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1 Introduction

This chapter explains the approach to reaching the overarching scientific goal of capturing the

cognition of persons in computational formal logic.1 The cognition in question must be coherent,

and the person must be at least human-level (i.e., at least a human person).2 In what can reasonably

be regarded to be a prequel to the present chapter, (Bringsjord 2008), a definition of personhood,

with numerous references, was provided; for economy here, that definition is not recapitulated. This

chapter shall simply take faute de mieux a person to be a thing that, through time, in an ongoing

cycle, perceives, cognizes, and acts (Sun & Bringsjord 2009).3 The cognizing, if the overarching

goal is to be reached, must be comprised, all and only, of that which can be done in and with

computational formal logics. Since it has been proved that Turing-level computation is capturable

by elementary reasoning over elementary formulae in an elementary formal logic,4 any cognition

that can be modeled by standard computation is within the reach of the methodology described

herein, even with only the simplest logics in the universe U in Figure 3, and explained below.5

However, it is important to note a concession that stands at the heart of the logicist research

program explained herein: viz. that even if this program completely succeeds, the challenge to

1As some readers may know, there is such a thing as informal logic; but the present overview leaves aside this
field, entirely. Whatever virtues informal logic may have, because it cannot be used to compute (which is true in turn
simply because informal language, the basis for informal logic, cannot be a basis for computing, which by definition
is formal), it is of no use to practitioners of logic-based (computational) cognitive modeling. A introduction to and
overview of informal logic, which confirms its informal linguistic basis, is provided in (Groarke 1996/2017).

2It is of course entirely possible that there exist now or will exist in the future persons who aren’t humans; this
possibility, as the reader will no doubt well know, is a prominent driver of science-fiction and fantasy literature. In
addition, many religions of course claim that there are non-human persons. (In the case of Christianity, e.g. The
Athanasian Creed asserts that God is a person.) Even if all such religious claims are false, things clearly could have
been such that some of them were true, so the concept of personhood outside of H. sapiens is perfectly coherent. In
fact, the field of AI, which is intimately bound up with at least computational cognitive science and computational
psychology, is a testament to this coherence, since, in the view of many, AI is devoted to building artificial persons (a
goal e.g. explicitly set by Charniak & McDermott 1985); see (Bringsjord & Govindarajulu 2018) for a fuller discussion.
Finally, it is very hard to deny that humans will increasingly modify their own brains in ways that yield “brains” far
outside what physically supports the cognition of H. sapiens; see in this regard (Bringsjord 2014).

3Cf. the similar cycle given in (Pollock 1995).
4There are multiple proofs, in multiple routes. A direct one is a proof that the operation of a Turing machine

can be captured by deduction in first-order logic = L1; e.g. see (Boolos, Burgess & Jeffrey 2003). An indirect route
is had by way of taking note of the fact that even garden-variety logic-programming languages, e.g. Prolog, are
Turing-complete.

5One of the advantages of capturing cognition in formal logic is that it is the primary way to understand compu-
tation beyond the level of standard Turing machines, something that, interestingly enough, is exactly what Turing
himself explored in this dissertation under Alonzo Church, a peerless introduction to which, for those not well-versed
in formal logic, is provided by Feferman (1995). For a logic-based, indeed specifically a quantifier-based, introduction
to computation beyond what a Turing machine can muster, see (Davis, Sigal & Weyuker 1994).
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cognitive science of specifying how it is that logic-based cognition emerges from, and interacts

with, sub-logic-based processing in such things as neural networks will remain. Theoretically, in

the artificial and alien case, where the underlying physical substrate may not be neural in nature,

this challenge can be avoided, but certainly in the human case, as explained long ago by Sun (2001),

it cannot: humans are ultimately brain-based cognizers, and have a “duality of mind” that spans

from the sub-symbolic/neural to the symbolic/abstract.

The remainder of the chapter unfolds straightforwardly as follows. After a brief orientation to

logic-based (computational) cognitive modeling (LCCM), the necessary preliminaries are conducted

(e.g., it is explained what a logic is, and what it is for one to “capture” some human cognition).

Next, three “microworlds” or domains are introduced; this trio is one that all readers should

be comfortably familiar with (natural numbers and arithmetic; everyday vehicles, and residential

schools, e.g. colleges and universities), in order to facilitate exposition in the chapter. Then the

chapter introduces and briefly characterizes the ever-expanding universe U of formal logics, with

an emphasis on three categories therein: deductive logics having no provision for directly modeling

cognitive states, non-deductive logics suitable for modeling rational belief through time without

machinery to directly model cognitive states such as believes and knows, and finally non-deductive

logics that enable the kind of direct modeling of cognitive states absent from the first two types of

logic. The chapter’s focus then specifically is on two important aspects of human-level cognition

that must be modeled in logic-based fashion: the processing of quantification, and defeasible (or

nonmonotonic) reasoning. For coverage of the latter phenomenon, use of an illustrative parable

involving a tornado is first used, and then turn the chapter turns to the Suppression Task, much

studied and commented upon in cognitive science. To wrap things up, there is a brief evaluation

of logic-based cognitive modeling, and offered in that connection are some comparisons with other

approaches to cognitive modeling, as well as some remarks about the future of LCCM. The chapter

presupposes nothing more than high-school mathematics of the standard sort on the part of the

readers.
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2 Preliminaries

For the goal of capturing the cognition of persons in computational formal logic to be informative

to the reader, it is naturally necessary to engage in preliminary exposition to explain what a logic

is, what specifically a computational logic is, what cognition is herein taken to be, and finally what

capturing cognition via formal logic amounts to.

2.1 Anchoring Domains for Exposition: Numbers; Vehicles; Universities

In order to facilitate exposition, it will be convenient to rely upon straightforward reference to

three different domains of discourse, each of which will be familiar to the reader: viz., the natural

numbers and elementary arithmetic with them, which all readers presumably learned about when

very young; everyday vehicles (cars, trucks, etc.); and residential schools, such as colleges and

universities.

The natural numbers, customarily denoted by ‘N,’ is simply the set

{0, 1, 2, 3, . . .},

and ‘elementary arithmetic’ simply refers to addition, subtraction, multiplication, and so on. Read-

ers are assumed to know for instance that zero ∈ N multiplied by 27 ∈ N is zero. (Later in the

chapter, in §4.4, a rigorous, axiomatic treatment of elementary arithmetic, so-called Peano Arith-

metic will be provided.)

As to the domain of vehicles, the reader is assumed to understand the things represented in

Figure 1, which should now be viewed, taking care to read its caption. Three types of familiar

vehicles are invoked; each vehicle can be either of two colors (black or grey). Each vehicle is either

located at a particular position in the grid shown, or is outside and adjacent to it. The grid is

oriented to the four familiar directions, of North, East, South, and West.

What about the domain of residential schools? Here nothing is assumed beyond a generic

conception, according to which such institutions, for instance colleges and universities, include

agents that fall into the categories of student, teacher, and staff; and include as well that the
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Figure 1: The Vehicular Domain. The three types of vehicle are shown: cars, box trucks, and buses.
The reader will note that there is also a diagram that indicates the existence (and perhaps location)
of a “mystery” vehicle; such a vehicle is either a car or a box truck or a bus — but which it is is
not conveyed via visual information. Each vehicle is either colored black or grey (there is one grey
vehicle in the grid (a box truck), and one such vehicle outside the grid (a car). Notice that vehicles
can be denoted by names (or constants). Finally, we have the standard four directions.

standard buildings are in place in accordance with the standard protocols. For example, residential

universities have dormitories, classrooms, and libraries. It is specifically assumed that all readers

have common knowledge of the invariants seen in such schools, for instance that they commonly

have classes in session, during which time students in the relevant class perceive the teacher, hold

beliefs about this instructor, and so on.

2.2 What is a formal logic?

It suffices here to provide two necessary conditions for something’s being a formal logic.6

The first of these two necessary conditions is that one can’t have a formal logic unless one has a

6As to an an informal logic, it is not known how to formally define such a thing, and at any rate doing so in
anything like a scientific manner is likely conceptually impossible. On the other hand, please note that everything
said in the present section is perfectly consistent with conceptions of a formal inductive logic, which is distinguished
by reasoning that is non-deductive. For a nice, non-technical introduction to inductive logic see (Johnson 2016). For
a sustained rigorous introduction to formal inductive logic of the model-theoretic variety, which subsumes probability
theory, see (Paris & Vencovská 2015).
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formal specification of what counts as a formula, and in the vast majority of cases this specification

will be achieved by way of the definition of a formal language L composed minimally of an alphabet

A and a grammar G.7 Without this, one simply doesn’t have a formal logic; with this, one has

the ability to determine whether or not a given formal logic is expressive enough to represent some

declarative information. Importantly, it is often the case that some natural-language content to

be expressed as a formula in some (formal) logic L cannot be intuitively and quickly expressed

correctly by a simple formula in the formal language for L , so that the formula can then be used

(for example by a computer program) instead of natural language. For example, the (declarative)

natural-language sentence (1n)“Every car is north of some bus that’s south of every truck,” which

is true in Vehicular Scenario #1 shown in Figure 2, can’t be represented in any dialect of the

propositional calculus = Lpc, since no object variables are permitted in this logic.8 But this

natural-language sentence is easily expressed in first-order logic = L1 by the following formula in

its formal language:

(1l) ∀x[C(x)→ ∃y(By ∧N(x, y) ∧ ∀z(T (z)→ S(y, z)))].

