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Abstract. We answer the present paper’s title in the negative. We begin
by introducing and characterizing “real learning” (RL) in the formal sci-
ences, a phenomenon that has been firmly in place in homes and schools
since at least Euclid. The defense of our negative answer pivots on an
integration of reductio and proof by cases, and constitutes a general
method for showing that any contemporary form of machine learning
(ML) isn’t real learning. Along the way, we canvass the many different
conceptions of “learning” in not only AI, but psychology and its allied
disciplines; none of these conceptions (with one exception arising from
the view of cognitive development espoused by Piaget), aligns with real
learning. We explain in this context by four steps how to broadly char-
acterize and arrive at a focus on RL.

1 Introduction

Presumably you’ve read the title, so: No; despite the Zeitgeist, according to
which today’s vaunted ‘ML’ (= “machine learning”) is on the brink of disem-
ploying most members of H. sapiens sapiens, no. Were the correct answer ‘Yes,’
a machine that machine-learns some target ¢ would, in the determinate, non-
question-begging, well-founded sense of ‘learn’ that has been firmly in place for
millennia and which we soon define and employ,' learn ¢t. But this cannot be the
case.

Why? Because, as we show below, an effortless application of indirect proof
with proof by cases proves the negative reply. (A formal version of the reason-
ing is given in the Appendix (= Sect.8), as a general method that covers any
instantiation of ‘ML’ in contemporary Al)

! The need for the qualifications (i.e. determinate, non-question-begging) should be
obvious. The answer to the present paper’s title that a machine which machine-learns
by definition learns, since ‘learn’ appears in ‘machine-learn,” assumes at the outset
that what is called ‘machine learning’ today is real learning—but that’s precisely
what’s under question; hence the petitio.
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2 Preliminaries

To validate the negative answer, first, without loss of generality,? let’s regard
that which is to be learned to be a unary function f : N — N. The set of all
such functions is denoted by F. We say that agent a has really learned such a
function f only if?

a has really learned f

(c1) a understands the formal definition Dy of f,

(¢2) can® produce both f(z) for all z € N, and

(c3) a proof of the correctness of what is supplied in (c2). (Note: (c3) is soon
supplanted with (c3').)

“This is the ‘can’ of computability theory, which assumes unlimited time, space,
and energy for computation. See e.g. (Boolos et al. 2003) for explanation.

As we shall see in a moment when considering a grade-school example, real
learning so defined (= RL)? is intuitive, has been solidly in place for at least 2.5
millennia, and undergirds everyday education every day. Of course, we must con-
cede immediately that the first condition, (c1), employs a notorious word: viz.,
‘understands.” What is understanding? Not an easy question, that; this we must
also concede. Instead of laboring to give an answer, which would inevitably call
up the need for a sustained defense of the view that the concept of understand-
ing, as applied to both humans and machines that are supposedly in possession of
human-level intelligence and/or consciousness, is not only sufficiently clear, but
is also a property that separates real minds from mere machines, we cheerfully

2 All mathematical models of learning relevant to the present discussion that we are
aware of take learning to consist fundamentally in the learning of number-theoretic
functions from NxNx---xN to N. Even when computational learning was firmly and
exclusively rooted in classical recursion theory, and dedicated statistical formalisms
were nowhere to be found, the target of learning was a function of this kind; see
e.g. (Gold 1965; Putnam 1965), a modern, comprehensive version of which is given
in (Jain et al. 1999). We have been surprised to hear that some in our audience
aren’t aware of the basic, uncontroversial fact, readily appreciated by consulting
the standard textbooks we cite here and below, that machine learning in its many
guises takes the target of learning to be number-theoretic functions. A “shortcut”
to grasping a priori that all systematic, rigorously described forms of learning in
matters and activities computational and mechanistic must be rooted in number-
theoretic functions, is to simply note that computer science itself consists in the
study and embodiment of number-theoretic functions, defined and ordered in hier-
archies (e.g. see Davis and Weyuker 1983). We by the way focus herein on unary
functions f : N — N only for ease of exposition.

A biconditional isn’t needed. We use only a weaker set of necessary conditions, not
a set of necessary and sufficient conditions.

Not to be be confused with RL, reinforcement learning, in which real learning, as
revealed herein, doesn’t happen.
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supplant the term in question with something unexceptionable.® Our substitute
for the term is a simple and standard operationalization: instead of relying on
the murky and mushy concept of understanding, we simply reply upon testable
behavior that for millennia has served as the basis for ascriptions of understand-
ing to cognizers in the formal sciences.5 What behavior are we talking about?
Well, the behavior of Euclid and everyone following him who has convinced the
objective and the skeptical that they understand such things as mathematical
(including specifically number-theoretic) functions, to wit: answers to penetrat-
ing questions, and associated proofs that those answers are correct. There liter-
ally has been no other way for a human being to provide evidence sufficiently
strong to warrant an ascription, to that human being by others, of understand-
ing in the realm of formal functions—or, since the machinery needed for careful
articulation of these functions is at least something like axiomatic set theory, in
the realm of mathematics itself. Here then, more explicitly, is what we replace
(c1) with in order to define RL:

(c1’) a can correctly answer test questions regarding the formal definition Dy
of f, where the answers in each case are accompanied by correct proofs’
discovered, expressed, and provided by a.

