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Abstract

The technologized world is buzzing about “big data,” and the apparent his-

toric promise of harnessing such data for all sorts of purposes in business,

science, security, and — our domain of interest herein — education. We

distinguish between big data simpliciter (BD) on the one hand, versus big-

but-buried (B3D) data on the other. The former type of data is the cus-

tomary brand that will be familiar to nearly all readers, and is, we agree,

of great importance to educational administrators and policy makers; the

second type is of great importance to educators and their students, but re-

ceives dangerously little direct attention these days. We maintain that a

striking two-culture divide is silently emerging in connection with big data:

one culture prudently driven by machine-assisted analysis of BD; and the

second by the quest for acquiring and bestowing mastery of B3D, and by

the search for the big-but-buried data that confirms such mastery is in place

within a given mind. Our goal is to introduce, clarify, and contextualize the

BD-versus-B3D distinction, in order to lay a foundation for the integration

of the two types of data, and thereby, the two cultures. We use examples,

including primarily that of calculus, to reach this goal. Along the way, we

discuss both the future of data analytics in light of the historic Watson sys-

tem from IBM, and the possibility of human-level machine tutoring systems,

AI systems able to teach and confirm mastery of big-but-buried data.

∗The second author acknowledges, with deep gratitude, generous support provided
by IBM to think about big data systematically, in connection with the seminal Watson
system. The second author is grateful as well for (i) data and predictive analysis (of the
big simpliciter variety) regarding student performance in calculus at RPI, provided by IR
expert Jack Mahoney, and (ii) enlightening conversations about big-but-buried data and
(differential and integral) calculus with Thomas Carter.
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1 Introduction

The technologized world is of course buzzing about “big data,” and the
apparent promise of harnessing such data for all sorts of purposes in busi-
ness, science, security, and — our domain of interest herein — education.
We distinguish between big data simpliciter (BD) on the one hand, versus
big-but-buried (B3D) data on the other. The former type of data is the
customary brand that will be familiar to nearly all readers, and is, we agree,
of great importance to educational administrators and policy makers; the
second type is of great importance to educators and their students, but is
dangerously overshadowed by attention paid these days to the first type.
Part of this danger derives from the fact, explored below, that while big-
but-buried data is elusive, and while technology to exploit it is expensive and
still primitive, B3D is absolutely central to first-rate teaching and learning.

One of the hallmarks of big data simpliciter is that the data in ques-
tion, when measured against some standard yardstick (e.g., the byte, which
is eight bits of data, where each bit is 0 or 1), is exceedingly large. For
instance, internet traffic per month is known to now be well over 20 ex-
abytes (= 20 ×1018 bytes); hence an attempt to enlist software to ascertain,
say, what percentage of internet traffic pertains directly to either student-
student or student-teacher communication connected to some formal course
would be a BD task. Or, more tractably, if one used R, by far the dominant
software environment in the world used for all manner of statistical com-
puting, and something that stands at the very heart of the “big-data” era,1

to ascertain what percentage of first-year U.S. college students in STEM
disciplines graduate in those disciplines as correlated with their grades in
their first calculus course, one would be firmly focused on BD. We find it
convenient to use a less pedantic yardstick to measure the size of some given
collection of data. One nice option in that regard is simply the number of
discrete symbols used in the collection in question. We are sure the reader
will immediately agree that in both the examples of BD just provided, the
number of symbols to be analyzed is staggeringly large.

Big-but-buried data is very, very different. What data does one need to
master in order to thrive in the aforementioned calculus course, and in those
data-intensive fields (e.g., macroeconomics) that make use of calculus (and,
more broadly, of real analysis) to model vast amounts of BD? And what

1R is free, and can be obtained at: http://www.r-project.org. To start having fun
with R in short order, we recommend (Knell 2013). With R comfortably on hand, those
wishing an introduction to basic statistical techniques essential for analytics of BD, can
turn to the R-based (Dalgaard 2008).
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data does a calculus tutor need in order to certify that her pupil truly has
mastered elementary, single-variable calculus? In both cases, the answers
exhibit not BD, but rather B3D. For example, one cannot master even the
first chapter of elementary calculus unless one has mastered (in the first few
pages of whatever standard textbook is employed) the concept of a limit,
yet — as will be seen in due course — only 10 tiny symbols are needed
to present data that expresses the schematic proposition that the limit of
some given function f is L as the inputs to that function approach c.2

Students who aspire to be highly paid data scientists seeking to answer BD
problems (for Yahoo!; or for massive university systems like SUNY; or for
those parts of the U.S. government that take profound action on the basis
of BD, e.g, the U.S. Department of Education and the Federal Reserve;
etc.) without truly understanding such little 10-symbol collections of data,
put themselves, and their employers, in a perilous position. This is confirmed
by any respectable description of what skills and knowledge are essential for
being a good data scientist (e.g., see the mainstream description in Minelli,
Chambers & Dhiraj 2013). In fact, it may be impossible to know with
certainty whether the results of analytics applied to BD can be trusted, and
whether proposed, actionable inferences from these results are valid, without
understanding the underlying B3D-based definitions of such analytics and
inferences. Of course, the results by BD analytics, and indeed often the
nature of BD itself, are probabilistic. But to truly understand whether or
not some proposition has a certain probability of being true, at least the
relevant data scientists, and perhaps also the managers and administrators
ready to act on this proposition, must certainly understand what probability
is — yet as is well-known, the nature of probability is expressed in none other
than big-but-buried form.3

While we concede that there is some “crossover” (e.g., some pedagogy, to
be sure, profits from “analytics” applied to BD; and of course some educators
are themselves administrators), nonetheless we maintain there is a striking
two-culture divide silently emerging in connection with big data: one culture
driven by machine-assisted analysis of BD, and the fruit of that analysis;

2The limit of the function that takes some real number x, multiplies it by 2, and
subtracts 5 (i.e., f is 2x − 5), as x approaches 3, is 1. This very short statement, which
also appears in Figure 2, rather magically holds within it an infinite number of buried
datapoints (e.g., that 2 multiplied by 1, minus 5, is not equal to 1). But no high-school
student understands limits without first understanding general 10-symbol-long schematic
statements like this one. We return to this topic later (§4).