Here x and y are object variables, C is a unary relation symbol used to express being a car, B

denotes the property of being a bus, and N is a binary relation symbol that represents the property

of being north-of. In addition, we have in L1 the two standard and ubiquitous quantifiers: Where

ϕ is any object variable, ∃ϕ says that there exists an object ϕ, and ∀ϕ says that for every ϕ. The

formal grammar of L1 is not given here, since the level of detail required for doing so is incompatible

with the fact that the present chapter is first and foremost an overview of cognitive modeling via

logic, not a technical overview of logics themselves. The reader should take care to verify, now,

that the formula (1l) does in fact hold of the scenario shown in Figure 2.

Note that without having on hand a precise definition of the formal language L that is the

basis for a given formal logic L , there is simply no way to rigorously judge the expressive power of

7Please note that this pair 〈A,G〉 needn’t be purely symbolic/linguistic. The pair might e.g. include purely visual
or “homomorphic” elements. See the logic Vivid as a robust, specified example (Arkoudas & Bringsjord 2009). This
issue is returned to at the conclusion of the chapter.

8Starting here and continuing through to the end of the chapter, a subscript of n simply indicates that the
proposition so labeled is in natural language, whereas a subscript of l conveys that the formula so labeled is in some
logic.

5



N

S

W E

Figure 2: Vehicular Scenario #1

some L that is being referred to, and hence no way to judge whether L (or for that matter some

theory in cognitive science that purports to subsume L ) is up to the task of modeling, say, some

proposition that some humans apparently understand and make use of.

Now, what is the second necessary condition for L ’s being a formal logic, over and above

the one saying that L must include some formal language? This second condition is disjunctive

(inclusive disjunction used: i.e. either disjunct, or both, must hold) in nature, and can be stated

informally thus:

Any bona fide logic must have a fully specified system for checkable inference (chains of which

are expressed as proofs or arguments, where each link in the chain conforms to an inference

schema), and/or9 a fully specified system for checkable assignments of semantic values (e.g.,

true, false, probable, probable at value (some number) k, indeterminate, etc.) to

formulae and sets thereof.

Note that above use was made of truth and falsity in connection with first-order logic = L1,

9Again, this is inclusive disjunction. The two disjuncts represent the two major, sometimes-competing schools in
logic, namely proof-theory and model-theory. Proponents of the first school avoid traditional semantic notions. The
reason why the disjunction is inclusive is that some logicians would desire to see both disjuncts satisfied. In particular,
model theorists emphasize semantics, but take proofs to be witnesses of validity of formulas.
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since it was said that the formula (1l) in this formal logic is true on Vehicular Scenario #1. Note

as well that the semantic categories for a given logic can often exceed the standard values of true

and false. To make this concrete and better understand, take a look back at Figure 1 now, and

consider the natural-language statement (2n) “Car v19 is east of every truck.” Expressing this

declarative sentence in L1 as a formula yields

(2l) ∀x[T (x)→ (E(vr19, x) ∧ C(v19))],

and what is the semantic value of this formula on the scenario shown in Figure 1? There is simply

no way to know, because while we know that vehicle v19 is a car, it’s not in the grid. We thus

can add the semantic value indeterminate to what we have available for modeling; and this is

the value of (2l) on the scenario in question. For excellent treatment of a trivalent form of L1, in

connection as well with a grid-based microworld, see (Barwise & Etchemendy 1994).

For those in favor of couching formal theories of meaning for natural language (and of cognition

relating to the use of natural language) in terms of proof, (2l) is indeterminate specifically because

it can’t be proved from the information given in Figure 1, nor can the negation of this formula

be proved from this information. However, notice something interesting about the scenario in this

figure: Suppose that we knew what kind of vehicle the mystery vehicle in Figure 1 is; specifically,

suppose that that vehicle is a bus. In addition, assume that vehicle v19 is located in some square

in not the eastmost column, but the column one column to the west of the eastmost column. Given

this additional information, we can easily prove (2l) from the information we have under these

suppositions. For some, for instance Francez (2015) (and such thinkers are aligned with the purely

inferential understanding of what a logic is within the disjunction given in the second necessary

condition above), the meaning of the natural-language sentence (2n) for an agent consists in its

being inferable from what is known by that agent. We spare the reader the formal chain of inference

in L1 that constitutes a formal proof of (2l). Such a proof is by cases, clearly. The proof starts

with noting that v19 will be in one of four different locations in the column in question, and then

proceeds to consider each of the only two trucks in the scenario; both of them are west of each of

these four locations.
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2.3 What is a computational formal logic?

Since the topic at hand is cognitive modeling via logic, and cognitive modeling is by definition a

computational affair, it is necessary to understand what a computational logic is. All readers will

have come to this chapter with at least an intuitive conception of what a logic is (and now, given

the foregoing, they will have deeper understanding), but no doubt some will be quite puzzled by the

reference to a “computational” logic. This is easy to address: a computational logic is just a logic

that can be used to compute, where computing is cast as inference of some sort. Since computing

in any form can be conceived of as a process taking inputs to outputs by way of some function that

is mechanized in some manner, in the logicist approach to cognition, the mechanization consists

in taking inputs to outputs by way of reasoning from these inputs (and perhaps other available

content). This is as a matter of fact exactly how logicist programming languages, for instance

Prolog, work. Often the inputs are queries, and the outputs are answers, sometimes accompanied

by justificatory proofs or arguments. When Newell and Simon presented their system LogicTheorist

at the dawn of AI in 1956, at the Dartmouth College, this is exactly what the system did. The logic

in question was the propositional calculus, the inputs to LogicTheorist were queries as to whether

or not certain strings were theorems in this logic, and the outputs were answers with associated

proofs. For more details, see the seminal paper of Simon’s (1956), for a recent overview of the history

to which we refer, in the context of contemporary AI, see (Russell & Norvig 2020, Bringsjord &

Govindarajulu 2018).

2.4 What is cognition?

Now to the next preliminary to be addressed, which is to answer: What is cognition? And what is

it to cognize? Put another way, this pair of questions distill to this question: What is the target

for logicist cognitive modeling?

Fortunately, an efficient answer is available: Cognition can be taken to consist in instantiation

of the familiar cognitive verbs: communicating, deciding, reasoning, believing, knowing, fearing,

perceiving, and so on, on through all the so-called propositional attitudes (Nelson 2015). In other,

shorter words, whatever cognitive verb is targeted in human-level cognitive psychology, for instance
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in any major, longstanding textbook for this sub-field of cognitive science (e.g. see Ashcraft &

Radvansky 2013), must, if the overall goal of logicist modeling is to be achieved, be captured by

what can be done in and with computational formal logics.

2.5 What is it to capture cognition in formal logic?

But how is it known when logicist cognitive modeling of human-level cognition succeeds? Such

modeling succeeds when selected aspects of human-level cognition are captured. But what is it

to “capture” part or all of human-level cognition in computational formal logic? After all, isn’t

‘capture’ operating as a metaphor here, and an imprecise one at that? Actually, the concept of

formal logic managing to capture some phenomena is not a metaphor; it’s a technical concept,

one easily and crucially conveyed here without going into its ins and outs: Some phenomena P is

captured by some formal content CP , expressed in a (formal) logic L if and only if all the elements

p in P are such that from CP one can provably infer in L the formal counterpart Cp that expresses

p. To illustrate with a simple example, suppose that the phenomena in question is the appearance

of English declarative sentences (in response, say, to some queries) about elementary arithmetic.

So an element here could be (3n) “Twelve is greater than two plus two,” or (4n)“Seven times one

is seven,” or (5n) “Any (natural) number times 1 is that number,” and so on. It is known that

the particular, familiar formal logic first-order logic = L1 can express such sentences rather easily.

For instance, if ṅ is a constant in this logic’s language to denote the natural number n, and × is

a function symbol in this language for multiplication, the latter two sentences are expressed in L1

by two formulae (4l) and (5l), respectively, like this:

• (4l) := 7̇× 1̇ = 7̇

• (5l) := ∀ṅ(ṅ× 1̇ = ṅ)

And now, what of capturing? There is a rather famous body of content, composed of a set of

formulae in first-order logic, known as Peano Arithmetic, or just PA; it captures all of elementary

arithmetic.10 Given what we said above, this means that every relevant sentence s about elementary

10Nice coverage is provided in (Ebbinghaus, Flum & Thomas 1994).
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arithmetic not only can be expressed by some corresponding formula φs in L1, but that every such

sentence that’s true can be proved from PA. This is in fact true of (4l) and (5l). Elementary

arithmetic has been captured,11 as has content in other fields outside mathematics.12 For now,

this will do in order to provide the reader with some understanding of the ambition, seen in action

below, to capture the defeasible reasoning of human persons. More specifically and concretely, for

this ambition to be reached, it must be shown that there is some logic such that, whenever such a

person defeasibly reasons to some declarative sentence s, there is some content in that logic from

which a formula φs expressing s can be defeasibly inferred. In the present chapter, this is shown

in connection with a reasoning task that has been much studied in cognitive science: namely,

the fascinating suppression task, introduced by Byrne (1989). This coming discussion will take

advantage of the fact some scholars who have worked hard to model and computationally simulate

human reasoning and logic, have specifically tried their hand at the suppression task, which appears

to clearly call specifically for defeasible reasoning, not just purely deductive reasoning. But before

discussing this task and its treatment, some preparatory work must be carried out.

