substitutions σ that when

applied to our precondition, the grounded precondition

holds under the current state space Γt. For an arbitrary

σi ∈ σ, i.e. for all f ∈ Pre(a), we have Γt ⊢ fσi. It is

possible that the size of σ is empty or infinite depending

on the theory used. If σ is empty, then we are unable to

apply any grounded actions from that particular lifted

action. In the infinite case, we would need to place a

bound on the length of σ returned by the automated

reasoner.

In addition to changes in the planning structure,

Spectra relaxes a few of the commonly made assump-

tions in model-based automated planning. Spectra does

not assume CWA, domain closure, or the unique-name

assumption. Nor does Spectra require that all grounded

actions are found in the beginning portion of the algo-

rithm. Instead, Spectra relies on the question-answering

algorithm to iteratively find applicable actions.

4 Implementation

Spectra is implemented using the programming lan-

guage Java and it’s source code is available on GitHub

(https://github.com/rairlab/spectra). Similar to

model-based automated planners, we employ the A∗

search algorithm as our core loop in order to find K

plans that solve the given PwF problem P . An item

in our search space ω is a tuple ⟨Γt, π⟩, where Γt is a

state space and π the plan to get the initial state space

Γ0 to Γt. We make use of a priority queue Ω consist-

ing of tuples ω. Each ⟨Γt, π⟩ ∈ Ω is assigned a priority

h(Γt)+C(π), where h is the heuristic function over state

spaces and C the cost function over plans. In our cur-

rent implementation, we assign an uninformed heuristic

over all state spaces, i.e. ∀Γ, h(Γ ) = 0. Future work will

include identifying domain-independent heuristics that

can apply over a wide range of logics. Given an admis-

sible heuristic, the first plan we find will be optimal.

However, the other generated plans may not be optimal

due to duplicate pruning. C(π) is the cost of a plan π,

which is the sum of the cost of all actions within π, i.e.

C(π) =
∑
a∈π

C(a).

Algorithm 1 A∗ Search Over PwF Problem

1: procedure plan(L, A, Γ0, G,K)
2: Initialize priority queue Ω = [⟨Γ0, ()⟩]
3: Π = []
4: while Ω.notEmpty() and |Π| < K do

5: ⟨Γt, πt⟩ = Ω.pop()
6: if Γt satisfies G (*) then
7: Π = Π ∪ {πt}
8: for lifted action a ∈ A do
9: Ag = applicable grounded actions in Γt (*)
10: for ground action ag ∈ Ag do
11: Γt+1 = (Γt − del(ag)) ∪ add(ag)
12: if Γt+1 not already seen then

13: πt+1 = πt ∪ {ag}
14: Set priority P to h(Γt+1) + C(πt+1)
15: Add ⟨Γt+1, πt+1⟩ to Ω with priority P.

16: return Π

(*) denotes usage of the automated reasoner described in §3

The core search procedure is specified in Algorithm

1. We perform an A∗ search over the transition space

until either no more applicable actions can be performed,

or the number of requested plans have been met. View-

ing the core loop from the perspective of an arbitrary

ω = ⟨Γt, πt⟩ ∈ Ω: We first check if the current state

space Γt satisfies our goal. This is equivalent to making

a call to an automated reasoner to see if Γt ⊢ G. If so,

we add πt — the plan to get from Γ0 to Γt — to the list

of found plans. Then for each lifted action a ∈ A, we

find the set of applicable ground actions for the state

space Γt. As described in §3, we rely on the question-

answering algorithm of the automated reasoner to find

a set σ of valid substitutions for the given action. If

σ is non-empty, then for each σi ∈ σ we ground the

lifted action. With each grounded action, we compute

a new ω consisting of our new state space Γt+1 and

the plan to get from the initial state space to Γt+1; i.e.
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ω = ⟨Γt+1, πt ∪ {ag}⟩. This new ω gets added to the

priority queue if Γt+1 has not already been visited.

5 Cognitive Planning with DCC

ShadowProver [19] is an automated reasoner over cog-

nitive calculi such as DCEC. It is under active develop-

ment with support for entailment and enhanced question-

answering. Again, herein we use the fragment DCC of

DCEC in which the number of cognitive operators are

reduced and all timepoints are identified. Consider the

Grapevine domain from [32]. In this problem, a group

of agents have a secret they may wish to communi-

cate with each other. Agents in this environment can

move freely between rooms and broadcast to everyone

in the room their secret. The initial state of this prob-

lem specifies that agents only know their own secret.