3While invented by Pascal, probability was still fundamentally obscure until Kol-
mogorov (1933) used precious few symbols to provide a classic big-but-buried axioma-
tization of all of probability.
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and the second by the quest for acquiring and bestowing mastery of B3D,
and by the search for the big-but-buried data that confirms such mastery
is in place within a given mind. Our chief goal is to introduce, clarify, and
contextualize the BD-versus-B3D distinction, in order to lay a foundation
for the further integration of the two cultures, via the integration of the
two types of data around which each tends to revolve. The truly effective
modern university will be one that embodies this integration.4

The plan for the sequel is straightforward: We first present and affirm
a serviceable account of what data is (§2), and specifically explain that, at
least in education, information is key, and, even more specifically, knowledge
is of paramount importance (in the case of both big data simpliciter and big-
but-buried data). Next, in the context of this account, we explain in more
detail the difference between BD and B3D, by presenting two competing sets
of necessary conditions for the pair, and some informal examples of these sets
“in action” (§3). In the next section (4), we turn to the example of teaching
calculus in the United States, in order to further elaborate the BD-versus-
B3D distinction, and to illuminate the importance of uniting data-driven
effort from each side of the distinction.5 Readers can rest assured that they
will not need to know any calculus in order to understand what we say in this
section, but we do explain that without appeal to calculus, human experience
of even the simple motion of everyday objects, in light of Zeno’s famous
paradoxes, quite literally makes no sense (from which, as we point out, the
untenability of recent calls to drop traditionally required pre-college math
courses follows). We next (§5) briefly discuss the future. We first discuss the

4A sign the integration is missing is perhaps that there continues to be widespread ten-
sion between administrators and faculty, since the former live and die, these post-“Great
Recession” days, by how well they obtain, analyze, and act on BD in the increasingly
tight-money environment of today’s Academy, while the latter, if still providing face-to-
face instruction to physically co-located students, must be focused on teaching mastery of
B3D.

5Our points in this section could be based on any of the crucial big-but-buried data
future data scientists ought to master (e.g., decision theory, game theory, formal logic,
search algorithms, R, programming languages and theory, etc.), but calculus, occupying
as it does a pivotal place in STEM education within the Academy, and — for reasons
we herein review — in a general, enlightened understanding of our world, is particularly
appropriate given our objectives. In addition, calculus provides the ultimate, sobering
subject for gauging how math-advanced U.S. students are, or aren’t, now, and in the
future. We assume our readers to be acquainted with the brutal fact that, in math, K–12
U.S. students stack up horribly against their counterparts in many other countries. A
recent confirmation of this longstanding fact comes in the form of the PISA 2012 results,
which reveal that of 34 OECD countries, the U.S. is below average, and ranked a dismal
26th — and this despite the fact that the U.S. spends more per student on math education
than most countries. See http://www.oecd.org/unitedstates/PISA-2012-results-US.pdf.
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future of BD analytics in light of the historic Watson system from IBM. We
then confront the acute problem of scalability that plagues the teaching of
big-but-buried data, and point to a saving future in which revolutionary AI
technology (advanced intelligent tutoring systems) solves the problem
by teaching big-but-buried data in “sci-fi” fashion. A short pointer to future
work wraps up the paper.

2 Data, Information, and Knowledge

It turns out that devising a rigorous, universally acceptable definition of
‘data’6 is surprisingly difficult, as Floridi (2008), probably the world’s lead-
ing authority on the viability of proposed definitions for these concepts (and
related ones), explains. For example, while some are tempted to define data
as collections of facts, such an approach is rendered acutely problematic by
the brute truth, routinely exploited in our “data age,” that data can be
compressed (via techniques explained e.g., in Sayood 2006): How could a
fact be compressed?7 Others may be inclined to understand data as knowl-
edge, but such a view, too, is untenable, since, for example, data can be
entirely meaningless (to wit, “The data you sent me, I’m afraid, is garbled
and totally meaningless.”), and surely one cannot know that which is mean-
ingless. Moreover, plenty of what must be pre-analytically classified as data
seems to carry no meaning whatsoever; Floridi (2005) gives the example of
data in a digital music file. Were you to examine any portion of this digital
data under the expectation that you must declare what it means, you would
draw a blank, and blamelessly so. Of course, when the data is processed,
it causes sound to arise, and that sound may well be eminently meaningful.
But the data itself, as sequences of bits, means nothing.

In the interest of efficiently getting to the core issues we have targeted for
the present paper, we affirm without debate a third view of what data is, one
nicely in line with the overall thrust of the present volume: viz., we adopt
the computational view of data, according to which data are collections of
strings, digits, characters, pixels, discrete symbols, etc., all of which can

6Or ‘datum’, a definition of which could of course be used to define the plural case.
7That which expresses a fact is of course readily compressible. This is probably as good

a place as any for us to point out that the hiding that is part and parcel of big-but-buried
data has nothing to do with data compression. In data compression, some bits that are
statistically redundant are removed; by contrast, in B3D, nothing is removed and nothing
is redundant: usually all the bits or symbols, each and every one, is indispensable, and
what’s hidden is not found by adding back bits or symbols, but rather by human-level
semantic reasoning.
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be processed by algorithms unpacked as computer programs, which are in
turn executed on modern high-speed digital computers.8 Affirmation of this
view would seem to be sensible, since after all the big-data rage is bound up
inextricably with computational analytics. When the IR office at university
U is called upon by its Provost to bring back a report on what percentage of
(undergraduate) transfer students from community colleges at U graduate,
versus what percentage do who come in the customary first year to U from
high school, invariably their work in acceding to this request will require
(not necessarily by the IR professionals themselves) the use of algorithms,
programs regimenting those algorithms, and the physical computers (e.g.,
servers) on which the programs are implemented. And of course the same
tenor of toil would be found outside of academia: If Amazon seeks to improve
the automated recommendations its browser-based systems make to you
for what you are advised to consider purchasing in the future given your
purchases in the past, the company’s efforts revolve around coming up with
algorithmically smarter ways to process data, and to enticingly display the
results to you.

But we need a crisper context from which to move forward. Specifically,
it’s important to establish at the outset that universities and university sys-
tems, and indeed the Academy as a whole, are most interested in a specific
kind of computational data: data that is both well-formed and meaning-
ful. In other words, administrators, policy makers, analysts, educators, and
students, all are ultimately interested in information. An elegant, succinct
roadmap for coming to understand what information, as a special kind of
data, is, and to understand the various kinds of information that are of cen-
tral importance to the Academy and the technologized world in general, is
provided in (Floridi 2010).9 This roadmap is summed up in Figure 1. The
reader should take care to observe that in this figure we pass to a kind of
data that is even more specific than information: we pass to the sub-species
of data that is a specific form of factual and true semantic information: we
pass, that is, to knowledge. (Hence, while, as noted above, data isn’t knowl-
edge, some data does indeed constitute knowledge.) We make this move

8Alert readers may protest that, technically speaking, there is such a thing as analog
data and analog computation. But this quarter of modern information processing is
currently a minuscule one, and students trained in data science at universities, as a rule,
are taught precious little to nothing about analog computers and analog data. A readable,
lively overview of computation and intelligence, including the analog case, is provided in
(Fischler & Firschein 1987).