3 The Universe of Logics & This Chapter Located Therein

Please at this point consult Figure 3. This picture is intended to situate the present chapter within

the context of the universe of logics that are available for modeling of cognition. There will be no

concern here with any logics that permit expressions that are themselves infinitely long; therefore

we are working outside the “Infinitary” oval on the left side of the all-encompassing oval shown in

Figure 3. (This omission will be returned to in the final section of the chapter.) Hence discussion

herein is within the “Finitary” oval shown. Notice that within that oval there are shown two

sub-categories: “Intensional” versus “Extensional.” Roughly speaking, the first of these categories,

which subsumes what are known as modal logics, is marked by logics that are tailored to represent

11For a technical presentation of the concept of capture, including the arithmetic case just drawn from, see (Smith
2013).

12E.g., formal logic has successfully captured major parts of mathematical physics; specifically, e.g., classical me-
chanics (McKinsey, Sugar & Suppes 1953) and — much more recently — special relativity (Andréka, Madarász,
Németi & Székely 2011). In addition, Pat Hayes captured significant parts of everyday, näıve physics in L1:
(Hayes 1978, Hayes 1985).
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such cognitive verbs as we cited above: for example, believing, knowing, intending, and also verbs

that are “emotion-laden,” such as hoping, desiring, fearing, and so on. The logics that are up

to the task of representing content that is infused with such — to use again the phrase that has

been popular in philosophy — propositional attitudes (Nelson 2015) must be sensitive to a key

fact arising from the cognition involved: viz., that when an agent has such an attitude toward a

proposition, it’s not possible to compute compositionally what the semantic value of the overall

attitude is from such values assigned to the target propositions. A simple example illustrates this

phenomenon:

Consider the proposition p1 that Umberto believes that Terry believes that Umberto is brilliant.

Now suppose that p2 it’s true that Umberto is brilliant. Does it follow from the fact that p1 is true

that p2 is as well? Clearly not. Umberto may well believe that Terry thinks that he (Umberto) is

quite dim. In stark contrast, every logic in the category “Extensional” is such that the semantic

values of molecular propositions built on top of “atomic” propositions are fully determined by the

semantic values of the atomic propositions. In the very earliest grades of the study of mathematics,

this determination is taught to students, because such students, across the globe, are first taught

the rudiments of the propositional calculus (shown as LPropCalc in Figure 3). In this logic, once

one knows the value of sub-formulae within a composite formula, one can directly compute the

value of the composite formula. For instance, in LPropCalc, if p is false and q is false, we know

immediately that the value of the composite material conditional p→ q true.

4 Quantification and Cognition

From the perspective of those searching to capture human-level cognition via logic, there can be

little doubt that quantification is a key, indeed perhaps the key, factor upon which to focus. Some

quantification at work has already been seen above, in connection with both the vehicular domain

and elementary arithmetic. Hence the reader is now well aware of the fact that ‘quantification’

in the sense of that word operative in LCCM has nothing to do with conventional construals of

such phrases as “quantitative reasoning.” Such phrases usually refer to quantities or magnitudes

in some numerical sense. Instead, in formal logic, and in LCCM, quantification refers specifically
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Figure 3: The Ever-Expanding Universe of Logics. The universe of formal logics can be first divided
into those that allow expressions which are infinitely long, and those that don’t. Among those that
don’t, the propositional calculus and first-order logic have been much employed in CogSci and AI.
The boxed logics are the ones key to the upcoming analysis and discussion. Note that in the previous
section there was crucial use of L1.

12



to the use of of quantifiers such as ‘all,’ ‘some,’ ‘many,’ ‘a few,’ ‘most,’ ‘exactly three,’ and so on.

In particular, this chapter has placed and will continue to place emphasis upon the two quantifiers

that are used most in at least deductive formal logics, the two quantifiers that (accompanied by

some additional machinery) form the basis for most of the formal sciences, including mathematics

and theoretical computer science. These two quantifiers are exactly the ones we have already seen

in action above: ∀ (read as ‘for every’ or ‘for all’) and ∃ (read as ‘there is at least one’ or ‘there

exists at least one’). Again, when these two quantifiers are employed, almost invariably they are

immediately followed by an object variable, so that the key constructions are

∀ϕ . . .

and

∃ϕ . . . ,

where, as above ϕ is some object variable, for example x, y, or z. These constructions, as the

reader will recall, are read, respectively, as “For every thing ϕ . . .” and “There exists at least one

thing ϕ such that . . .. The ellipses here are stand-ins for formulae in the relevant formal language.

In our experience, not only students, but also even accomplished researchers outside the formal

sciences, are often initially incredulous that something so unassuming as these two constructions

could be at the very heart of the formal sciences, and at the very heart of cognition. The chapter

now proceeds to explain why such incredulity is mistaken.

4.1 Quantification in the Study of the Mind

As a matter of empirical fact, a focus on quantification in the study of the mind, at least when

such study targets human/human-level cognition, has long been established, and is still being very

actively pursued. For example, since Aristotle, there has been a sustained attempt to discover and

set out a logic-based theory that could account for the cognition of those who, by the production of

theorems and the proofs that confirm them, make crucial and deep use of quantification (Glymour

1992). The first substantial exemplar of such cognition known to us in the 21st century remains the
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remarkable Euclid, whose reasoning Aristotle strove (but failed) to formalize in Organon (McKeon

1941), and some of whose core results in geometry are still taught in all technologized societies the

world over. In fact, it is likely that most readers will at least vaguely remember that they were

asked to learn some of Euclid’s axioms, and to prove at least simple theorems from them. If this

request met with success, the cognition involved included understanding of quantification (over

such things as points and lines, reducible therefore to quantification over real numbers).

What about contemporary study of human-level-or-above cognition by way of quantification?

Given space restrictions, it is not possible to survey here all the particular research in question; only

a few particular examples can be mentioned, before the reader is taken into a deeper understanding

of quantification, and from there through a series of aspects of quantification that are important

to LCCM.

As to the examples of sample quantification-centric research, Kemp (2009), under the um-

brella conception that there is a human “language of thought,” advances the general idea that this

language is that of a logic, one that appears to correspond to a kind of merging of first- and second-

order logic (i.e. L1 and L2). He advances as well the specific claim that first-order quantification

is easier for the mind to handle than the second-order case. Below, the distinction between first-

and second-order quantification is explained, in connection with our vehicular microworld.

As one might expect given how large a role quantification plays in all human natural languages

(such as English) as a brute empirical fact (the comma that immediately follows the present par-

enthetical ends a phrase that has one universal quantifier and one existential one), the connection

between linguistic cognition at the human-level and quantification is a deep one. In fact, Partee

(2013) argues that quantifiers should be the main pivot around which cognitive linguistics from

a formal point of view is pursued. In a particular foray in just this direction, more recently Un-

derstanding Quantifiers in Language (2009) has explored a connection between different kinds of

quantifiers and computational complexity, based in part upon experiments that involve vehicular

scenarios of their own (and which in part inspired the somewhat more versatile ones used herein).

It is now time to convey to the reader a deeper understanding of quantification, and the nexus

between it and cognition at a number of points, starting with higher-order quantification.
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4.2 Quantification in Higher-Order Logic

One of the interesting, apparently undeniable, and powerful aspects of human-level cognition is

that it centrally involves not only use of relations such as ‘is a bus’ or ‘is a car’ (which are of

course represented, respectively, by the relation symbols B and C in the vehicular setup), but also

relations that can be applied to relations. A body of cognitive-science work indicates this capacity

to be present in, and indeed routinely used by, humans (Hummel 2010, Hummel & Holyoak 2003,

Markman & Gentner 2001). Using resources of LCCM, specifically a logic from U well-known to

practitioners of logic-based modeling, this aspect of human-level cognition is quite easy to express

in rigorous terms. More specifically, LCCM has available to it higher-order logics. First-order

logic = L1, as has been seen above, permits only object variables, so named because they refer to

objects, not relations (or properties or attributes); the logic L1 doesn’t have relation variables. To

make this concrete, consider Vehicular Scenario #2 for a minute; this scenario is given in Figure 4.

Note, upon studying this scenario, that the immediately following declarative sentence holds in it.

(6n) There is at least one relation that holds of every vehicle north of every bus.

Confidence that the reader apprehends the truth of (6n) in Vehicular Scenario #2 rests on the

strength of the cognitive-science work cited above, in the present section. But this natural-language

sentence cannot be represented in L1, since this logic has no provision for expressing “There is a

relation that” in this sentence. Second-order logic = L2 comes to the rescue, because it includes

provision for quantification over relation (property) variables. To thus model what the reader

apprehends in accordance with LCCM, a formula in second-order logic that expresses (6n) is needed

— and here it is:

(6l) ∀x[(∀y(B(y)→ N(x, y)))→ ∃XX(x)]

Notice that, following longstanding tradition in formal logic, we use majuscule Roman letters

X,Y, Z etc. for variables that can be instantiated with particular relations. Another look at Figure

4 and the vehicular scenario it holds will reveal to the reader that there are particular relations/prop-

erties that can serve as particular instances of X in (6l). For example, one such relation/property

is the color grey, which is indeed the color of every vehicle north of every bus.
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Figure 4: Vehicular Scenario #2. Observe that in this scenario there is a relation (property) X
which every vehicle north of a bus has. E.g., a witness for such an X could in this scenario be the
relation ‘Grey.’