We point out that the use of tests to sharpen what Al is, and how to judge
the intelligent machines produced by Al, is a longstanding conception of Al
itself, provided first by Bringsjord and Schimanski (2003), and later expanded
by Bringsjord (2011).% It’s true that philosophers may crave something more
abstract and less pragmatic, but the fact of the matter is that tests are the
coin of the realm in real-world Al, and also the coin of the realm in human-level
learning in matters formal.? For economical exposition in the sequel, we continue
to refer to real learning as simply “R.L.” We now turn to a simple example that
shows RL to be, as we've said, intuitive, ancient, and operative every single
day in the lives of all neurobiologically normal children with the parental or
community wherewithal to be schooled:

5 As many readers will know, Searle’s (1980) Chinese Room Argument (CRA) is
intended to show that computing machines can’t understand anything. It’s true
that Bringsjord has refined, expanded, and defended CRA (e.g. see Bringsjord 1992,
Bringsjord and Noel 2002; Bringsjord 2015), but bringing to bear here this argu-
mentation in support of the present paper’s main claim would instantly demand an
enormous amount of additional space. And besides, as we now explain, calling upon
this argumentation is unnecessary.

5 Since at bottom, as noted (see note 2), the target of learning should be taken for gen-
erality and rigor to be a number-theoretic function, it’s natural to consider learning
in the realm of the formal sciences.

" Just as (computer) programs can be correct or incorrect, so too proofs can be correct
or incorrect. For more on this, see e.g. (Arkoudas and Bringsjord 2007).

8 If we regard Turing to have been speaking of modern AT in his famous (Turing 1950),
note then too that his orientation is test-based: he gave here of course the famous
‘Turing Test.’.

9 In fact, this is why real learning for humans in mathematics is challenging; see e.g.
(Moore 1994).
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Example 1

You, a student, left for high school after breakfast and upon arriving were
reminded in math class of the factorial function n!. Later in the day, when home,
you inform a parent that you have learned the function in question. But you are
promptly asked whether you really did learn it. So, you are tested by your parent,
and by some homework questions that align with (c1’)—(c3):

1. The first problem relates to satisfying (c1)/(c1’): Consider the func-
tion g that maps a natural number k to the sum k + (k + 1). Is it
true that ¥n € N[n! > ¢g(n)]? Prove it. Does this proposition hold for
every natural number n after a certain size? Answer and prove it.?

2. A second problem asks you to ascertain whether the factorial of every
natural number greater than 1 is even, and to then prove that the
answer is correct.

You certainly can determine the correct answers to problems like these that
probe your understanding of the factorial function, and you certainly can supply
the definition in various forms and can decide whether proposed definitions are
valid, and you certainly (assuming unlimited resources; see note a) can for any
input n give back n!. Can you also prove that your outputs are correct? Yes,
easily. For the fact is that you, reader, can really learn such functions.

Of course an affirmative is correct, and the proof is a trivial use of mathematical
induction.

Obviously, an infinite number of such examples can be effortlessly given, in order
to anchor RL. For instance, Example 2 could refer instead to the double factorial
n!! function, Example 3 to the Ackermann function, and so on ad infinitum.
Without loss of generality, we rely solely on Example 1.

Now we consider two cases, each predicated on the assumption that the agent
a* we are assessing is a machine-learning one. We specifically assume that, as
such, a* is a standard artificial neural network that machine-learns by repeatedly
receiving finite collections of ordered pairs (m,m’) of natural numbers, some of
which are from the graph of f and annotated as such, and some of which aren’t
from the graph of f and are annotated as such.'® Provided that in the limit a*,
upon receiving an arbitrary natural number n through time, outputs f(n), save
for a finite number of erroneous verdicts, a* has machine-learned f.!!

10 Qur assumption here thus specifically invokes connectionist ML. But this causes no
loss of generality, as we explain by way the “tour” of ML taken in Sect. 6.1, and the
fact that the proof in the Appendix, as explained there, is a general method that
will work form any contemporary form of ML.