9Those wanting to go deeper into the nature of information are encouraged to study
(Floridi 2011).
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because, as indicated by the “We in the Academy are here” comment that
we have taken the liberty of inserting into Figure 1, the cardinal mission of
universities is the pursuit and impartation of knowledge. From this point
on, when, following common usage (which frames the present volume), we
refer to data, and specifically to the fundamental BD-vs.B3D dichotomy,
the reader should understand that we are referring, ultimately, to knowl-
edge. In the overarching world of data, data analysis, and data science, it
is knowledge that research is designed to produce; knowledge that courses
are designed to impart; and knowledge that administrators, managers, and
others in leadership positions seek out and exploit, in order to enhance the
knowledge that research yields and classrooms impart.

Figure 1: Floridi’s Ontology of Information

data
(structured)

environmental semantic
(content)

instructional factual

untrue true

unintentional intentional

knowledge

analogue

digital

binary

primary

secondary

binary

meta-

operational

derivative

We in the Academy are here

3 Big Data Simpliciter (BD) vs. Big-But-Buried
Data (B3D)

We provided above (§1) a provisional account of the difference between BD
and B3D. Let’s now be more precise. But not too precise: formal definitions
are outside the scope and nature of the present chapter. In the present con-
text, it suffices (i) to note some necessary conditions that must be satisfied
by any data in order to qualify it specifically as big in today’s technology
landscape (i.e., as BD), or instead as big-but-buried (i.e., as B3D); and (ii)
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to flesh out these conditions by reference to some examples, including exam-
ples that connect to elementary calculus as currently taught in America’s
educational system. The “calculus part” of the second of these steps is, as
planned, mostly reserved for the next section (4).

For (i), please begin by consulting Figure 2, which sums up in one simple
graphic the dichotomy between BD and B3D. Obviously, BD is referred to
on the left side of this graphic, while B3D is pointed to on the right. Imme-
diately under the heading for each of the two sides we provide a suggestive
string to encapsulate the intuitive difference between the two types of data.
On the left, we show a string of 0’s and 1’s extending indefinitely in both
directions; the idea is that you are to imagine that the number of symbols
here is staggeringly large. For instance, maybe there are as many symbols as
there are human beings alive on Earth, and a ‘1’ indicates a male, whereas
a ‘0’ denotes a female. On the right, we show a simple 12-symbol-long
statement about a certain limit. The exact meaning of this statement isn’t
important at this juncture (though some readers will perceive this meaning):
it’s enough to see by inspection that there are indeed only 12 symbols in the
statement, and to know that the amount of data “buried” in the statement
is much, muchthan the string of 0’s and 1’s to its left. This is true because
the 12-symbol-long-statement is making an assertion (given in prose form
in footnote 2) about every single real number, and while there are indeed
a lot of human beings on our planet, our race is after all finite, while there
are an infinite number of real numbers in even just one “tiny” interval, say
the real numbers between zero and .5. Now let’s look at the remainder of
Figure 2.

Notice three attributes are listed under the BD heading, and a different,
opposing trio is listed under the B3D heading. Each member of each trio is a
necessary condition that must apply to of any data in order for it to qualify,
respectively, as BD or B3D. For example, the first hallmark of BD is that
(and here we recapitulate what has been said above), whether measured
in term of number of bytes or in terms of number of symbols, the data in
question is large. The second necessary condition for some data to count
as big data simpliciter, observe, is that it must be “accessible.” What does
this mean? The idea is simple. BD must be susceptible of straightforward
processing by finite algorithms. To see this notion in action, we pull in here
the suggestive string for BD given on the lefthand side of Figure 2:

. . . 1 0 0 1 1 1 1 0 1 0 0 0 0 1 0 1 0 1 0 . . .
↑
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Figure 2: BD vs. B3D

“Big Data Simpliciter” (BD)

• byte-based/symbol-based big

• accessible

• dead

B3 Data to be 
Mastered

vs. “Big-But-Buried Data” (B3D)
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B3 Data 
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Mastery

...1001111010000101010... The limit of (2x – 5) as x approaches 3 is L.

Suppose we wanted to ascertain if the data here contains anywhere a sub-
string of seven consecutive 0’s. How would we go about answering this
question? The answer is simple: We would just engage a computation based
on a dirt-simple algorithm. One such algorithm is:

Moving simultaneously left and right, starting from the digit pointed
to by the arrow (see immediately above), start a fresh count (beginning
with one) for every switch to a different digit, and if the count ever
reaches seven, output “Yes” and halt; otherwise output “No” and
halt when the digits are exhausted.

It should be clear that this algorithm is infallible, because of the presupposi-
tion that the data in question is accessible. Sooner or later, the computation
that implements the algorithm is going to return an answer, and the cor-
rect one at that, for the reason that the data is indeed accessible. This
accessibility is one of the hallmarks of BD, and it is principally what makes
possible the corresponding phenomenon of “big analytics.” The techniques
of statistical computing are fundamentally enabled by the accessibility of the
data over which these techniques can operate.10 Things are very different,

10Of course, we give here an extremely simple example, but the principles remain firmly
in operation regardless of how much BD one is talking about, and regardless of how
multi-dimensional the BD is. The mathematical nature of BD and its associated analytics
is in fact ultimately charted by working at the level of running algorithms over binary
alphabets, as any elementary, classic textbook on the formal foundations of computer
science will show (e.g.,, see Lewis & Papadimitriou 1981).
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though, on the other side of the dichotomy: big-but-buried data is, as its
name implies, buried.

Here’s a simple example of some B3D:11 Suppose we are given the propo-
sitional datum that (a) everyone likes anyone who likes someone. And sup-
pose as well that we have a second datum: (b) Alvin likes Bill. The data
composed of (a) and (b) is how big? Counting spaces as separate charac-
ters, there are only 58 symbols in play; hence we certainly are not in the BD
realm: we are dealing with symbol-based small data; which is to say that
the second hallmark of B3D shown in Figure 2 is satisfied. Or at least the
reader will agree that it’s satisfied once the hidden data is revealed.

Toward that end, then, a question: (Q) Does everyone like Bill? The
answer is “Yes,” but that answer is buried. Most people see that data com-
posed of (a) and (b) imply that (c) everyone likes Alvin; few people see
that (a) and (b) imply that (d) everyone likes Bill. Datum (d), you see, is
buried. And notice that (d) isn’t just buried in the customary sense of being
extractable by statistical processing (so-called “data mining”): No amount
of BD analytics is going to disclose (c), accompanied by the justification for
(d) on the strength of (a) and (b).12 If you type to the world’s greatest ma-
chine for answering data queries over BD, IBM’s historic Jeopardy! -winning
Watson system (Ferrucci et. al 2010), both (a) and (b), and issue (Q) to
Watson, it will not succeed. Likewise, if you have R running before you (as
the second author does now), and (a) and (b) are represented in tabular
form, and are imported into R, there is no way to issue an established query
to express (Q), and receive back in response datum (d) (let alone a way
to receive back (d) plus a justification such as is provided via the proof in
footnote 12). To be sure, there is a lot of machine intelligence in both Wat-
son and R, but it’s not the kind of intelligence well-suited for productively
processing big-but-buried data.13

It is crucial to understand that the example involving Alvin and Bill
has been offered simply to ease exposition and understanding, and is not
representative of the countless instances of big-but-buried data that make

11The example was originally given to the second author by Professor Philip Johnson-
Laird as a challenge.