The reader may wonder whether there is a level higher than second-order logic = L2. There

is.13 The next step up, perhaps unsurprisingly, is third -order logic = L3. There are strong reasons

to suspect that human-level cognition makes routine use of third-order propositions — though

of course it is not known how such propositions are specifically encoded, in the human case, in

human brains (but see the use made of Clarion for third-order formulae in Bringsjord, Licato &

Bringsjord 2016). The distinguishing new feature of L3 is that it permits, and renders precise, the

ascription of relations/properties to relations/properties; this is not permitted in L2. This feature

can be rendered concrete with help from Vehicular Scenario #2, quickly, as follows. First, simply

note that grey is a color; hence we can sensibly write

C(G)

to represent that fact. Next, to express

13That there is, and that plenty of humans have little trouble understanding these higher levels, suggests that the
first-versus-second level focus in the aforecited (Kemp 2009) cannot be the centerpoint of the language of thought.
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(7n) There is at least one color property (relation) that holds of every vehicle north of every

bus.

the following formulae of L3 does the trick:

(7l) ∀x[(∀y(B(y)→ N(x, y)))→ ∃X(X(x) ∧ C(X))]

4.3 Quantification and the Infinite

As is well-known, human-level cognition routinely involves infinite objects, structures, and systems.

This is perhaps most clearly seen when such cognition is engaged in the learning and practice of

mathematics, and formal logic itself. All readers will for example recall that even basic high-school

geometry invokes at its very outset infinite sets and structures. As to such sets, we have N and

R, both introduced above, these being two specimens that every high-school graduate needs to

demonstrate considerable understanding of. And as to structures based upon these two infinite

sets, readers will remember as well that for instance two-dimensional Euclidean geometry is based

upon the set of all pairs of real numbers. Within this context, it turns out that cognition associated

with even some elementary quantification in L1 instantly and surprisingly provides an opportunity

to zero in on cognition that is compelled to range over infinite scenarios; and an excellent way to

acquire deeper understanding of LCCM and its resources is to reflect upon why such scenarios are

forced to enter the scene. Notice that so far vehicular scenarios have been decidedly finite in size.

In order to reveal the quantification in question, consider the following three straightforward

natural-language sentences pertaining to vehicles:14

(8n) No vehicle honks at itself.

(9n) If x honks at y and y honks at z, then x honks at z.

(10n) For every vehicle x, there’s a vehicle y x honks at.

This trio is quickly represented, respectively, by the following three extremely simple formulae in

L1:

(8l) ∀x¬H(x, x)

14The discussion here is guided and inspired by a clever example given by Kleene (1967) (p. 292).

17



(9l) ∀x∀y∀z[(H(x, y) ∧H(y, z))→ H(x, z)]

(10l) ∀x∃yH(x, y)

Now here is a question: Can a human understand that (8n)–(10n), despite their syntactic simplicity,

cannot possibly be rendered true by a vehicular scenario that is finite in size? The reader can answer

this question, by attempting to build a scenario that does in fact do the trick. A sample try is

enlightening. For example, consider the vehicular scenario shown in Figure 5; for the moment, ignore

the use made there repeatedly of the ellipsis. The reader should be able to see that the scenario

in fact does not render (8l)–(10l) true, and should be able to see why. In order to construct a

vehicular scenario that works, the reader will need to understand that an infinite progression of

vehicles will need to be used, with an infinite number of honks. It is not difficult to see that the

cognition that discovers and writes down such an infinite scenario can itself be modeled using the

resources of LCCM.

N

E

…
…
…
…
…

⋮⋮⋮⋮⋮

……
…
…

Endless Supply 
of Vehicles

Figure 5: A “Failing” Vehicular Scenario. The scenario here fails to model the three rather simple
quantified formulas specified in the body of the present chapter. The sedulous reader should ascertain
why this failure occurs.
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4.4 Quantification as the Heart of the Formal Sciences: Arithmetic and Reverse

Mathematics

It is important to share herein that formal logic is the basis for all of human-known mathemat-

ics, and that given this, it seems rather likely that if mathematical cognition of the sort that

produced/produces mathematics itself (as archived in the form of proved theorems passed from

generation to generation) is to eventually be accurately modeled, LCCM will be the key approach

to be employed. But the specific, remarkable, and relevant point to quickly make here is that

it is quantification that is the bedrock of mathematics. It is the bedrock because mathematics

flows from axiom systems whose power and reach are primarily determined by the modulated use

of quantification.15 To see this, we turn to arithmetic, and to the axiom system known as ‘Peano

Arithmetic’ (PA), mentioned above but now to be seen in some detail. PA consists of the following

six axioms, plus one axiom schema (which can be instantiated in an infinite number of ways). Here,

the function symbol s denotes the function that, when applied to a natural number n ∈ N, yields

its successor (so e.g. s(23) = 24). Multiplication and addition are symbolized as normal.

Axiom 1 ∀x(0 6= s(x))

Axiom 2 ∀x∀y(s(x) = s(y)→ x = y)

Axiom 3 ∀x(+(x, 0) = x)

Axiom 4 ∀x∀y(+(x, s(y)) = s(+(x, y)))

Axiom 5 ∀x(×(x, 0) = 0)

Axiom 6 ∀x∀y(×(x, s(y)) = +(×(x, y), x))

Induction Schema Every formula that results from a suitable instance of the following schema,

produced by instantiating φ to a formula:

[φ(0) ∧ ∀x(φ(x)→ φ(s(x))]→ ∀xφ(x)

PA, as can be readily seen, once one understands basic quantification, is stunningly simple —

so much so that some of the axioms (expressed in natural language) are even taught in elementary

15The exact same thing holds for computer science, since e.g. it is layered quantification that defines the hierarchical
hardness of computational problems. For instance, both the Arithmetic Hierarchy of increasingly hard computational
problems ranging from those a Turing machine can solve and proceeding upward from there (Davis et al. 1994), as
well as the Polynomial Hierarchy that gives us the time- and space-wise complexity of Turing-solvable computational
problems (Arora & Barak 2009), are based on modulated, layered quantification.
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school (where e.g. schoolchildren learn that multiplying any natural number by zero returns zero:

Axiom 5). Yet, as simple as it may seem, PA is so deep and rich that it cannot be proved consistent

by standard, finitary means (this is Gödel’s Second Incompleteness Theorem, essentially), and once

some of the quantification in PA is allowed to to move to the second-order case (recall the brief

tutorial above, in §4.2), one arrives at the basis for much of all of mathematics. This is something

the field of reverse mathematics is based upon, and continues to trace out the consequence arising

therefrom. Reverse mathematics is the field devoted to ascertaining what statements in extensional

logics pulled from the universe U suffice to deduce large, particular parts of mathematics. Those

wishing to know more about reverse mathematics and the starring role of quantification in this

field can consult (Simpson 2010).

5 Defeasible/Nonmonotonic Reasoning

Deductive reasoning of the sort visited above, in connection with both arithmetic and the vehicular

microworld, is monotonic. To put this more precisely, to say that if a formula φ in some logic can be

deduced from some set Φ of formulae (written Φ `I φ, where the subscript I gets assigned to some

particular set of inference schemata for precise deductive reasoning), then for any formula ψ 6∈ Φ,

it remains true that Φ ∪ {ψ} `I φ. In other words, when the reasoning in question is deductive

in nature, new knowledge never invalidates prior reasoning. More formally, the closure of Φ under

standard deduction (i.e., the set of all formulae that can be deduced from Φ via I), denoted by

Φ`I , is guaranteed to be a subset of (Φ∪Ψ)`I , for all sets of formulas Ψ. Inductive logics within the

universe U don’t work this way, and that’s a welcome fact, since much of real life doesn’t conform

to monotonicity, at least when it comes to the cognition of humans; this is easy to see:

Suppose — and here is the first reference herein to the domain of residential education — that

at present Professor Jones knows that his house is still standing as he sits in it, preparing to teach

his class a bit later at his university. If, later in the day, while away from his home and teaching at

the university, the Professor learns (along with his students) by notifications pushed to smartphones

that a vicious tornado is passing over the town in which his house is located, he has new information

that probably leads him to reduce his confidence in the near future as to whether or not his house
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still stands. Or to take a different example, one much-used in AI (e.g. see the extended treatment

in Genesereth & Nilsson 1987), if our Professor Jones knows that Tweety is a bird, he will probably

deduce (or at least be tempted to do so) that Tweety can fly, on the strength of a general principle

saying that birds can fly. But if Jones learns that Tweety is a penguin, the situation must be revised:

that Tweety can fly should now not be among the propositions that Jones believes. Nonmonotonic

reasoning is the form of reasoning designed to model, formally, this kind of defeasible inference; and

some logics within U , all of them non-deductive = inductive in nature, have been devised to specify

such reasoning. In the hands of logic-based cognitive modeling, such logics, when computationally

implemented and run, can then simulate the kind of human/human-level reasoning just seen in the

mind of Professor Jones.

There are many different logic-based approaches that have been designed to allow such modeling

and simulation, and each approach is associated with a group of logics. Such approaches include:

use of default logics (Reiter 1980), circumscription (McCarthy 1980), and the approach probably

most cognitively plausible: argument-based defeasible reasoning (e.g. see for an overview, and

an exemplar of the approach, resp.: Pollock 1992, Prakken & Vreeswijk 2001).16 An excellent

survey, one spanning AI, philosophy, and computational cognitive science, the three fields that

work in defeasible/nonmonotonic reasoning spans, is also provided in the Stanford Encyclopedia

of Philosophy.17 Because argument-based defeasible reasoning seems to most to accord best with

what humans actually do as they adjust their knowledge through time (e.g., Professor Jones and

his students, if queried on the spot immediately after the notification of the tornado’s path as

to whether Jones’ house still stands, will be able to provide arguments for why their confidence

that it does has just declined), this chapter emphasizes the apparent ability of argument-based

defeasible reasoning to capture human/human-level defeasible reasoning. It is in fact a rather nice

16From a purely formal perspective, the simplest way to achieve non-monotonicity is to use the so-called closed
world assumption, according to which, given a set Φ of initially believed declarative statements, what an agent
believes after applying the closed world assumption (CWA) to the set is not only what can be deduced from Φ, but
also the negation of every formula that cannot be deduced. It is easy to verify that it doesn’t always hold that
CWA(Φ) ⊂ CWA(Φ ∪ Ψ), for all sets Ψ. I.e., monotonicity doesn’t hold. Unfortunately, while this is a rapid route
to non-monotonicity, CWA isn’t cognitively plausible, at all. To see this, consider the parabular Professor Jones and
suppose without loss of generality that he is not a professional logician or mathematician, and hence cannot deduce,
say, Gödel’s famous first incompleteness theorem (= G1). By CWA, Jones should believe that G1 is false!