11 This is a rough-and-ready extraction from (Jain et al. 1999), and must be sufficient
given the space limitations of the present short paper, at least for now. Of course,
there are many forms of ML /machine learning in play in Al of today. In Sect. 6.1 we
consider different forms of ML in contemporary Al. In Sect. 6.2 we consider different
types of “learning” in psychology and allied disciplines.
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3 Casel

Here we assume that human persons are capable of hypercomputation. Given
this, humans can learn some Turing-uncomputable functions in F. (One example
might be Rado’s (1963) “Busy Beaver” function X, which maps the size of a
Turing machine measured by the number of its states to the maximum number
of contiguous 1s such a TM can produce as output before halting (where the
alphabet used is simply {0,1}).) Let h € F be such a function. That a* hasn’t
learned h is a trivial theorem.!'?

4 Case 2

Assume now that a* is to learn a Turing-computable unary number-theoretic
function f, say one that might be seen in math classes; we here refer to Example
1 and its infinite cousins; see above. This case is likewise trivial. The models for
machine learning on offer today from Al preclude even reproducing an accurate
formal definition of f along with easy proofs therefrom, let alone proofs that
proposed values are correct relative to such a definition; that is, conditions (c1’)—
(c3) aren’t satisfied. Since Case 1 and Case 2 are exhaustive: QED.

5 Objections; Replies

A number of objections are perfectly anticipatable. However, voicing and rebut-
ting all of them here is beyond the reach of a reasonably sized paper. Nonetheless,
perhaps substantive dialectic is possible. We start by considering a first objection
(Objection 1) that we view as a family of interrelated objections.

5.1 Objection 1la: Yours is an idiosyncratic type of learning!

We imagine the objection in question expressed thus: “The definition of ‘learn-
ing’ employed here, i.e. what you dub ‘real learning,’ results in a very peculiar
concept—one that captures neither machine learning nor human learning! And
it certainly does not motivate why only this concept is the correct one.”

This is flatly wrong. From the mathematical point of view, today’s ANN-
based machine learning, such as for example has been used in the construction
of better-than-any-humans Go-playing systems (i.e. deep learning/DL as the
specific type of ML), can be rigorously defined in only two or three ways, for the
simple reason that these ways must be based directly on mathematical definitions
of machine learning. We are not in the business of taking seriously modern-day

12 Lathrop (1996) shows, it might be asserted, that uncomputable functions can be
machine-learned. But in his scheme, there is only a probabilistic approximation of
real learning, and—in clear tension with (c1’)—(c3)—mno proof in support of the notion
that anything has been learned. The absence of such proofs is specifically called out
in the formal deduction given in the Appendix.
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alchemists, let alone pointing out to them that their use of the term ‘learning,’
in the context of what learning has for millennia been, is outré. Some interna-
tionally famous deep-learning “engineers” have confessed to us in face-to-face
conversation that what they are doing in this regard is utterly mysterious to
them, mathematically speaking. We in the foregoing cite the ways that exist to
understand machine learning logico-mathematically; see our References.'? We
confess that our argument, reflecting our logico-mathematical point of view,
quietly but importantly includes a principle that can be summed up as follows:

(*) When investigating whether today’s ML (in any of its forms) is real
learning (of a number-theoretic function f), the only way to end up with
an affirmative to the question is to find a mathematical account A of
today’s ML according to which in at least one of its forms its “learning”
of f is real learning of f.

In a more formal version of our argument, such as what we give in the Appendix,
we provide a step-by-step deductive argument for our main claim that machine-
learning machines don’t really learn; and this deductive argument renders the
principle just given explicit and mechanical.

As to our definition of the real human learning of functions, i.e. RL, this is
extracted directly from mathematics textbooks used for many, many centuries.
In fact, our triad (c1’)—(c3) can be traced clearly and unswervingly all the way
back to Euclid. Real learning isn’t peculiar in the least; on the contrary, it’s
orthodox, and the bedrock of all systematic human knowledge and technology. To
validate and explicate RL, we need nothing more than the problems, solutions,
and proofs for those solutions that are part and parcel of high-school math—and
in fact we only need algebra. Our triadic definition can be empirically confirmed
by examining such simple textbooks; see for instance (Bellman et al. 2012). For
the case of high-school calculus, see note 18. There is no small amount of irony
in the fact that those touting “machine learning” in today’s machines as genuine
learning have invariably been required to pass the very courses, with the very
textbooks, that demand RL.

To wrap up our rebuttal, we note that RL, far from being idiosyncratic, is
directly reflective of something that most if not all ML ignores: viz., learning is
what produces knowledge. An agent that has genuine knowledge of the differential-
and-integral calculus is an agent whose learning has produced at least something
very close to justified, true belief with respect to the relevant propositions.'* That
is, the agent believes these true propositions, and has justifications in the form of
arguments that establish, or at least render highly likely, the relevant propositions.