12But we supply this here: Since everyone likes anyone who likes someone, and Alvin
likes Bill, everyone likes Alvin — including Bill. But then since Bill likes Alvin, and —
again — everyone likes anyone who likes someone, we obtain: (d) everyone likes Bill. QED

13Our purposes in composing the present essay don’t include delivery of designs for
technology that can process BD and/or B3D. Readers interested in an explanation of
techniques, whether in the human mind or in a computer, able to answer queries about
big-but-buried data, and supply justifications for such answers, can begin by consulting
(Bringsjord 2008).
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possible the very data science and engineering heralded by the present book.
It is student mastery of B3D that is cultivated by excellent STEM education,
in general.14 And we are talking not just about students at the university
level; B3D is the key part of the ‘M’ in ‘STEM’ education much earlier
on. For instance, just a few hundred symbols are needed to set out the
full quintet of Euclid’s Postulates, in which the entire infinite paradise of a
large part of classical geometry resides. The data composing this paradise
is not just very large; it’s flat-out infinite. Exabytes of data does make for
a large set to analyze, but Euclid, about 2.5 millennia back, was analyzing
datasets much bigger than the ones we apply modern “analytics” too. And
the oft-forgotten wonder of it all is that the infinite paradise Euclid (and
Aristotle, and a string of minds thereafter; see e.g. Glymour 1992) explored
and mapped can by crystalized down to just a few symbols that do the
magical “hiding.” These symbols are written out in about one quarter of
a page in every geometry textbook used in just about every high school
in the United States. And geometry is just a tiny exhibit to make the
point.15 The grandest and most astonishing example of big-but-buried data
in the realm of mathematics is without question the case of axiomatic set
theory: it is now agreed that nearly all of classical mathematics can be
extracted from a few hundred B3D symbols that express a few basic laws
about the structure of sets and set operations. (Interested readers can see for
themselves by consulting the remarkably readable and lucid (Potter 2004). A
shortcut for the mathematically mature is to consult the set-theory chapter
in (Ebbinghaus, Flum & Thomas 1994).)16

Finally, with reference again to Figure 2, we come to the third hallmark
of BD (‘dead’), versus the corresponding opposing hallmark of B3D (‘live’).
What are we here referring to? A more hum-drum synonym in the present
context for ‘dead’ might be ‘pre-recorded.’ In the case of BD, the data is
pre-recorded. The data does not unfold live before one’s eyes. The analysis

14This is perhaps the place to make sure the reader knows that we know full well that
mastery isn’t always permanent. Re-education is very important, as is the harnessing of
mastery in support of ongoing work, which serves to sustain mastery. In fact, the some-
times fleeting nature of mastery only serves to bolster our case. Due to space limitations,
we leave aside treatment of these topics herein.

15As even non-cognoscenti will be inclined to suspect, Euclid only really kicked things
off, and the B3D-oriented portion of the human race is still making amazing discoveries
about plane geometry. See the positively wonderful and award-winning (Greenberg 2010).

16Lest it be thought the wonders of B3D are seen only in mathematics, we inform the
reader that physical science is increasingly being represented and systematized in big-but-
buried data. For instance, half a page of symbols are needed to sum up all the truths of
relativity theory. See (Andréka, Madarász, Németi & Székely 2011).
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of BD is of course carried out by running processes; these processes are
(by definition) dynamic, and can sometimes be watched as they proceed in
realtime. For example, when Watson is searching BD in order to decide
on whether to respond to a Jeopardy! question (or for that matter any
question), human onlookers can be shown the dynamic, changing confidence
levels for candidate answers that Watson is considering — but the data being
searched is itself quite dead. Indeed, big data simpliciter, in and of itself,
is invariably dead. Amazon’s systems may have insights into what you are
likely to buy in the future, but those insights are without question based on
analysis of “frozen” facts about what you have done in the past. Watson
did vanquish the best human Jeopardy! players on the planet, but again, it
did so by searching through dead, pre-recorded data. And IR professionals
at university U seeking for instance to analyze BD in order to devise a way
to predict whether or not a given first-year student is going to return for her
second year will analyze BD that is fixed and pre-recorded. But by contrast,
big-but-buried data is often “live” data.

Notice we say some B3D is live. Not all of it is. This bifurcation is
explicitly pictured in the bottom right of Figure 2. What gives rise to the
split? From the standpoint of education, the split arises from two different
cases: on the one hand, situations where some big-but-buried data is the
target of learning; and on the other, situations like the first, plus the live
production of big-but-buried data by the learner, in order to demonstrate
she has in fact learned. Accordingly, note that in our figure, the bifurcation
is labeled to indicate on the left that which is to be mastered by the student,
and on the right, the additional big-but-buried data which, when generated,
confirms mastery.

For a simple example of the bifurcation, we have only to turn back to
this trio

(a) Everyone likes anyone who likes someone.

(b) Alvin likes Bill.

(Q) Does everyone like Bill?

and imagine a student, Bertrand, say, who in a discrete-mathematics class,
during coverage of basic boolean logic (upon which, by the way, modern
search-engine queries over BD on the Web are based) is given this trio, and
asked to answer (Q). But what sort of answer is Betrand specifically asked
to provide? Suppose that he is asked only for a “Yes” or “No”. Then,
ceteris paribus, he has a 50% chance of getting the right answer. If Bertrand
remembers that his professor in Discrete Math has a tendency to ask tricky

Bringsjord & Bringsjord Page 11



“Big Data vs. Big-But-Buried Data” in Lane, J.E., ed., Building a Smarter University

questions, then even if Bertrand is utterly unsure, fundamentally, as to what
the right answer is, but perceives (as the majority of college-educated people
do) that certainly from (a) and (b) it can be safely deduced that everyone
likes Alvin, he may well blurt out “Yes.” And he would be right. But is
mastery in place? No. Only the live unearthing of certain additional data
buried in our trio can confirm that mastery is in place: viz., a proof (such
as that provided in footnote 12) must be either written out by Bertrand, or
spoken.

3.1 Two Anticipated Questions, Two Answers

The first question we anticipate:
“But why do you say the ‘frozenness’ or ‘deadness’ of big data simpliciter

is a necessary condition of such data? Couldn’t the very systems you cite,
for example Watson and Amazon’s recommender systems, operate over vast
amounts of big data simpliciter, while that very data is being generated?
It may be a bit creepy to ponder, but why couldn’t it be that when you’re
browsing Amazon’s products with a Web browser, your activity (and for
that matter your appearance and that of your local environment) is being
digitized and analyzed continuously, in real time? And in terms of educa-
tion, why couldn’t the selections and facial expressions of 500,000 students
logged on to a MOOC session be collected and analyzed in real time? These
scenarios seem to be at odds with the necessary condition you advocate.”