17At http://plato.stanford.edu/entries/logic-ai

21

http://plato.stanford.edu/entries/logic-ai


thing about humans and defeasible reasoning that they are often able to explain, and sometimes

show, by articulating arguments, why their beliefs have changed through time as new information

is known or at least believed, where that new information leads to the defeat of reasoning that they

earlier affirmed.

Now, returning to the tornado example, what is the argument that Professor Jones might give

to support his belief that his house still stands, while he is in the classroom? There are many

possibilities, one respectable one is what can be labeled ‘Argument 1,’ where the indirect indexical

refers of course to Jones:

(11) I perceive that my house is still standing.

(12) If I perceive φ, φ holds.

∴ (13) My house is still standing.

The second premise is a principle that seems a bit risky, perhaps. No doubt there should be some

caveats included within it: that when the perception in question occurs, Jones is not under the

influence of drugs, not insane, and so on. But to ease exposition, such clauses are left aside. So,

on the strength of this argument, let us assume that Jones’ knowledge includes (13), at time t1.

Later on, as has been said, the Professor finds himself in class at his university, away from

home. Jones and his students quickly consult smartphone weather apps and learn that the National

Weather Service reports this tornado to have touched down somewhere in the town T in which

Jones’ house is located, and that major damage resulted; in particular, some houses were tragically

leveled. At this point (t2, assume), if Jones were pressed to articulate his current position on (13),

and his reasoning for that position, and he had sufficient time and patience to comply, he would

likely offer something like this (Argument 2):
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(14) A tornado has just (i.e., at some time between t1 and t2)

touched down in T , and destroyed some houses there.

(15) My house is located in T .

(16) I have no particular evidence that my house was not struck

to smithereens by a tornado that recently passed through

the town in which my house is located.

(17) If a tornado has just destroyed some houses in (arbitrary)

town T ′, and house h is located in T ′, and one has no par-

ticular evidence that h is not among the houses destroyed

by the tornado, then one ought not to believe that h wasn’t

destroyed.

∴ (18) I ought not to believe that my house is still standing. (I.e.,

I ought not to believe (13).)

Assuming that Jones meets all of his “epistemic obligations” (in other words, assuming that

he’s rational), he will not believe (13) at t2. (Actually, and below this is dealt with this more

plausible modeling, it’s more reasonable to imagine that Jones does still believe (13), but that the

strength of his belief has declined.) Therefore, at this time, (13) will no longer be among the things

he knows. (If a cognitive system s doesn’t believe φ, it follows immediately that s doesn’t know

φ, in the sense of ‘know’ with which we are concerned with.) The nonmonotonicity here should be

clear.

The challenge to LCCM is to devise formalisms and mechanisms that model this kind of mental

activity through time. The argument-based approach to nonmonotonic reasoning does this. As to

how, the main move is to allow one argument to invalidate another (and one argument to invalidate

an argument that invalidates an argument, which revives the original, etc.), and to keep a running

tab on which propositions should be believed at any particular time. Argument 2 above rather

obviously invalidates Argument 1; this is the situation at t2. Should Jones then learn that only

two houses in town T were leveled, and that they are both located on a street other than his own,

Argument 2 would be defeated by a third argument, because this third argument would overthrow

(16). With Argument 2 defeated, (13) would be reinstated, and back in what Jones knows. Clearly,

this ebb and flow in argument-versus-argument activity is provably impossible in straight deductive
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reasoning.

5.1 An Argument-Adjudication System for Defeasible Reasoning

In order to adjudicate competing arguments, such as those in the tornado example of §5, a system for

quantifying the level of subjective uncertainty of declarative statements needed. To obtain this, let

us invoke a system based upon strength factors first presented in (Govindarajulu & Bringsjord 2017).

This work was in turn directly guided by a simpler and smaller system of strength-indexed belief

invented over half a century ago by Chisholm (1966).18 While recently specification of a more robust

formal inductive logic (IDCEC; note that it is located within U , as Figure 3 indicates) for such

processing, accompanied by an implementation and demonstration, had been achieved (Bringsjord,

Govindarajulu & Giancola 2021), the survey nature of the present chapter means that a “higher

altitude” level of detail is prudent, and in what now follows the chapter stays at that altitude. For

more details, the reader can consult the lengthy technical survey provided by Prakken & Vreeswijk

(2001).

The strength factors to now be employed consist of 13 values (see Figure 6) that can be used to

annotate statements expressing belief or knowledge. For example, one can formalize the sentence

“Jones believes it is more likely than not at time t0 that his house is still standing.” by the formula

B1(jones, t0,Standing(home)).

Note at this point that the introduction of uncertainty measures already forces a move beyond

deductive reasoning into inductive reasoning and logics, as with such measures one can no longer

be producing proofs, but instead, arguments. While a proof guarantees the truth of the formula it

proves (as long as the axioms/premises are true), an argument only provides some level of strength

that its conclusion is true. Hence, in moving from deductive reasoning to inductive reasoning, such

arguments are able to be expressed. The reader may at this point wish to note that in Figure 3

18There are formal logics that subsume probability theory, and theoretically they could be deployed to model the
tornado scenario (e.g. there is uncertain first-order logic; see Núñez, Murthi, Premaratne, Bueno & Scheutz forth-
coming). However, it doesn’t seem cognitively plausible that Professor Jones (consciously) associates real numbers
between 0 and 1 with the proposition that his house is still standing. One could also explore using so-called “fuzzy
logic,” which emerged out of fuzzy sets first introduced by Zadeh (1965). But here one must be very careful. Most of
the things called “fuzzy logics” are not in fact logics at all, and are not in the universe U . The advent of bona fide for-
mal fuzzy logics, replete with formal languages, inferential machinery, and so on, came by way of the groundbreaking
(Hájek 1998).
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Strength-Factor Continuum

Certain
Evident

Highly Likely
Likely

Counterbalanced

Unlikely

Overwhelmingly Unlikely/Beyond Reasonable Belief

Evidently False
Certainly False

Epistemically Positive

Epistemically Negative

More Likely Than Not

Overwhelmingly Likely/Beyond Reasonable Doubt

More Unlikely Than Not

Highly Unlikely

(4)

(3)

(2)

(1)

(0)

(-1)

(-2)

(-3)

(-4)

(5)

(6)

(-5)

(-6)

Epistemically Positive

Epistemically Negative

Figure 6: The Current Strength Factor Continuum. The center value, counterbalanced, indicates
that there is no evidence for or against belief in the subformula. Increasing positive and negative
values indicate increasing and decreasing likelihood of truth in the subformula, respectively.
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inductive logics are denoted. For a recent introduction to inductive logic as an argument-based, as

opposed to a proof-based, affair, the reader can consult (Johnson 2016).

Two intensional logics are will be brought to bear, both suitable for the type of modeling we need

in the tornado scenario. Because the distinguishing purpose of these logics and others like them

is the modeling of human-level cognitive states (such as believing and knowing a proposition at a

time), and human-level reasoning, some have long referred to these logics as cognitive calculi, and

this suit is followed here. The first cognitive calculus used here is for purely deductive reasoning; the

second supports inductive reasoning. For the encapsulated formal specification of these cognitive

calculi, see (Bringsjord et al. 2021). Industrious readers can find these two calculi in the universe

U pictured in Figure 3; they are named therein as DCEC∗ and IDCEC; the first is a deductive

intensional logic, the second an inductive intensional logic.

Note that when arguments are referred to in the present chapter, it is meant more specifically

formal arguments. Hence, like in any respectable proof, each step must be sanctioned by the

deployment of an inference schema.19

When one has multiple such arguments, each of which concludes with the affirmation or rejection

of belief in some subformula, the adjudication process is simple: select the argument whose con-

clusion has the highest strength. This method will be employed in §5.2 to formalize and rigorously

model the tornado example first given in §5. More complex adjudication methods for more complex

sets of arguments (e.g., where the adjudication process may need to select out sub-arguments from

multiple arguments in order to construct the winning argument and corresponding final conclusion)

are the focus of active research outside the scope of the present chapter.

5.2 The Tornado Conquered

Consider again the following scenario, now made a bit more determinate. Professor Jones left

his home (at time thome) to go to his university, and while there (at time twork) he learns there

the disturbing news and discovers that a tornado has passed through the town (at time ttornado)

in which his house is located (town). Again, but in search of more precision, what should the

19For the relevant lists of such inference schemata, which are outside the scope of this overview chapter, the reader
is directed to (Bringsjord et al. 2021).
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Professor now believe with regard to whether or not his house is still standing?

This problem can be posed in the argument-adjudication framework employed here for defeasi-

ble/nonmonotonic reasoning in order to evaluate the strength of each argument and thereby allow

Jones to arrive at a final belief-fixation decision. First, consider an argument Jones might plausibly

use to justify his belief that his house is standing at the time that he is about to leave for work,

thome , an argument that is now more nuanced and plausible that what we laid about above:

(19) P(jones, thome ,Standing(home)) Jones perceived that his home was standing when he
left for work.