13°A pair of additional works help to further seal our case: (Kearns and Vazirani 1994;

Shalev- Shwartz and Ben-David 2014). Study of these texts will reveal that RL as
per (c1')—(c3) is nowhere to be found.
‘We of course join epistemological cognoscenti in being aware of Gettier-style cases, but
they can be safely left aside here. For the record, Bringsjord claims to have a solution
anyway—one that is at least generally in the spirit of Chisholm’s (1966) proposed solu-
tion, which involves requiring that the justification in justified-true-belief accounts of
knowledge be of a certain sort. For Gettier’s landmark paper, see (Gettier 1963).
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The arguments that undergird knowledge in this way (which were called out above
in our example of (c1’)—(c3) in action) are nowhere to be found in contemporary
ML, at least in its connectionist, probabilistic, and reinforcement forms.

5.2 Objection 1b: This isn’t AI!

In a variant of Objection la, we imagine some saying this: “In Al, we are, as a
rule, not interested in learning functions over naturals with an infinite domain,
given by a graph (or table).”

This is a painfully weak objection, one that reflects, alas, the alchemic nature
of much of modern AI. Alniks may not be interested in X, but mathematically
they may well be doing X; and if they can’t say mathematically what they’re
doing, then they shouldn’t say anything at all in debates such as the present one.
Regardless, rest assured that formally speaking, machine learning is learning such
functions as we have pointed to (or alternatively learning formal grammars or
idealized computing machines). We have given references that confirm this with
a ring of iron.

5.3 Objection 1c: What about toads?!

“Your argument has the absurd consequence that even lower animals turn out
to be classified as non-learners. Can a toad learn? Certainly. Can a toad learn a
number-theoretic function in your sense of learn? Certainly not.”

This objection is a kind, unwitting gift, for this is just another way to expose
the absurdity of statistical ANN-based machine learning (and of—as we shall
momentarily see—other forms of non-logicist machine learning!®). Agreed: a
toad can’t learn a number-theoretic function, in the established triadic sense
of learning such things we specified above. (We now know that no nonhuman
animals can do anything of the sort; see e.g. (Penn et al. 2008); ergo our critic
can be encouraged to substitute for ‘toad’ ‘dog’ or ‘chimp,’ etc.) But, by the
mathematics of statistical ML/DL, a toad (or a toad-level AI produced by the
likes of Deep Mind) can learn such a function. This allows us to deduce by
reductio what the man on the street already well knows: a bunch of smarty-
pants people have defined their own private, bizarre, and self-advancing sense of
learning. We're now seeing the hidden underbelly of this smug operation, because
adversarial tests are showing such things as that DI-based vision systems declare
with 99% confidence, for example, that as a turtle is a gun.'® Of course, we

15 Specifically, we shall see that the formal deduction of the Appendix is actually a
method for showing that other forms of “modern” ML, not just those that rely on
ANNSs, don’t enable machines to really learn anything. E.g., the method can take
Bayesian learning in, and yield as output that such learning isn’t real learning.

16 Shakespeare himself, or better yet even Ibsen, or better better yet Bellow, couldn’t
have invented a story dripping with this much irony—a story in which the machine-
learning people persecuted the logicians for building “brittle” systems, and then the
persecutors promptly proceeded to blithely build comically brittle systems as their
trophies (given to themselves).
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concede what everyone knows: connectionist ML will continue to improve, and
the current brittleness of this form of learning will specifically be addressed
in many applications. Yet the mere fact that there currently s brittleness is
profoundly telling, in the context of RL, for imagine a student Johnny who
has real-learned our now-well-worn factorial function. And now imagine that to
“test” Johnny, instead of presenting him with a numeral (n) where n € N, and
a question as to what the factorial of n is, we instead present him with a picture
p of a turtle, and ask him what the factorial of a turtle is. Johnny is likely
to inform his parents that some teachers at this school are mentally unstable;
certainly there’s no chance he’s going to blurt out such a response as ‘24.” The
reason for this, speaking imprecisely (recall the earlier discussion at the outset
of the paper about the concept of understanding), is that while the DL system
has no real understanding of what a turtle or a gun is, Johnny, in satisfying
(c1”)—(c3), does.

5.4 Objection 2: Case 1 is otiose!

“Surely your Case 1 is otiose, since—so the objection goes—finite agents,
whether human or machine, as everyone concedes, don’t in any sense learn
uncomputable functions.”

This is a silly objection, swept away as but dust by the relevant empirical facts;
for everyone doesn’t concede such a thing; witness (Bringsjord et al. 2006), which is
in fact based on the aforementioned X'. As is explained there, Godel made no con-
cession to the effect that humans don’t learn uncomputable functions. For a pur-
ported proof that human persons hypercompute, see (Bringsjord and Arkoudas
2004);'7 for a book-length treatment, see (Bringsjord and Zenzen 2003).

5.5 Objection 3: Your definition of human learning is tendentious!

“Your triadic definition of learning [based on your conditions (c1’)—(c3)] conve-
niently stacks the deck against modern statistical machine learning (=ML in the
current discussion and in the—by-your-lights fawning—media). This definition
is highly unnatural, and highly demanding.”