This is an excellent question, and it warrants a serious answer. Eventu-
ally, perhaps very soon, a lot of BD will indeed by absorbed and analyzed
by machines in real time. Today, however, the vast majority of BD analyt-
ics is performed over “dead” data; Figure 2 reflects the current situation.
Clearly, BD analytics is not intrinsically bound up with live data. On the
other hand, confirmation of the kind of mastery with which we are con-
cerned is intrinsically live. Of course, we do concede that a sequence in
which a student produces conclusive evidence of mastery of some B3D could
be recorded. And that recording is itself by definition — in our nomen-
clature — dead, and can be part of some vast collection of BD. A MOOC
provider, for instance, could use a machine vision system to score 500,000
video recordings of student behavior in a class with 100,000 students. But
the educational problem is this: The instant this BD repository of record-
ings is relied upon, rather than the live generation of confirming data, the
possibility of cheating rears up. If one assumes that the recording of live
responses is fully genuine and fully accurate, then of course the recording,
though dead, conveys what was live. But that’s a big if. And given that it
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is, our dead-vs. live distinction remains intact.
Moreoever, the distinction is further cemented because of what can be

called the “follow-up” problem, which plagues all recordings. This problem
consists in the fact that you can’t query a recording on the spot in order
to further confirm that mastery is indeed in place. But a professor can of
course easily enough ask a follow-up question of a student with whom he is
interacting with in the present.

In sum, then, there is simply no substitute for the unquestionably au-
thentic live confirmation of deep understanding; and, accordingly, no sub-
stitute for the confirmatory power of oral examination, over and above the
examination of dead data, even when that dead data is a record of live
activity.

We also anticipate some readers asking:
“But why do you say that the kind of data produced by Bertrand when

he gives the right rationale is big-but-buried? I can see that (a) and (b)
together compose a simple instance of B3D. But I don’t see why what is
generated in confirmation of a deep understanding of (a) plus (b) is itself a
simple case of big-but-buried data.”

The answer is that, one, as a rule, when a learner, on the spot before
one’s eyes, generates data that confirms mastery of big-but-buried data, she
has extracted that data from the vast and often infinite amount of big-but-
buried data that is targeted by the teacher for mastery; and, two, because
the data that is unearthed is itself big-but-buried data: it’s symbol-wise
small, yet hides a fantastically large (indeed probably infinite) amount of
data. In the immediate case at hand involving Bertrand, if the correct
rationale is provided (again, see footnote 12), what is really provided is
a reasoning method sufficient for establishing an infinite number of results
in the formal sciences.17 In short, and to expand the vocabulary we have
introduced, Bertrand can be said to have big-but-buried knowledge.

4 The Example of Calculus

We now as promised further flesh out the BD-vs.B3D distinction by turning
to the case of elementary calculus.

17Bertrand, if successful, will have shown command over (at least some aspects of)
what is known as recursion in data/computer science, and the rules of inference known
as universal elimination and modus ponens in discrete mathematics.
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4.1 On Big Data Simpliciter and Calculus

We begin by reviewing some simple but telling BD-based points about the
AP (= Advanced Placement) calculus exam, in connection with subsequent
student performance, in the United States. These and other points along this
line are eloquently and rigorously made in (Mattern, Shaw & Xiong 2009),
and especially since here we only scratch the surface to serve our specific
needs in the present paper, readers wanting details are encouraged to read
the primary source. We are specifically interested in predictive BD analytics,
and specifically with the question: Does performance on the Calculus AP
exam, when taken before college, predict the likelihood of success in college?
And if so, to what degree?18

The results indicate that AP Calc performance is highly predictive of
future academic performance in college. For example, using a sample size of
about 90,000 students, Mattern et al. (2009) found that those students scor-
ing either a 3, 4, or 5 on the AP Calc (AB) were much more likely to graduate
within five years from college, when compared to those who either scored
a 1 or a 2, or didn’t take the test. With academic achievement identified
with High School GPA (HSGPA) and SAT scores, the analysis included ask-
ing whether this result held true when controlling for such achievement. In
what would seem to indicate the true predictive power of student command
of calculus, even when controlling for academic aptitude and achievement
(as measured by SAT and HSGPA, run as covariates), the result remained:
those earning a 3, 4, or 5 were much more likely to graduate from college.

But why is the cognition cultivated in calculus apparently so powerful
and valuable? This is something that BD will not reveal, for the simple and
widely known reason that correlation doesn’t explain causality. A professor,
administrator, or policy maker could thus see in the analysis of BD evidence
that such cognition highly correlates with desirable outcomes (timely gradu-
ation, e.g.), but would not see what underlying, buried data define calculus,
and would not see what mastery of the subject consists in. This brute fact is
of course perfectly consistent with the real possibility that the administrator
is herself a calculus wiz: the limitation is in the nature of BD, not in the

18Analytics applied to non-buried data generated from relevant activity at individual
universities is doubtless aligned strikingly with what the College Board’s AP-based anal-
ysis shows. For instance, at Rensselaer Polytechnic Institute, grades in the first calculus
course for first-year students (Math 1010: Calc I) is highly predictive of whether students
will eventually graduate. Of course, RPI is a technological university, so one would expect
the predictive power of calculus performance. But in fact, such performance has more
predictive power at RPI than a combination of broader factors used for admission (e.g.,
HSGPA and SAT scores).

Bringsjord & Bringsjord Page 14



“Big Data vs. Big-But-Buried Data” in Lane, J.E., ed., Building a Smarter University

mind of those analyzing BD. Likewise, even if an administrator had further
correlation data (e.g., showing that achievement in economics and physics
correlates stunningly well with high performance in calculus courses, which
happens to also be true), no deep understanding of why the correlations hold
is on the table. Indeed, one could, for all that the BD analytics tells us, view
calculus as simply some kind of magical black box — but a black box to be
advocated for. We thus now look at calculus from a B3D perspective.