∴ (20) B5(jones, thome ,Standing(home)) Assuming Jones was not dreaming or hallucinating,
perception generates evident beliefs. Therefore, Jones
believed it was evident that his home was still standing
at that time.

∴ (21) O(jones, thome ,
B5(jones, thome,Standing(home)))

Hence Jones ought to believe it is evident at time thome

that his house is still standing.

Table 1: Argument 1: Jones determines he ought to believe it is evident that his house is still
standing at time thome.

Here the obligation operator is of an intellectual variety; there is no reference here to anything

like moral obligations and deontic operators that are at the heart of deontic logic, which is devoted

to formalizing human moral reasoning. That one ought to believe φ here means that there is a

rational argument compelling one to believe φ as a rational agent. This basic notion of intellectual

obligation as part and parcel of an abstract conception of rationality is at the heart of the logic

and mathematics of inductive logic (Paris & Vencovská 2015).

Next, consider another sequence of reasoning Professor Jones might go through while driving to

work (at time tdriving). Since he is no longer perceiving his home, his belief cannot be at the level

of evident. However, his previous belief can persist at the next level down, overwhelmingly likely,

so long as Jones has not been made aware of any information to the contrary since then.
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(22) ¬P(jones, tdriving,Standing(home)) Jones no longer perceives his home.

∴ (23) ¬B5(jones, tdriving,Standing(home)) Hence, Jones no longer believes it is evident that his
home is still standing.

∴ (24) O(jones, tdriving,
B4(jones, tdriving , Standing(home)))

Assuming Jones’ memory is reasonably reliable, and
since he has no information to the contrary, he ought
to believe it is overwhelmingly likely at time tdriving
that his house is still standing.

Table 2: Argument 2: Jones retracts his previous belief that he ought to believe it is evident that
his house is still standing at time tdriving, and replaces it with a belief at the level of overwhelmingly
likely.

Finally, at twork , Jones becomes aware of the tornado which just passed through his town.

Therefore he is rationally obligated to retract his previous belief, and replace it with a weaker

belief that his house is still standing:

(25) K(jones, twork, LocatedIn(home, town)) Jones knows his home is located in his town.

(26) S(news, jones, twork,
T ornadoPassedThrough(town, ttornado))

Jones heard from the news that a tornado passed
through the town where his home is located.

(27) K(jones, twork,∀h a t
(TornadoPassedThrough(a, t)
∧ LocatedIn(h, a))

→ ♦¬Standing(h))

Jones knows that if a tornado passes through an area
where a home is located, it is possible that that home
is no longer standing.

∴ (28) K(jones, twork,♦¬Standing(home) Hence Jones knows it is possible that his home is no
longer standing.

∴ (29) ¬B4(jones, twork, Standing(home)) Hence Jones no longer believes it is overwhelmingly
likely that his home is still standing.

∴ (30) O(jones, twork,
B2(jones, twork, Standing(home)))

However, since Jones has only evidence indicating a
possibility that his home has been destroyed, he ought
to believe it is likely at time twork that his house is
still standing.

Table 3: Argument 3: Jones determines he ought to believe it is likely that his house is still
standing at time twork.

Discussion of the tornado case study is now complete. At this point, the chapter turns from this

informal, illustrative study to the suppression task, which was been explored by way of experiments

reported in the cognitive-science literature.
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5.3 The Suppression Task

The task in question is reported in (Byrne 1989). Three groups of subjects were asked to select

which proposition from among a trio of them “follows”20 from a set of suppositions. Each group

of subjects was given a different set of suppositions. Group 1 (= G1) was given this pair of

suppositions:

(s1) If she has an essay to finish, then she will study late in the library.

(s2) She has an essay to finish.

This group’s options to select from were the following three:

(o1) She will study late in the library.

(o2) She will not study late in the library.

(o3) She may or may not study late in the library.

Among G1, 96% selected (o1). G2 was given suppositions consisting of (s1) and (s2), plus the

following supposition:

(s3) If she has a textbook to read, then she will study late in the library.

In G2, again 96% of its members selected option (o1). G3 received (s1) and (s2), plus this suppo-

sition:

(s4) If the library stays open, then she will study late in the library.

This time things turned out quite differently: only 38% of G3 selected (o1).

From the perspective of standard zero-order logic = L0 ∈ U ,21 which can accordingly be

assumed here to have any standard proof theory, such as is used in early classical mathematics (e.g.

20Unfortunately, ‘follows’ is a metaphor here — but it’s the term Byrne (1989) used. No firm conception of
what this term means is available. From the standpoint of formal logic, what should have been said to subjects
is something like ‘must necessarily be deducible,’ because (i) the hallmark of deduction since first systematically
investigated by Aristotle has been apprehended as the fact that when deduction from givens/premises/suppositions
to (a) conclusion(s) is valid, the former necessarily entail the latter, and because (ii) plenty of conclusions are thought
by rational agents operating rationally to follow from givens/premises/suppositions that certainly don’t necessitate
these conclusions (e.g., consider a case in which a conclusion follows from premises by statistical syllogism). However,
this being said, for now, the unfortunate use of ‘follows’ by Byrne (1989) must be left aside.

21Obtained by augmenting the formal language of the propositional calculus with provision for relation and function
symbols, and the identity symbol =; but no quantifiers are allowed. Like the propositional calculus, L0 is Turing-
decidable; not so any n-order logic Ln in U , where n is a positive integer.
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high-school mathematics in every technologized society/nation), this result is interesting, since, to

begin, in L0 we might represent the declarative sentences (s1), (s2), (s3), and (s4) as follows, where

a represents the female agent in question:

(s1∗) ToFinish(a) → LateLibrary(a)

(s2∗) ToFinish(a)

(s3∗) ToRead(a) → LateLibrary(a)

(s4∗) StaysOpen → LateLibrary(a)

Next, following suit, the options would be represented thus:

(o1∗) LateLibrary(a)

(o2∗) ¬LateLibrary(a)

(o3∗) ¬LateLibrary(a) ∨ LateLibrary(a)

With these representations, easy-to-find proofs in L0 certify that

{(s1∗), (s2∗), (s3∗)} ` (o1∗). (+)

However, there is no available proof in this logic of option two from the first three suppositions;

that is:

{(s1∗), (s2∗), (s3∗)} 6` (o2∗). (–)

Option (o3∗) is a theorem in this logic, so it’s provable from {(s1∗), (s2∗), (s3∗)}.22 Because we are

dealing here with standard deductive reasoning, which as has been noted is non-feasible/monotonic,

adding one or both of (s3∗), (s4∗) to {(s1∗), (s2∗), (s3∗)} doesn’t change provability/unprovability;

that is, neither (+) nor (–) change. This is why group G3’s behavior is odd and interesting from

the point of view of L0, and hence from the point of view of the cognitive science of reasoning.

Clearly, the formal modeling just given via L0 doesn’t match what most of the subjects in this

group were thinking when they responded.

22As a matter of fact it’s not appropriate to represent (o3) as having the form φ ∨ ¬φ, but this issue is left aside
here.
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5.3.1 Stenning & van Lambalgen’s Extensional Treatment of the Suppression Task

Byrne, in her presentation of the suppression task (Byrne 1989), argues that the findings of her

study imply that people don’t strictly apply valid methods of logical deduction when reasoning.

Therefore, so her diagnosis goes, logic is not sufficient for modeling human reasoning. She states

that “. . . in order to explain how people reason, we need to explain how premises of the same

apparent logical form can be interpreted in quite different ways” (Byrne 1989).

Stenning & van Lambalgen (S&V) (2008) formalize this concept of what can be called “premise

interpretation.”23 They claim that humans, when presented with a set of premises and possible

conclusions, first reason toward some rational interpretation of the premises, then from that in-

terpretation to some conclusion. They formalize this process in a Horn-style24 propositional logic,

supplemented with a formalization of the Closed World Assumption (CWA). 25 Given this context,

when presented with a set of assumptions and a conclusion to prove, S&V follow this three-step

algorithm:

1. Reason to an interpretation.

2. Apply nonmonotonic closed-world reasoning (i.e., apply CWA) to the interpretation produced by 1.

3. Reason from the result of what step 2. produces.

Let us now consider the application of these three steps to the first experiment in Byrne’s (1989)

study, but first we need to have handy here again the stimuli presented to subjects. In her first

experiment, subjects are given the two suppositions

23S&V are not the only LCCMers who have tried their hand at modeling ST: Dietz et al. previously took two
distinct logic-based approaches to modeling the Suppression Task. In their first approach, they used a three-valued
 Lukasiewicz logic which allows the expression of a third truth-value beyond true and false: unknown (Dietz, Hölldobler
& Ragni 2012, Dietz, Hölldobler & Wernhard 2014). More recently, they have taken an approach which aims to model
the suppression task in a more cognitively-plausible way: (Saldanha & Kakas 2020). Their framework, cognitive
argumentation, formalizes methods of reasoning used by humans (which may or may not be logically sound) as
cognitive principles. For example, their “Maxim of Quality” expresses that we (humans) typically assume statements
we are told are true if we don’t have a reason to believe otherwise (e.g. that the speaker may be lying or incompetent).
In the context of the suppression task, the Maxim of Quality dictates that the subjects will assume that all of the
statements made by the experimenters are true (e.g. “She has an essay to finish.”).