One possible goal is for an agent to propagate their se-

crets to a subset of agents. Let’s analyze an instance

of this problem with n = 3 agents and p = 2 rooms.

As before, each agent has their own secret, and no one

except a believes a’s secret. Ignoring type predicates

and unique-name axioms, the initial state space can be

characterized as

Γ0 = {at(a, p1),¬at(a, p2), at(b, p1),¬at(b, p2), at(c, p1)
¬at(c, p2),B(a, the(a)),B(b, the(b)),B(c, the(c)),

¬B(b, the(a))¬B(c, the(a))}

The goal for this problem includes three compo-

nents: 1) agent b believes a’s secret; 2) c does not believe

a’s secret; 3) agent a believes that agent b believes a’s

secret. The partial state space G is then specified as:

G = {B(b, the(a)),¬B(c, the(a)),B(a,B(b, the(a)))}

The available actions are: left, right, share-both,

share-single. We denote p1 as the left room and p2
as the right room. For an agent to move left, they must

be in the right room; vice versa for the right action.

For the share-both action, all agents must be in the

same room. One agent then shares their secret, and

both agents believe the secret, and the agent sharing

believes that the other agents believe the secret. The

action share-single is similar; however, the precondi-

tion is that one agent is not in the same room, and that

agent does not gain a belief about the secret. We pro-

vide an example of how the share-single action would

get encoded in Spectra in Figure 1. Note that in the

example we delete the negation of the added formulae

in order to stay consistent. The Believes! keyword de-

notes the model operator B within DCC, and the pred-

icate the represents the secret of the agent specified in

(define-action share-single [?a1 ?a2 ?a3 ?r] {

:preconditions [

(at ?a1 ?r)

(at ?a2 ?r)

(not (at ?a3 ?r))

]

:additions [

(Believes! ?a2 (the ?a1))

(Believes! ?a1 (Believes! ?a2 (the ?a1)))

]

:deletions [

(not (Believes! ?a2 (the ?a1)))

(not (Believes! ?a1 (Believes! ?a2 (the

?a1))))

]

})

Fig. 1: Share-Single Action from Grapevine

its parameter. The figure does not provide a complete

example, as one would need to add type restrictions as

well as restrictions that all arguments are unique for

that lifted action. Requesting K = 2 plans from Spec-

tra provides the following two plans:

π1 = ((right a) (right b) (sharesingle a b c p2))

and

π2 = ((right c) (sharesingle a b c p1)).

6 Planning Under Uncertainty

In the last example, we looked at a problem whose state

space is equivalent to a single state. In this section,

we discuss how to move beyond this restriction and

consider state spaces that represent multiple possible

states. This is equivalent to planning under uncertainty.

To begin, let us put aside DCC and consider Spectra us-

ing a classical first-order-logic reasoner. What we dis-

cuss here will easily extend to the epistemic uncertainty

case. So, consider the “safe problem” from the confor-

mant planning literature [36]. In this problem, there is a

closed safe and the agent has only one correct combina-

tion out of a collection thereof that can open that safe.

At the outset of the problem, the agent does not know

which one of these combinations is correct. Narrowing

to an instance of this problem, consider two possible

combinations c1 and c2. The initial state space of this

problem is that one of the two combinations is correct.

We can represent that as follows:

Γ0 = {(correct(c1)∧¬correct(c2))∨(¬correct(c1)∧correct(c2))}

There is one available action, try, which takes a

combination and, if it’s correct, opens the safe. The
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(define-action try [?x] {

:preconditions [ ]

:additions [

(if (correct ?x) (safe-open ))

]

})

Fig. 2: Action with Conditional Effect in Spectra

try action is shown in Figure 2. Note that the condition

that the combination is correct is only specified in the

addition effect. This is because for the action try to be

applicable for a given state space Γt, all states s ∈ Γt

must satisfy the preconditions of try. Now imagine that

the agent tried both combination c1 and c2 sequentially

from the initial state. The updated state space is then:

Γ2 = Γ0 ∪ {correct(c1) → open, correct(c2) → open}

The alert reader might notice that Γ2 satisfies the

goal of opening the safe. This can be shown by proof-

by-cases on the disjunctive formula and applying the

appropriate modus ponens for each case.