4.2 On Big-But-Buried Data and Calculus

Calculus19 is a tremendously important subject in the modern, digital econ-
omy — for many reasons. One reason is that, as the sort of BD analysis
visited above indicates, apparently the cognition that goes hand in hand
with learning calculus in turn goes hand in hand with academic success in
STEM.20 A second reason why calculus is crucial is that real analysis (of
which the calculus is a part, and to which, in our K–16 educational system,
calculus is the gateway) stands at the heart of many important approaches
to the analysis of BD. Contemporary macroeconomics is for instance based
on real analysis; it’s for instance impossible to understand the most powerful
macroeconomic arguments in favor of generous Keynesian spending by the

19By ‘calculus’ here we have meant and mean elementary versions of both the differ-
ential and integral calculi, invented independently three centuries ago by Leibniz (whose
ingenious and elegant notation is still used today in every calculus course) and Newton,
which are united by the Fundamental Theorem of Calculus, a result traditionally pre-
sented to students in their first calculus course. (While today calculus is taught to the
world’s students through the starting “portal” of a the concept of a limit (a contemporary
tradition echoed, of course, in the present chapter), this pedagogical approach is histori-
cally jarring, since, instead, infinitesimals (infinitely small numbers) formed the portal
through which Newton and (especially) Leibniz seminally passed to find and provide cal-
culus to humanity. Today, we know that while Leibniz was long lampooned for welcoming
such a fuzzy thing as an infinitesimal, his approach has been fully vindicated, through
the groundbreaking work of Robinson (1996), who continued the seminal work of Norwe-
gian logician Thoraf Skolem (1934), and one can even find an occasional textbook today
that gives an infinitesmal-based approach to teaching calculus.) There are many other
calculi of great importance in our increasingly digital world; for instance, the λ-calculus,
introduced by Church (1936), occupies a seminal and — often through much-used-today
formalisms to which it is mathematically equivalent — still-central place in the history of
data science.

20Of course, some of the natural sciences aren’t all that intimately bound up with
calculus; biology would be a case in point. We are saying that the cognition required to
learn and apply calculus is what transfers across learning in data science and STEM, not
all of the B3D particulars of calculus. By the way, while largely ignored, the idea that
biology itself can be expressed in just a few symbols in an axiomatic system was rather
long ago seminally presented by Woodger (1962).
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U.S. government, despite budget deficits and debt, without an understand-
ing of calculus.21

To illustrate the prudence of a focus on B3D at the present juncture in
our discussion, consider the case of Johnny, who, upon arriving as a first-year
student intending to major in math at university U , boldly announces to
Professor Smith, at orientation before the start of classes, that he (Johnny)
should leapfrog over the three math-major calculus courses (I, II, III) in the
department, straight into Advanced Analysis.

Professor Smith: “You know, Johnny, our Calc III requires not just what
some of our students call ‘plug and chug,’ but proofs. One must be able to
prove the formulas that are used for plugging and chugging.”

Johnny: “Not a problem, Sir.”
Dr. Smith, looking down at his desk, observes that Johnny received an A

in pre-college (single-variable) calculus, and scored a 5 on the Calculus AB
Advanced Placement test. Smith knows that this record is good enough, by
a decision tree generated from analysis of relevant BD, to skip Calc I for
math majors; but many students with super-high SAT scores don’t even do
that. We make two claims:

Claim 1 Even if Dr. Smith has at his beck and call all the BD in the world,
and even if by some miracle he had the time right here on the spot
to issue a hundred queries against this data while Johnny waits
in silence, he can instead find out whether Johnny is all bluster,
or the real deal, by asking one or two single-sentence questions,
and by then sitting back to see whether the young man writes
out the one or two key proofs requested, or not.22 In short, it
will be live big-but-buried data that settles the question, on the
spot.

Claim 2 The best classroom teaching arguably proceeds by way of the

21E.g., see the intriguing case in favor of Keynesian spending articulated in (Woodford
2011), in which economies are modeled as infinitely-lived “households” that maximize
utility through infinite time series, under for instance the constraint that the specific,
underlying function u, which returns the utility produced by the consumption of a good,
must be such that its first derivative is greater than zero, while its second derivative
is less than zero. Without understanding the differential calculus, one couldn’t possibly
understand Woodford’s (2011) case. And note that, in how Woodford models an economy,
he is hardly idiosyncratic, since he follows a longstanding neoclassical approach articulated
e.g. by Barro & King (1984).

22Any of the theorems explicitly presented and employed in early calculus courses (where
students are typically not asked to prove them) would do. In his NSF-sponsored, seminal
approach to engineering computers able to assist humans in their learning of calculus,
Suppes (see e.g. Suppes & Takahasi 1989) asked students to e.g. prove the Intermediate
Value Theorem.
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teacher ascertaining directly, in decidedly low-tech oral-exam fash-
ion, whether a “golden,” buried datum of true mastery or under-
standing is there or not, and then striving to get such understand-
ing to take root if not, and then testing in like manner again, and
. . . so the cycle continues until learning is confirmed.

This pair of claims can be put into action for teaching even very young
students. For instance, by using visual forms of big-but-buried data one can
quickly make serious headway in explaining the concept of a limit to even
middle-school students, and thereby build a substantial part of a path to
full-blown calculus for them. For example, see Figure 3, which is taken from
page 268 of (Eicholz et al. 1995), a middle-school textbook. Imagine that
Alexandra, in the 7th grade, is asked to determine the “percent pattern”
of the outer square consumed by the ever-decreasing shaded squares. The
pattern, obviously, starts at 1

4 , and then continues as 1
16 ,

1
64 ,

1
256 , . . .. When

asked what percentage the shaded square would “get down to” if someone
could forever work faster and faster, and smaller and smaller, at drawing
the up-down and left-right lines that make each quartet of smaller squares,
Alexandra announces: “Zero.” That is indeed none other than the limit in
the present case: the percent “in the limit” the shaded square consumes of
the original square is indeed zero. The figure in question is tiny, but hides
in gem-like fashion an infinite progression.

Figure 3: B3D-based Representation of a Limit in Seventh-Grade Math

Of course, asking for and assessing the kind of live big-but-buried data
that Johnny and Alexandra are here asked to produce, if in fact such tech-
niques can scale to millions of students (an issue we take up in §5.2), is
an expensive proposition, to put it mildly. Skeptics will pointedly ask why
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something as recherché as calculus would ever warrant the expenditure of
all the time and money it would take to ensure mastery in this manner.
Unfortunately, the mistaken view that a deep understanding of calculus is
a needless luxury is shared by many.

In fact, even among many members of the Academy in our day, the view
that calculus has narrow value is firmly afoot. Many university professors
are under the impression that calculus has value in fields like engineering,
math itself, and the like, but doesn’t reach across the human experience.
Unfortunately, this view is inconsistent with intellectual history, and specif-
ically of the fact that without calculus, everyday concepts like motion are
incomprehensible. One way to reveal this, and to thereby reveal the igno-
rance behind sarcastic, short-on-ratiocination calls (such as the recent one
from Baker 2013) to block federal educational standards requiring higher-
level mathematics in high school, is to turn to some of Zeno’s paradoxes of
motion, for instance to the Paradox of the Arrow. For if such a paradox
cannot be resolved, our everyday conception of motion leads us directly to
contradiction.