We note first in reply that convenience per se is of course unobjectionable.
Next, telling in this dialectic is the brute fact that for well over two millennia we
have known what it is for an agent to have really learned some math or formal
logic, number-theoretic functions included; and what we in this regard know
aligns precisely with the triadic account of RL given above. Again, empirical
confirmation of this alignment can be obtained by turning to what the textbooks

17 Tn which is by the way cited hypercomputational artificial neural networks.
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demand in terms of proof,'® and what the disciplines in question demand of those
who wish to lay claim to having truly learned some formal logic or math.

In short, we cannot allow the field of Al, and specifically its ML subpart, now
on the intellectual scene for not more than a blip of time, to trample ordinary
language and ordinary meaning that has been firmly in place within the formal
sciences for millennia. We are not here appealing directly to so-called “ordi-
nary language” philosophy, and philosophers in this school (such as G.E. Moore,
Austin, Norman Malcolm, and various modern defenders). As a matter of fact,
the veridicality of ordinary language is something we in general find attractive,
but we need only a circumspect general principle like this one:

(4+) If natural-language communication has for millennia taken the bona fide
learning of an arithmetic function f by an intelligent agent a to happen
only if &, then, absent a separate and strong argument in favor of an
incompatible set ¥ of conditions that contravenes this, one is justified in
applying @ to claims that a can learn/has learned some given function

fh

Perhaps the remarkable thing about (+) is that the behavior of ML practitioners
themselves confirms its truth. The field of machine learning has both founda-
tional theorems such as the No Free Lunch theorem (Wolpert 1996) and new
working theorems that are constantly introduced in the scientific literature of the
field, e.g. Theorem 2.1 in (Achab et al. 2017). Leaving aside theorems and other
formal knowledge produced by ML practitioners, consider the case of ANN-based
ML, for instance today’s DL. DL experts examine some given data, and through
domain expertise built up in the past (via a process much mediated by natural
communication, written and oral), devise a target set of functions (denoting the
architecture of the neural network in question):

{fw | W is in some large space}

The machine then simply tunes the weights w. Specifically, in convolutional (arti-
ficial) neural networks, the form of the function best suited for image processing
was conceptualized by humans and justified, by not just performance measures,
but by an argument in good old-fashioned English for the conclusion that this
form of neural networks might be good for image processing. See (LeCun et al.
1998) and Chap. 9 in (Goodfellow et al. 2016) for examples of this process. Note
that even if a machine selects the architecture, that selection is happening from a

'8 E.g. even beginning textbooks introducing single-variable differential/integral cal-
culus ask for verification of human learning by asking for proofs. The cornerstone
and early-on-introduced concept of a limit is accordingly accompanied by requests
to students that they supply proofs in order to confirm that they understand this
concept. Thus we e.g. have on p. 67 of (Stewart 2016) a request that our reader
prove that

lim g(x) = (42— 5) =7

. What machine-learning machine that has learned the function g here can do that?
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class of architectures designed by none other than the guiding humans, and there
is no justification from the machine beyond performance measures. A relatively
different form of machine learning, inductive programming (Kitzelmann 2009),
seeks to learn functions like addition by looking at a very small set of sample
inputs and outputs. But even this is shallow when stacked against real learning:
In RL, humans can not only look at inputs and outputs, but also descriptions of
the properties of the function written in English (and other natural languages,
as the case may be) that go well beyond the examples.

5.6 Objection 4: Do flying machines (really) fly?

“Unfortunately, you are dancing around an unanswerable quagmire that has
been with us for rather a long time, one summed up by the seemingly innocent
question: Do flying machines (really) fly?”

Suppose there is an embodied Al a’ with all sorts of relevant sensors and
effectors in the form of an autonomous drone that can take off by itself and travel
great distances adroitly, land, and so on—all without any human intervention in
it or its supporting systems during some flight from time ¢ to ¢’. Did a’ really fly
during this interval? Of course it did. Do eagles really fly over intervals of time?
Of course they do. There is no objection to our argument to be found in the
vicinity of these (nonetheless interesting) questions. In the case of RL, there are
no machines on the planet, and indeed no machines in the remotely foreseeable
future of our solar system, that have the attributes constitutive of this learning.

5.7 Objection 5: You concede that your case is limited to the
formal sciences!

“You have conceded, perhaps even stipulated, that real learning in your argu-
ment is restricted to the realm of the formal sciences. Hence, if your case is
victorious, its reach is rather limited, no?”