24Horn-style logics have formal languages permitting conditionals only of a highly restricted sort; details are left
aside. The programming language Prolog, mentioned above, is for example based upon a Horn-style fragment of
first-order logic = L1. Prolog programs are frequently called “logic programs,” and as the reader will soon see, S&V
call a key part of their modeling of the suppression task “logic programs.”

25Recall that, in a word, CWA is the assumption that everything about a domain is known. Formally, as explained
above, any proposition which is not known to be true (or not provable) is assumed to be false.
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(s1) If she has an essay to write, she will study late in the library.

(s2) She has an essay to write.

and are then asked to choose from the following set of conclusions which one follows from the

premises.26

(o1) She will study late in the library.

(o2) She will not study late in the library.

(o3) She may or may not study late in the library.

Now comes the application of the three-step algorithm.

5.3.1.1 The Algorithm, Applied

Step 1: Reasoning to an Interpretation The first part of this step is appending the

antecedent of every conditional with “¬ab,” where this addition, intuitively, means “no abnormal-

ities.” The idea here is that people interpret the conditional p → q as (p ∧ ¬ab) → q. That is, p

implies q, if no external factors of which the subject is currently unaware (i.e. the abnormalities

represented by ab) subvert the implication.

The last part of this step is to collect the assumptions as modified above into a set which S&V

refer to as the logic program corresponding to the assumptions. Given the foregoing, the output of

Step 1 for Experiment 1 would be the set:

{ EssayToWrite;EssayToWrite ∧ ¬ab→ StudyLateInLibrary } (1)

Step 2: Applying Nonmonotonic Closed-World Reasoning to the Interpretation

This step also consists of two sub-parts. First, for all atoms q in the logic program produced in

Step 1, if there is no antecedent p such that p → q, the conditional ⊥ → q is added to the logic

program. Note that in S&V’s logic, the meaning of an atom p in the assumption base is really

26Note again that Byrne uses the informal term ‘follows’ and not one necessitating formal entailment like ‘logically
deduces.’
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> → p; but for clarity, they typically just write p; the same is done here. Therefore, in the example

above, the only atom for which this step applies is ab; hence the conditional ⊥ → ab is added to

the logic program:

{ EssayToWrite;EssayToWrite ∧ ¬ab→ StudyLateInLibrary;⊥ → ab } (2)

The second part of Step 2 is what S&V refer to as constructing the completion of the logic

program. This involves first joining all implications φi → q (i.e. those implications whose consequent

is q) into a single implication ∨iφi → q.27 Second, all conditionals are converted to biconditionals.

Therefore the final logic program (also, the interpretation of the premises) is:

{ EssayToWrite;EssayToWrite ∧ ¬ab↔ StudyLateInLibrary;⊥ ↔ ab } (3)

Step 3: Reasoning from the Result of Step 2 The third and final step is fairly straight-

forward: the subject reasons from the final set of premises using the inference rules of standard

propositional logic. Notice that, because ⊥ ↔ ab, we have > ↔ ¬ab; hence the logic program above

can be simplified to:

{EssayToWrite;EssayToWrite↔ StudyLateInLibrary} (4)

Finally, it is obvious that from these premises one can deduce StudyLateInLibrary . Note that

while the conclusion was obvious in this case, this method of reasoning to and from an interpretation

matches the reasoning process of the majority of people in all of Byrne’s experiments. Next follows

a walk-through of S&V’s algorithm for a slightly more complicated (and more interesting) case, in

which an additional premise is introduced.

27There are no instances of this in this example, but there will be in the next.
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5.3.1.2 Applying the Algorithm to the Additional-Premise Case In the second experi-

ment, recall, Byrne gave her subjects the following set of premises:

If she has an essay to write, she will study late in the library.

If the library stays open, she will study late in the library.

She has an essay to write.

This additional premise is modeled using the same form as the original two premises:

LibraryOpen ∧ ¬ab′ → StudyLateInLibrary (5)

However, in this case, S&V also (naturally) add the following premise:

¬LibraryOpen→ ab (6)

This premise is intended to model the belief of those who believed that modus ponens applied

in Experiment 1, but not in Experiment 2. (In other words, the introduction of the additional

premise suppressed their belief.) More specifically, this conditional states that if the library is not

open, then it would be abnormal for her to go to study late in the library. The symmetric condition

¬EssayToWrite→ ab′ can also be added; that is, if she does not have an essay to write, it would

be abnormal for her to study late in the library.28

Now, performing Step 1 will produce the program:



EssayToWrite ∧ ¬ab→ StudyLateInLibrary

LibraryOpen ∧ ¬ab′ → StudyLateInLibrary

EssayToWrite

¬LibraryOpen→ ab

¬EssayToWrite→ ab′


(7)

28This is not necessary but will allow for a simplification of the final result.
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Next, applying nonmonotonic closed-world reasoning yields:



(EssayToWrite ∧ ¬ab) ∨ (LibraryOpen ∧ ¬ab′)↔ StudyLateInLibrary

EssayToWrite

(⊥ ∨ ¬LibraryOpen)↔ ab

(⊥ ∨ ¬EssayToWrite)↔ ab′


(8)

And next, using standard logical deduction for the propositional calculus, we can simplify this set

to:

{EssayToWrite; (EssayToWrite ∧ LibraryOpen)↔ StudyLateInLibrary} (9)

Finally, the subject reasons from this interpretation of the premises. Note that the second

statement says “She will study late in the library if and only if she has an essay to write and

the library stays open.” Since the premise set doesn’t include the proposition LibraryOpen, one

cannot deduce StudyLateInLibrary. This result matches the common human intuition29 that the

additional premise hinders the successful application of modus ponens to the original premises.

5.3.2 Modeling the Suppression with Intensional Logic

It is now quickly demonstrated that the human reasoning in the suppression task can be easily and

efficiently modeled in a way simpler than that employed by S&V. In this alternate route, (a) take

timepoints are taken seriously within the narrative that are implicit in what the subjects are given;

and (b), use is made of these timepoints in connection with a simple intensional logic that includes

(i) a way to represent and reason with what is known and what is believed, and (ii) includes an

operator for what is possibly the case.30

This first step in carrying out these two steps is to simply announce a simple set of symbols used

29I.e., the intuition of the majority of the people in Byrne’s study.
30Thus, use is made of basic constructs from epistemic logic (Hendricks & Symons 2006), which formalizes attitudes

like believes and knows; and also basic constructs from alethic modal logic (Konyndyk 1986), which formalizes concepts
like possibly and necessarily. Epistemic logic are intensional logics within the universe U .
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to enable the formulae that express what is presented to subjects in the suppression task. This is

done by way of the following table, which simply presents the referent in each case intuitively, so

that no technical specifications are needed.

Table 4: Symbols for Intensional Mod & Sim of Suppression Task

Symbol Referent

s (object variable) student
e (object variable) essay
b (object variable) book
t, t′, . . . (object variables) timepoints
t1 (constant) the particular, initial timepoint
` (constant) the library
a,b (constants) two particular agents
> (2-place relation) later than
ToFinish(s, t, e) (3-place relation) s at t has e to finish
NearFuture(t′, t) (2-place relation) t′ is in near future of t
LateLibrary(s, t) (2-place relation) s works late in the library at t
Open(`, t) (2-place relation) the library is open at t
ToRead(s, t, b) (3-place relation) s at t has textbook b to read
♦ (alethic operator) ‘possibly’
Bx (epistemic operator) agent x believes that
ToRead(s, t, b) (3-place relation) s has at t to read b
Kx (epistemic operator) agent x knows that

Given this more expressive vocabulary, one extended into the realm of intensional logics, here

is how the key propositions from above in the suppression task are expressed in the intensional

approach:

∃e ToFinish(s, t1, e)→ ∃t > t1
(
NearFuture(t, t1) ∧ LateLibrary(s, t)

)
(s1)

∃e ToFinish(s, t1, e) (s2)

∃t > t1(NearFuture(t, t1) ∧ LateLibrary(s, t)) (o1)

¬
(
∃t > t1(NearFuture(t, t1) ∧ LateLibrary(s, t)))

)
(o2)

♦(o1) ∧ (♦¬(o1) ∨ ♦O2) (o3)

∃b ToRead(s, t1, b)→ ∃t > t1 (NearFuture(t, t1) ∧ LateLibrary(s, t)) (s3)

[Open(`, t1) ∧ ∀t > t1 (NearFuture((t, t1)→ Open(`, t)) ∧ ∃e ToFinish(s, t1, e)] (s4)

→ ∃t > t1(NearFuture(t, t1) ∧ LateLibrary(s, t))
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And here is an economical summation of the deductive “facts of the case” under the more expressive

rubric afforded by Table 4, where Γ ` φ, as above, is the ubiquitous way in formal logic, AI, and

computer science of saying that φ can be deduced from a set Γ of formulae (and 6` means ‘not

deducible’):

• {(s1), (s2)} ` (o1)

• {(s1), (s2)} 6` (o2)

• {(s1), (s2)} 6` (o3)

• {(s1), (s2), (s3)} ` (o1)

• {(s1), (s2), (s3)} 6` (o2)

• {(s1), (s2), (s3)} 6` (o3)

Very well. And now what is the intensional modeling that matches what occurs when subjects

are run in the suppression task? Such modeling, as said, takes time, possibility, and epistemic

attitudes (belief and knowledge) seriously. Specifically, the heart of the matter is a simple inference

schema that formalizes the principle that if an agent believes some set Φ of propositions, and

knows that from this set it can be deduced specifically that proposition φ holds, then the agent will

believe φ as well. Here is the inference schema, S, expressed in a manner used in the computational

simulations in question:

BaΦ, KaΦ ` φ

Baφ
S

And now, getting down to inferential brass tacks for computational simulation, let ‘a’ denote an

arbitrary agent in both Group I and Group II in the suppression-task experiment recounted above.