4.2.1 The Paradox of the Arrow

Here then a summary in our words of Zeno’s reasoning:23 “Time is composed
of moments, and hence a moving arrow must occupy a space filled by itself at
each moment during its supposed travel. Our arrow is thus at a particular
place at each moment during its supposed travel. Assuming for the sake
of argument that an arrow (supposedly) travels only a short distance, the
picture given in Figure 4.2.1 should be helpful. But there is no motion here
whatsoever. After all, places certainly don’t move. Hence, if, as shown, the
arrow is at each moment at a particular place, occupying a space equal to
its volume, the arrow cannot possibly ever really move: it is not moving at
any of the moments mi, since at each such moment it is simply at the place
where it is, and there are no other moments at which it can move! The
reasoning here can be effortlessly generalized to show that the movement of

23The vast majority of Zeno’s direct writings are unfortunately not preserved for us
living in the big-data era: We know of Zeno’s reasoning primarily via Aristotle’s (certainly
compressed) presentation of it. The Paradox of the Arrow is presented by Aristotle in
Physics, 239b5-32, which can be found in (McKeon 1941). The titles given to Zeno’s
paradoxes (with ‘Paradox of the Arrow’ no exception) have been assigned and affirmed by
commentators coming after him. Zeno himself wrote in the fifth century B.C. Aristotle
about two centuries later. Would-be scholarly detectives with an interest in intrigue, we
promise, will be nicely rewarded by searching out what is written/known about both Zeno
the man and his work, beyond Aristotle as source.
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anything is an illusion.”

Table 1: Zeno’s Framework for Paradox of the Arrow

Moments Places Where Arrow Located

m1 −→
@ place 1

m2 −→
@ place 2

m3 −→
@ place 3

m4 −→
@ place 4

The quickest way to reveal to an intelligent person in the modern infor-
mation age the centrality and indispensability of calculus for understand-
ing the world in more than a mere child-like, hand-wavy manner is to ask
whether motion is real; and upon receiving an affirmative, to then ask how
that can be in the light of the Zenoian reasoning given here. (It is not a co-
gent response to simply shoot an arrow or throw a baseball and say “See?”,
since Zeno’s claim is precisely that while things certainly seem to move, they
actually don’t.) All cogent responses must include appeal to calculus, and
all the big-but-buried data that calculus at bottom is.24 We might mention
that in light of this, it is quite astonishing that, in response to Common
Core Math Standards urged by the U.S. Department of Education and most
States (the main rationale for which is of course based upon analysis of BD
showing that U.S. students, relative to those in other countries with whom
they will be competing in the global, data-driven economy, are deficient),
some maintain that mathematics should be simply an elective in high school.
For instance, Baker (2013) stridently advances the claim that even a dedi-
cated high-school algebra course is, for most, downright silly, and downright

24Put with brutal brevity, one learns in calculus that the escape from Zeno’s otherwise
valid reasoning is that motion is formally defined in terms of what occurs at “nearby”
moments. An arrow simply can’t be motion in or during a particular moment, but thanks
to calculus, we know precisely that it can certainly and easily have instantaneous ve-
locity (formally defined early in a first calculus course using derivatives), since a traveling
arrow is at different positions at moments before or after the instant in question. Zeno’s
reasoning stood rock-solid and (assuming honesty on the part of those courageous enough
to confront it) compelling, despite rather desperate attempts to refute it (Aristotle struck
out first), for millennia, until the advent of calculus.
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painful; and, accordingly, no such course should be required.25 Needless to
say, if the ordinary motion of everyday objects makes no intellectual sense
without at least a fundamental conception of calculus, without mastery of
even algebra one quickly advances toward lowering a definition of the human
from — to use Aristotle’s phrase — rational animal to just animal. And
of course it is impossible that our universities produce the data scientists
our economy needs without taking in students who know algebra, and who
can then build upon that knowledge out to knowledge of valuable analytics,
including techniques requiring calculus.

5 The Future

As promised, we now briefly touch upon the future, in connection, respec-
tively, with IBM’s Watson system, and following naturally on that, with
so-called intelligent tutoring systems (ITSs), AI systems able to tutor
individual students in various disciplines.26

25Among the many fallacies committed by Baker (2013) is this prominent one: reductio
ad absurdum deployed in the absence of any absurdity. All serious students of mathematics
are taught that when deploying this rule of inference, one must obtain the absurdity or
contradiction in question, at which point one is then free to reject the proposition that
implies the absurdity. Baker, apparently having never been taught this, blithely quotes
(out of context, by the way) snippets from algebra textbooks, taking it for granted that the
absurdity is thereby made plain (so that, in turn, the required teaching of these textbooks
is shown to be a very bad idea). For instance, we are supposed to instantly perceive the
absurdity in the following, which is word for word in its entirety a specimen of what Baker
confidently presents and assumes to be self-evidently absurd:

A rational function is a function that you can write in the form f(x) = P (x)
Q(x)

,

where P (x) and Q(x) are polynomial functions. The domain of f(x) is
all real numbers except those for which Q(x) = 0. (Quoted on p. 32 of
(Baker 2013).)

It is easy to see that if this is taken to be self-evidently absurd (simply because some
will find it inscrutable?), Baker’s project is vitiated by parody, since plenty of people
find, say, Dante to be absurd and inscrutable and inapplicable in everyday life. (And if
not Dante, then certainly for every chap who finds Baker’s specimen absurd, we can find
one who regards the altiloquent sentences of Proust to be self-presentingly silly). Euclid,
so far as we know the first systematic user of reductio ad absurdum, taught us that this
pattern of inference requires putting on clear display, for all to uncontroversially see, the
contradiction in question.

26For a superlative introduction to ITSs, and BD analysis regarding their effectiveness,
see (VanLehn 2011).

Bringsjord & Bringsjord Page 20



“Big Data vs. Big-But-Buried Data” in Lane, J.E., ed., Building a Smarter University

5.1 Watson, BD, B3D, and the Future

Most people, at least those in the U.S., are aware of the fact that Watson, an
AI system engineered by IBM, triumphed to much fanfare in 2011 over the
best (at the time) human Jeopardy! players. Most people are also aware of
the fact that this victory for a machine over humans expert in a particular
game follows an entrancing pattern that IBM established and pulled off
previously, when, in a 1997 rematch, its Deep Blue, a chessplaying computer
program, with the world watching move by move, beat Gary Kasparov, at
that time the greatest human chessplayer on the planet. Yet the pattern
isn’t quite the same, for there is a big difference between the two AI systems
in question: Whereas Deep Blue had narrow expertise and no capacity to
process data expressed in so-called natural languages like English and
Norwegian, Watson does have such a capacity (with respect to English,
currently). To put it bluntly, despite the fact that a chessplaying machine
of the power of Deep Blue realized one of the longstanding and strategically
targeted dreams of AI (e.g., see Newell 1973), chess, compared to challenges
that involve human language, is easy (Bringsjord 1998). And yet Watson
too has some noteworthy limitations.