The Need for Defeasible Reasoning

A challenge arises for our STRIPS-inspired model when

we want to swap the valuation of an unknown formula

ϕ. More formally, suppose at a state space Γt that ϕ is

unknown; i.e. Γt ̸⊢ ϕ and Γt ̸⊢ ¬ϕ. Let’s consider that ϕ
holds for some states s within Γt and denote this set as

Γ+
t . The parallel, assume, holds for the negated case;

the set here is Γ−
t . Now assume that after we execute

some applicable action, we want ¬ϕ to hold in the next

state space for all states in Γ+
t , and ϕ to hold in the

next state space for all states in Γ−
t . How exactly can

we model this? To make the formal challenge more con-

crete, consider an alternative to the safe problem from

before. Three lockers A, B, C appear before the agent

with a button to toggle whether locker A is locked or

not. At the initial configuration there are two possibil-

ities, either Γ0,0 = locked(A)∧ locked(B)∧¬locked(C)

or Γ0,1 = ¬locked(A) ∧ locked(B) ∧ locked(C). There-

fore, the initial state space Γ0 = {Γ0,0∨Γ0,1}. Note from

the initial state that the agent does not know whether

the locker A is locked.

Note that in “real life” such epistemic indetermi-

nacy with regard to binary conditions of devices and

systems is far from uncommon. That is, humans are

often forced to be rationally agnostic belief-wise when

faced with wanting to know whether or not some sys-

tem s has property R (i.e., a human sometimes must

rationally believe neither R(s) nor ¬R(s)), while at the

same time having the ability to perform an action that

will cause either R(s) or ¬R(s) to obtain. For example,

when leaving his home in a rush for a crucial engage-

ment, Smith activates the alarm system for it at an

interior keypad. When he returns home he does not re-

member whether he activated the alarm or not. As in

our safe scenario, his combination applied to an exter-

nal keypad toggles the system on if off, and off if on,

and he doesn’t recall what the indicator lights indicate

on this external keypad. He must remain noncommit-

tal after tapping in the combination, and resort to other

approaches to relieve his agnosticism.

One approach to tackling the toggle action in the

simpler safe challenge, which is better for technical ex-

position, is to use FOL to have the following effects

added to the state space: (1) locked(A) → ¬locked(A)

and (2) ¬locked(A) → locked(A). However, both of

these effects together yield a contradiction by simple

deduction.

To address the problem, we can use defeasible rea-

soning.6 Consider a defeasible logic such as IDCEC [9,

17]. The schema in IDCEC Belief Propagation box shows

that beliefs are propagated forward in time as long as

doing so doesn’t contradict any newer beliefs. At the

initial state (t = 0), we can represent the state space

as Γ0 = {B(a, 0, Γ0,0 ∨ Γ0,1)}. Then for the toggle ac-

tion we can set the effects to: (1) B(a, t, locked(A)) →
B(a, t + 1,¬locked(A)) and (2) B(a, t,¬locked(A)) →
B(a, t+1, locked(A)). These formulae are no longer con-

tradictory and suitably capture the toggle action as the

following noncommittal belief is entailed at the next

time step:

B(a, 1, (¬locked(A) ∧ locked(B) ∧ locked(C))∨
(locked(A) ∧ locked(B) ∧ locked(C)))

7 Discussion and Conclusion

The extension from states with predicates to state spaces

with arbitrary formulae catalyzes several challenges. The

first is that the problem modeler must take care not

6 We have already indicated that such logics are known
also as non-monotonic logics. As a reminder given for fuller
context, deduction is monotonic; i.e., if Φ ⊢ ϕ (which is to
say that ϕ can be proved deductively from Φ), then for any
formula ψ, Φ∪{ψ} ⊢ ϕ holds. In stark contrast, non-monotonic
logics, long created and implemented in AI (e.g. originally
by Reiter and McCarthy [29, 40], with more expressive such
logics more recently presented in [9, 37]) are such that new
declarative information can invalidate what was earlier a valid
inference. It may e.g. be rational to infer from Mr. Smith’s
telling you that it’s raining that you should believe that it is,
and you thus may believe it is; but if you then find out that
Smith is a pathological liar under treatment for his condition,
you will now ceteris paribus not believe that’s raining.
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IDCEC Belief Propagation

Bℓ(a, t1, ϕ) Γ ̸⊢ ¬Bℓ(a, t2, ϕ) t1 < t2

Bℓ(a, t2, ϕ)
IlPROP

to introduce any contradictions in the PwF problem.