It is then assumed, at the particular timepoint t1, that

Ba{(s1), (s2)};
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and in addition that

Ka{(s1), (s2)} ` (o1).

Then, by way of crucial use of S, processing automatically locates a proof corresponding to the

responses of agents in Groups I and II: Ba(o1). In a simulation using an automated theorem prover,

this result (and the corresponding proof) was returned in 10−4 seconds.31

But now, what about the “peculiar” subjects in Group III? That is, what about subjects who

clearly reason defeasibly/nonmonotonically, because they go from believing that (o1) “follows,”

to believing, after receiving new information, that this proposition no longer does? These are of

course the subjects that motivated the innovation of S&V. But how is the inferential behavior

of these subjects modeled and simulated in the intensional approach? The answer is perfectly

straightforward; it is that, first, Group-III subjects obviously know that when a library is closed

(= not open) at some time t, no student can work in that library at t. This underlying principle is

in the modeling here expressed thus:

(u) ∀s∀t [¬Open(`, t)→ ¬LateLibrary(a, t)]

In addition, of course, subjects in Group III know from what they have been told that

(∗) ∃s∃e ToF inish(s, t1, e),

and know as well that at all near-future times relative to t1 the library is closed;32 that is:

(?) ∀t(NearFuture(t, t1)→ ¬Open(`, t)).

Given the pair of formulae (∗) and (?) it follows by elementary deduction in L1 that ¬(s1). There-

fore, while it is rationally presumed that Group-III subjects — denoted by b — are (like their

31Two automated reasoners were used to generate these simulation results. The first, ShadowProver
(Govindarajulu, Bringsjord & Peveler 2019), uses a novel technique to prove formulae in a modal logic. It alter-
nates between “shadowing” modal formulae down to first-order logic and applying modal inference schemata. The
second, ShadowAdjudicator (Giancola, Bringsjord, Govindarajulu & Varela 2020), builds upon ShadowProver, pro-
viding the ability to generate arguments (as opposed to proofs) which can be justified using inductive inference
schemata (as opposed to purely deductive inference schemata).

32Actually, as alert readers will apprehend, it’s necessary here to use the alethic operator ♦ that has been introduced,
since what the subjects in Group III come to know by virtue of the new information given them is that it might
possibly be that the library is closed in the near future.
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counterparts in Groups I and II) such that

Kb{(s1), (s2)} ` (o1),

they no longer believe (s1), and hence the use of schema S is blocked. In addition, it is reasonably

modeled that Group-III subjects do believe (s4). But also

{(s4), (s2)} 6` (o1),

and these subjects presumably know this. Hence these subjects cannot possibly know that {(s4), (s2)} `

(o1), and this too blocks any use of schema S to arrive at the belief that (s1) holds.33

There is little point in asserting that capturing the suppression task via intensional logic is

superior to the extensional-logic approach taken by S&V. However, it is very important for the

student and scholar of computational cognitive science to understand that any such ambition as to

capture all of human-level-and-above reasoning and decision-making in computational formal logic

must early on confront modeling-and-simulation challenges that necessitate use of highly expressive

intensional logics from U .

6 Evaluating Logic-based Cognitive Modeling, Briefly

Logic-based/logicist computational cognitive modeling, LCCM as it has been abbreviated, surely

seems be a rather nice fit when the cognition to be modeled is explicit, rational, and intensely

inference-centric. But how accurate and informative is such modeling? And how much reach does

does such an approach to cognitive modeling have, in light of the fact that surely plenty of human-

level cognition is neither explicit, nor rational, nor inference-centric? This is not the venue for

polemical positions to be expressed in response to such questions. But it is surely worth pointing

out that “accuracy” of a cognitive model is itself not exactly the clearest concept in science, and

that LCCM tantalizingly offers the opportunity to itself provide the machinery to render this

33Simulations of these lines of reasoning found by the relevant automated-reasoning technology are strikingly fast,
stopwatch reports are left aside so as not to have to delve into rather tricky simultaneous use of the alethic operator
♦ in combination with K (knows) and B (believes). Please see note 32.
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concept precise. The relationship of a model M to a targeted phenomenon P to be modeled, in

LCCM, should itself be a relation formalized in some logic in the universe U . If the relation A

stands for “accurately models,” it can then be declared that what is needed is the completion of

the biconditional

(?) A(M,P )↔ ?? .

With this completion accomplished, LCCM would provide the very framework that could be used

to assess its own accuracy, because one would be able to prove that ?? holds in the case at hand,

and then reason from right to left on the biconditional in order to deduce A(M,P ). It is certainly

not easy to find any other approach to cognitive modeling that can hold out the promise of such

self-containedness.

As to the reach of LCCM, some mental phenomena do seem, at least at first glance, to be

fundamentally ill-suited to this approach, for instance emotions and emotional states — and yet

such mental phenomena conform remarkably well to collections of formulae from relatively simple

modal (i.e. intensional) logics in U (Adam, Herzig & Longin 2009).

One final point regarding the assessment of LCCM, a point that follows from the above definition

of what it is for logicist computational cognitive modeling to capture some aspect or part of human-

level cognition. The point is simply this: Whether or not some attempt to cognitively model (in

the LCCM approach) some phenomenon succeeds or not can be settled formally, by proof/disproof.

The ultimate strong suit of LCCM is indeed formal verifiability of capture. The cognitive scientist

can know that some phenomenon has been captured, period, because outright proof is available.

Unfortunately, carrying this out in practice in a wide way would require the formalization of ??

so that (?) can be employed in the manner described above.

7 Conclusion

It should be clear to the reader that formal computational logic is plausibly up to the challenge

of modeling and simulating both quantification-centric reasoning and defeasible (= nonmonotonic)

reasoning at the human level and in the human case, even when this challenge is required to
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be substantively based upon arguments of the sort that human agents routinely form as they

adjust their belief and knowledge through time. But for the overarching program of LCCM, is

the ambitious long-term goal of capturing all rational human cognition in computational logic

reasonable? And if it is, what is next to be done?

While the present chapter extends the rather narrow deduction-focused overview of LCCM

given earlier (Bringsjord 2008) into the important realms of quantification and dynamic defeasible

reasoning in the human sphere, certainly humans reason and cognize in many additional ways,

effectively. These additional ways range from the familiar and everyday, to the rarefied heights

of cutting-edge formal science. In the former case, prominently, there is reasoning that makes

crucial use of pictorial elements, and hence is reasoning that simply cannot be captured by the

kind of symbolic structures we have hitherto brought to bear. As alert readers will have noticed,

the universe U depicted in Figure 3 does include logics that offer machinery for representing and

reasoning over diagrams and images. For a simple but relevant example, consider the question as

to whether

�

or

0

is more likely to have in front of it and shining upon it a light. Here, the two things centered just

above aren’t symbols; they are diagrams, and as such denote not as symbols do, but — to use the

apt terminology of Sloman (1971) and Barwise (1995), resp. — in a manner that is analogical or

homomorphic. Clearly, humans do routinely reason with diagrams — and yet the logics that have

been employed above from U have no diagrams. Therefore further work in LCCM is clearly in

order.34 This work must bring to bear the spaces of pictorial logics indicated in the universe U .

Now, finally, what about the latter challenge, that of applying LCCM to rarefied reasoning in the

formal sciences? Here a key fact must be confronted: viz., that reasoning in logic and mathematics

34There are very few formal logics that allow, in addition to the standard symbolic/linguistic alphabets and gram-
mars, diagrams/images. For such a logic, see (Arkoudas & Bringsjord 2009), which provides comprehensive references
to the relevant literature.
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often makes use of expressions and structures that are infinitary in nature. For example, there can

be very good reason to make use of formulae that are infinitely long, such as a disjunction like

δ := ∃=1xRx ∨ ∃=2xRx ∨ . . . ,

which — using a variation on the existential quantifier used repeatedly above — says that there is

exactly one thing that is an R, or exactly two things each of which is an R, or exactly three things

each of which is an R, and so on ad infinitum. It turns out that however exotic δ may seem, this

is about the only way to express that there exist a finite number of Rs; and yet this way is utterly

beyond the reach of first-order logic = L1. And yet there has been no discussion above of logics

that allow for infinitely long disjunctions to be constructed; what are classified as “infinitary logics”

in the universe U , which are the logics needed, have been untouched in the foregoing discussion.

Of course, as the reader will rationally suspect, the need for formulae of this nature, given the

infinitary expressions presented even in textbooks devoted to bringing human students into serious

cognizing about (say) analysis (e.g. see Heil 2019), is undeniable. So again, it would seem that if

the general program of logic-based cognitive modeling is to succeed in capturing human reasoning

and human-level reasoning across the board, additional effort of a different nature than has so far

been carried out will be required of relevant researchers. This effort will need to tap other logics

in U shown in Figure 3, which as the reader can now note by returning to that figure does indeed

refer to the space of infinitary logics.35

35Readers wanting a short, cogent introduction to infinitary logic, should see presentation and explanation of the
straightforward infinitary logic Lω1ω (which can express δ); and those with some logico-mathematical maturity can
see (Dickmann 1975).

42



References

Adam, C., Herzig, A. & Longin, D. (2009), ‘A Logical Formalization of the OCC Theory of Emo-

tions’, Synthese 168(2), 201–248.
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