For example, while Watson is able to return correct answers to many
natural-language questions, it does so on the strength, specifically, of its
having on hand not simply vast amounts of frozen BD, but specifically vast
amounts of frozen structured BD. The reader will recall that we defined
‘data’ for purposes of the present inquiry (§2), but we left aside the dis-
tinction between structured and unstructured data. Structured data is data
nicely poised for profitable processing by computation. Paradigmatic struc-
tured data would for example be data in a relational database, or a spread-
sheet; the College-Board data discussed briefly above, for instance, was all
structured, and housed in databases. Unstructured data includes what we
humans for the most part use for human-to-human communication: emails,
narratives, movies, research papers, lectures, diagrams, sketches, and so on;
all things that computers cannot currently understand (to any real degree,
anyway), not even Watson. Fortunately for fans of BD and BD analytics,
and for IBM, this limitation on Watson can be manually surmounted via
ingenious human engineering, carried out within a seminal framework that
was invented long before Watson.27 This engineering takes unstructured
data in a given domain in as input, and “curates” it to produce correspond-
ing structured data that can be penetratingly analyzed by Watson and its

27That framework is UIMA; see (Ferrucci & Lally 2004).
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wondrous algorithms.28

Can the manual “translation” from unstructured to structured data
be automated? IBM recently announced a $100 million expansion in the
planned reach and power of Watson (Ante 2014), but that expansion ap-
pears to sustain the need for engineers to “translate” unstructured infor-
mation in some domain (e.g., medicine) into structured data. A profound
and open question about the future is whether or not the process of passing
from unstructured to structured data can be automated.29 Without that au-
tomation in place, the cost of providing deep question-answering technology
for the university community (and, indeed, any community) will continue
to carry the labor cost of data scientists and engineers having to configure
Watson for deployment. That cost may or may not be surmountable.

But more to the points at hand in the present essay, we remark upon a
second limitation that currently constrains Watson: It can only handle ques-
tions about BD, not B3D. Watson, as suitably pre-engineered for Jeopardy!
competition, would presumably be able to answer, say,

• “Watson, what ‘Little Flower’ famously ran the Big Apple?”

and this capacity is without question a stunning achievement for AI. But
Watson cannot currently handle this (now-familiar-to-our-readers!) ques-
tion:

• “Watson, what is the limit of the function two times x, minus five, as x
approaches three?”30

28It’s important to note, and concede, that human communication makes extensive and
routine use of diagrammatic information (pictures, videos, diagrams, images, etc.), and
that the AI challenge of engineering intelligent machines able to genuine process such
content is a severe one. Along these lines, see (Bringsjord & Bringsjord 1996). We used
a diagram to represent big-but-buried data above, in Figure 3. There is currently no
foreseeable set of AI techniques that would allow a computing machine to understand
what even bright middle-schoolers grasp upon study of the remarkably rich diagram in
question.

29Some automation has been, and is being, pursued. See e.g. (Fan, Ferrucci, Gondek &
Kalyanpur 2010, Bringsjord, Arkoudas, Clark, Shilliday, Taylor, Schimanski & Yang 2007).
But such automation falls far short of what the human reader is capable of.

30It is possible, subsequent to the publication of the present chapter (since it will then
end up being frozen for future consumption and available on the Internet, that the very
text you are reading might happen to end up being “digested” by Watson, in which case
Watson might in fact return ‘1.’ But obviously a question along the same line, but never
asked in the history of our race, could be devised, and posed to Watson. And besides,
Watson could be asked, as the aforementioned Johnny was, to prove the answer returned
correct.
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If in the future Watson developed an ability to answer such questions, the
consequences for the Academy would be momentous. For then “under one
roof,” Watson’s analysis of BD would be powerful, and deep education cen-
tered around B3D could in theory be provided as well. In other words,
Watson would be in position to function as a revolutionary component of
an intelligent tutoring system (ITS), a category of intelligent machinery to
which we now briefly turn our attention.

5.2 Intelligent Tutoring Systems and the Future

It has doubtless not escaped the reader’s attention that the kind of edu-
cation on which we have tended to focus herein is certainly more akin to
one-on-one tutoring than to, for instance, the kind of instruction offered by
a professor teaching a MOOC to myriad students spread across the globe.
Yet our focus is purely a function of the intimate relationship that unde-
niably exists between tutoring-style education and big-but-buried data; the
focus, for the record, is not reflective of any animus on our part to other
pedagogical structures. For example and for the record, we both regard peer-
to-peer learning to be powerful. Regardless, in the future, why can’t ITSs
be imbedded within MOOCs? Why can’t each of the tens (or hundreds . . .)
of thousands of students signed up to take calculus in a MOOC, or signed
up to watch educational videos from Khan Academy (which offers many
excellent ones on calculus), whether they are students at the high-school or
college level, also have supplementary interaction with an ITS?

If the correct answer to these questions is the sanguine “There’s no
reason why they can’t!”, it follows immediately that tomorrow’s AI systems,
specifically ITSs, will somehow obtain a capacity for understanding natural
language, and for understanding infinite sets and structures; but the hope
that such capacities will be acquired by tomorrow’s computing machines is
unsupported by any empirical evidence on hand today. Today, no AI system,
and hence no ITS, can genuinely understand the natural-language sentences
we routinely use; nor can such a system understand the infinitary nature
of even our elementary mathematics. Both plane geometry and calculus,
the two branches of mathematics touched upon most above, are irreducibly
infinitary in nature, in that the key structure they presuppose is one and
the same: the continuum; that is, the reals, which are not only infinite, but
breathtakingly so.31 In light of this daunting situation, there is certainly

31The reals are larger than the natural numbers (0, 1, 2, . . .), and larger too than the
rational numbers (natural-number fractions). For readable explanation and proof, see
(Boolos, Burgess & Jeffrey 2003).
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much work to be done, and that work will need to be paid for.

6 Future Work

We view the present chapter as a prolegomenon to, and call for, research.
There are at least two trajectories such research must take. The first is
to climb toward a seamless integration between administrators on the one
hand, and on the other educators “on the ground.” Making this climb re-
quires that BD and B3D must themselves be seamlessly integrated. It’s not
enough to be able to pinpoint that failure to graduate can be predicted by
a failure to secure a strong grade in calculus. We must reach a time when,
having pinpointed such things, we can in response simulate a range of edu-
cational interventions, personalized for each particular student, in order to
find those that lead to mastery of big-but-buried data. Implementing those
interventions will then in turn lead back to improvement signaled at the
BD level, for instance higher graduate rates across a university, a university
system, a state, or across the United States as a whole. The second tra-
jectory is of course r&d devoted specifically to providing the availability of
these implementations; that is, to the design and engineering of intelligent
tutoring systems with the kind of unprecedented power we have described.
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