Quite the contrary, actually. We have indeed restricted real learning to the
formal sciences. However, we had assumed that it would be clear to all readers
that adaptation and expansion of (c1’)—(c3) to non-formal domains would if
anything bolster our case, if not immediately render it transparently victorious.
Apparently our critic in the case of the current objection needs to be enlightened.
Consider creative writing. What does it take to learn the “functions” at the heart
of creative writing, so that eventually one can take as input the premise for a
story and yield as output a good story?'® We can safely say that any agent
capable of doing this must be able to read not formal-scientist Euclid, but, say,
Aristophanes, and a line of creative writers who have been excelling since the
ancient Greeks; and learn from such exemplars how such a “function” can be
computed. But reading and understanding literary prose, and learning thereby,

9 This is essentially the Short Short Story Game of (Bringsjord 1998), much harder
than such Turing-computable games as Checkers, Chess, and Go, which are all at
the same easy level of difficulty (EXPTIME).
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is patently outside the purview of current and foreseeable AI. And it gets worse
for anyone who thinks that today’s machine-learning machines learn in such
domains: In order to learn to be a creative writer one must generate stories, over
and over, and learn from the reaction and analysis thereof, and then generate
again, and iterate the process. Such learning, which is real learning in creative
writing, isn’t only not happening in ML today; it’s also hard to imagine it
happening in even ML of tomorrow.

6 Real Learning in Context

The dialectic in the previous section makes it abundantly clear that ‘learning’ is
polysemous: it means many different things to many different people. Given this
fact, we think it’s worthwhile to a bit more systematically place real learning
within the context of different senses of learning in play in contemporary Al
and cognitive science/psychology. We thus briefly review the prominent senses
of learning in AT (Sect. 6.1), and then in cognitive science/psychology (Sect. 6.2);
and then, this two-part review complete, we proceed (Sect. 6.3) to quickly explain
in broad strokes how by a series of four steps real learning can be isolated within
the broader context afforded by the review.

6.1 Learning in Al

Everyone must admit that there are many different extant ways to map the geog-
raphy of what is called “learning” in the field of AI. This is easily confirmed by
the existence of modern, credible overviews of learning in Al, in textbooks (each
of which, of course, has been fully professionally vetted): the geographies offered
in each pair of these books is different between the two. Given this divergence,
we can’t possibly give here a single, definitive, received breakdown of learning in
its various forms within contemporary AIl. On the other hand, it’s nonetheless
clear that any orthodox breakdown of the types of learning in the field, in any
textbook, will immediately reveal that no type matches real learning = RL.%2°
We here follow Luger (2008), whom we find particularly perspicuous, and quickly
point out, as we move through his geography, that real learning is nowhere to
be found. Nonetheless, it will be seen that Luger (2008), to his credit, opens a

20 Qutside of the present paper, we have carried out a second analysis that confirms
this, by examining learning in Al as characterized in (Russell and Norvig 2009), and
invite skeptical readers to carry out their own analysis for this textbook, and indeed
for any comprehensive, mainstream textbook. The upshot will be the stark fact that
RL, firmly in place since Euclid as what learning in the formal sciences is, will be
utterly absent.
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door to a path that could conceivably lead to real learning, at some point in AI’s
future.?!

Luger (2008) devotes Part IV of his book to “Machine Learning;” four chap-
ters, 1013, compose this part, and each is devoted to a different form of machine
learning;:

e Chap.10: “Symbol-Based”

e Chap. 11: “Connectionist”

o Chap.12: “Genetic and Emergent”
e Chap. 13: “Probabilistic”

As one would expect, connectionist learning covers machine learning that is
rooted in ANNs. For reasons given in the present paper, there isn’t a scintilla of
overlap between what is covered in Chap.11 and RL. This is true for starters
because the familiar, immemorial declarative information that has defined such
things as the factorial function are nowhere to be found within an any artificial
neural network whatsoever. The same applies, mutatis mutandis, to the genetic-
and-emergent type of learning covered in Luger’s (2008) Chap. 12, as should be
obvious to all readers. (Genetic algorithms, for example, make no use of the sort
of declarative content that defines number-theoretic functions.) We are thus left
to consider whether R L appears in symbol-based learning presented in Chap. 10,
or in probabilistic learning covered in Chap. 13. In point of fact, which energetic
readers can confirm when reading for themselves, real learning doesn’t appear
in either of these places.

Now, we said above that Luger (2008) opens the door to a future in which AT
includes real learning. We end the present section by explaining what we mean.