This is an issue conveniently absent from the STRIPS

model, as the user does not specify any negated pred-

icates (as those are assumed via CWA). If contradic-

tions do exist in the PwF model, then for many logics,

the goal would be satisfied for any arbitrary contra-

dictory state space. This is due to explosion which is

from falsum, anything follows. The second challenge is

that the computational properties of Spectra are heav-

ily reliant on the underlying automated reasoner. For

example, if the underlying automated reasoner is un-

decidable for entailment and question-answering for a

given logic, then Spectra will be incomplete. Such unde-

cidability, in human-level planning, which presumably

is a level that must ultimately be reached (or exceeded),

is common and irrepressible. Even undergraduate stu-

dents are routinely required to find proofs of formulae

in not only first-order logic and other more expressive

extensional logics (e.g. second-order logic), but in quan-

tified modal logics as well. When they are tasked with

performing actions that reach these goals, they are em-

bodying the daunting challenge that, in our planning

paradigm, Spectra faces.

Of course, this situation gives rise to the question

as to how, with undecidability having to be part of

what our engineering must factor in, performance is

assessed/measured. In our current implementation, we

rely on pragmatic time bounds for calls to the auto-

mated reasoner. A result returned under the bound for

a timer is clear success, because that bound is set for

applications at hand. No result before the expiration of

the timer is failure, and something else must be tried.

This approach is none other than what AI founder and

nobelist Herbert Simon famously introduced under the

banner “satisficing” as an approach to both human and

AI planning and deciding (e.g. see [44]).7

Importantly, undecidability does not in any way stop

engineering designed to mitigate it. Accordingly, when

using Spectra with a monotonic logic, we for instance

include optimizations to reduce the number of calls to

the automated reasoner. For example, if we have cached

that Γ1 ⊢ ϕ, then we assume for an arbitrary Γ2 that

Γ1∪Γ2 ⊢ ϕ. Also, consider we have cached that Γ1 ̸⊢ ϕ.

7 It was none other than Simon, with Newell, who intro-
duced to the world in 1956 the very first automated prover:
LogicTheorist.

Then for Γ2 ⊆ Γ1, we assume that Γ2 ̸⊢ ϕ. Of course,

in addition, predictably, our engineering in service of

reasoner-based planning in the face of undecidability

includes making use, whenever possible, of automated

reasoners for decidable fragments of both first-order

logic and propositional modal logics; details here are

beyond present scope, but see [19].

Formulae in Spectra are treated strictly syntacti-

cally when updating state spaces. This is because in

general consistency and redundancy checks are (again)

undecidable for an arbitrary logic. Future work includes

adding an additional layer which is able to perform

quick (potentially incomplete) consistency and redun-

dancy checks for a wide range of logics. For example,

when deleting A ∧ B, this layer can additionally check

for B ∧ A and delete this. While this may not hold for

logics in general, a wide class of logics share first-order

semantics, which we can provide a default layering over.

Additionally, in work described herein, we presented an

uninformed heuristic h(Γ ) = 0 for all state spaces Γ .

Future work includes investigating heuristics that can

hold for a wide range of logics.

To briefly recap, we presented Spectra, a logic-agnostic

AI planner based on automated reasoning. We discussed

how the extension from states with predicates to state

spaces with arbitrary formulae enables high-expressivity

processing and captures uncertainty in the PwF prob-

lem. We additionally discussed how using non-classical,

intensional reasoners such as ShadowProver over DCC
allows Spectra to create complex cognitive plans, such

as ones with epistemic goals. Lastly, we discussed how

defeasible logics in conjunction with Spectra can be

used to solve a larger class of conformant planning prob-

lems. Future work also includes incorporating a percep-

tion model into Spectra. And the authors are partic-

ularly interested in using inductive reasoning to cap-

ture the adjudication of competing arguments an agent

might need to face, as a way to carry out sophisticated

defeasible reasoning in service of planning.
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