In the final part of (Luger 2008), V, entitled “Advanced Topics for AT Prob-
lem Solving,” two topics are covered, each of which is given its own chapter:
“Automated Reasoning,” covered in Chap. 14; and “Understanding Natural Lan-
guage,” presented in Chap.15. Luger’s (2008) core idea is that for truly pow-
erful forms of problem-solving in a future AI, that remarkable machine will
need at least two key things: it will need to be able to reason automatically
and autonomously in deep ways, starting with deductive reasoning; and second,
this AI will need to be able to really and truly understand natural language,

2! Instead of looking to published attempts to systematically present Al (such as the
textbooks upon which we rely herein), one could survey practitioners in Al, and
see if their views harmonize with the publications explicitly designed to present
all of AI (from a high-altitude perspective). E.g., one could turn to such reports
as (Miller and Bostrom 2016), in which the authors report on a specific question,
given at a conference that celebrated Al’s “turning 50” (AI@50), which asked for
an opinion as to the earliest date (computing) machines would be able to simulate
human-level learning. It’s rather interesting that 41% of respondents said this would
never happen. It would be interesting to know if, in the context of the attention ML
receives these days, the number of these pessimists would be markedly smaller. If so,
that may well be because, intuitively, plenty of people harbor suspicions that ML in
point of fact hasn’t achieved any human-level real learning.
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including complete sentences, following one upon another.?? It will not escape
the alert reader’s notice that the capability constituted by this pair is at the
heart of what it takes to be a “real learner,” that is, to be an agent that really
learns as per (c1’)—(c3) in the formal sciences. Unless an Al can itself prove such
things as—to repeat a part of the Example we began with — that the factorial
function’s range consists of the even natural numbers, and receives and under-
stands/processes challenges to prove such things, where these challenges come in
the form of arbitrary, full sentences like “Show that the factorial of every number
is even,” it won’t be an AI that really learns. Unfortunately, while Luger (2008)
points the way toward aspects of two key capabilities needed for real learning,
he does only that, by his own admission: point. So, while the door is open, our
claim, that machine-learning machines of today don’t really learn, is unscathed.

6.2 Learning in Psychology and Allied Disciplines

Recall the factorial-function example we gave at the outset. When, upon return-
ing home after school, you are asked by a parent, “So, what did you learn today
in math?” it’s rather doubtful that if you answered earnestly and sincerely, and
if your time in class was a pedagogical success, you replied in accordance with
anything violently outside the bounds of RL. Nonetheless, psychology and its
allied disciplines (= psychology™) have (perhaps inadvertently) erected an ontol-
ogy of forms of learning that at least in principle offer viable alternatives to RL,
or even perhaps forms of learning that match, overlap, or conceivably subsume
RL. Put intuitively, the question before us in the present section is this one:
Could you reasonably have conversed with your parent on the basis of any of
the types of learning in psychology™’s ontology thereof? As we now reveal, the
answer is No.?3 We begin with the authoritative (Domjan 2015), which is based
on this operationally inclined definition:

22 Luger’s book revolves around a fundamental distinction between what he calls weak
problem-solving versus strong problem-solving.

23 There are a few exceptions. Hummel (2010) has explained that sophisticated and
powerful forms of symbolic learning, ones aligned with second-order logic, are supe-
rior to associative forms of learning. Additionally, there’s one clear historical excep-
tion, but it’s now merely a sliver in psychology (specifically, in psychology of rea-
soning), and hence presently has insufficient adherents to merit inclusion in the
ontology we now proceed to canvass. We refer here to the type of learning over
the years of human development and formal education posited by Piaget; e.g. see
(Inhelder and Piaget 1958). Piaget’s view, in a barbaric nutshell, is that, given solid
academic education, nutrition, and parenting, humans develop the capacity to rea-
son with and even eventually over first-order and modal logic—which means that
such humans would develop the capacity to learn in RL fashion, in school. Since
attacks on Piaget’s view, starting originally with those of Wason and Johnson-Laird
(e.g. see Wason and Johnson-Laird 1972), many psychologists have rejected Piaget’s
position. For what it’s worth, Bringsjord has defended Piaget; see e.g. (Bringsjord
et al. 1998).
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Learning is an enduring change in the mechanisms of behavior involving spe-
cific stimuli and/or responses that results from prior experience with those or
similar stimuli or responses. (Domjan 2015, p. 14)

That learning is here attributed to a change in the ‘mechanisms of behavior’
would seem to draw a hard line between learning and performance. Performance
can after all be the effect of multiple factors besides learning, and hence is not
a sole determinant of the latter. At any rate, in our study of types of learning
in psychology™, we found the following six forms of learning. As we progress
through the enumeration of these forms, we offer in turn a rather harshly eco-
nomical summary of each, and render a verdict as to why each is separate from
and irrelevant to real learning (with the possible exception, as we note, of the
last). Here goes:

1. Associative Learning: Classical and Instrumental Conditioning. The the-
ory of classical conditioning originates from the (Pavlovian) finding that
if two stimuli, one unconditional (US), such as food, and the other neutral
(CS), come in close temporal contiguity, and if US elicited some response
naturally (say salivation), then CS too eventually elicits that response.
While here the change in behavior is attributed to some contingency
between CS and US (also called reinforcer), in instrumental condition-
ing this change results from some contingency between that behavior and
the reinforcer (Mackintosh 1983). Obviously, if this strengthening or rein-
forcement of the new pattern in behavior is no more than a new stimulus-
response connection, real learning is nowhere to be found.?*

2. Representational Learning. The representational theory of learning (Gal-
listel 2008) views the brain as a functional model capable of computing a
representation of the experienced world; and that representation in turn
informs the agent’s behavior. While learning here is taken to be a process
of acquiring knowledge from experience, ‘knowledge’ here means nothing
like the knowledge that is front and center in Example 1 of RL.

3. Observational Learning. Here, a new behavior is learned simply by observ-
ing someone else. Mostly associated with the social learning theory of
psychologist Albert Bandura (1977), his Bobo-doll experiment (Bandura
et al. 1961) is an interesting study of how children learn social behav-
ior such as aggression through the process of observational learning. This
type of learning in psychology™ is learning by straight imitation, and as
such is obviously not RL. Put simply and baldly, the decision problems
we presented in our starting example (e.g., is n! invariably even?), and the
confirmatory proofs for each answer, are not supplied by shallow imitation
of the likes of inflatable Bobo dolls.

4. Statistical Learning. Extraction of recurring patterns in the sensory input
generated from the environment over time is the core essence of this type

24 We are happy to concede that years of laborious (and tedious?) study of condition-
ing using appetitive and aversive reinforcement (and such phenomena as inhibitory
conditioning, conditioned suppression, higher-order conditioning, conditioned rein-
forcement, and blocking) has revealed that conditioning can’t be literally reduced to
new reflexes, but there is no denying that in conditioning, any new knowledge and
representation that takes form falls light years short of RL.
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of learning (Schapiro and Turk-Browne 2015). Taking a cue from asso-
ciative learning in nonhuman primates, past studies showed a possibility
of sensitivity of certain parts of the brain when exposed to temporally
structured information. Detection of conditional probability patterns in
sound streams as a precursor to language parsing, leading to predictions
of some sounds given other sounds, would be a good example. Schapiro
and Turk-Browne (2015) give a nice overview of various studies related to
auditory and visual statistical learning in humans, including neural inves-
tigations towards the role of different regions of brain in diverse forms of
such learning. Though statistical learning is suggested as a pervasive ele-
ment of cognition, it is yet early to state this as a form of real learning.

Marblestone et al. (2016) draw a parallel between human brain functioning
and the activity of ANNs in connectionist ML. They specifically claim that
the neural structure of the brain coincides with various methods of weight
assignments to multiple hidden layers of ANNs when machine learning
takes place. We gladly concede for the sake of argument that this direc-
tion holds promise for the neurological “decoding” of the human brain,
since the core idea is that there’s a match between brain activity and
ANNS through time in ML. But since this activity cannot in any way be
interpreted to constitute embodiments of the three clauses that define RL,
we once again see here an entirely irrelevant form of learning.

. Neurocentric Learning. Titley et al. (2017) propose a non-exclusive, neu-

rocentric type of learning. For ease of exposition, let’s label this type of
learning simply ‘Ln..” Lp. marks a move away from a synaptocentric neu-
robiological form of learning: in L., both synaptic plasticity and intrinsic
plasticity play a role in learning and memory. More specifically, synap-
tic plasticity assigns connectivity maps, while intrinsic plasticity drives
engram integration. While L. is certainly interesting, and while it may
well hold much promise, it’s undeniable that learning in this sense is clearly
not relevant to our conception of RL. Confirmation of this comes from
the brute fact that no account based on the building-blocks of L. can
be used to express even the tiniest part of RL. Colloquially put, no agent
who learns, say, the Ackermann function in a given recursion-theory class,
and is proud that she has, can report this happy event by expressing her
enlightenment in terms of the proofs demanded by the clauses that define

RL.

. Instructional Learning. Instructional learning is in play when an individ-

ual learns from instruction (for example, a teacher’s verbal commands in a
classroom) and responds with corresponding action/s. While we of course
agree that instruction acts as a purposeful direction of the learning pro-
cess (Huitt 2003), this learning fails to qualify as RL because action alone
doesn’t define learning. Of course, in theory, the actions of student learn-
ers could be fleshed out to correspond to RL’s three clauses. Were this
carried out, it would merely show that instructional learning, at least of a
particular type (e.g., instructional learning in the formal sciences), corre-
sponds to RL—but this we’ve known from, and has indeed been plain to
readers since, the outset of the present paper.
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6.3 The Four-Step Road to Real Learning

Having completed our rapid tour of ML in contemporary Al, and learning in
psychology™, we now provide a general characterization of what real learning is,
within this context. Saying what real learning is in the broader context consti-
tuted by the previous two subsections can be achieved by first by throwing aside
irrelevant, lesser forms of cognition; this will be the first of four general steps
taken to arrive at RL:

Step 1: We begin by observing that the cognitive powers of creatures on Earth are
discontinuous, because human persons have reasoning and communication
powers of a wholly different nature than those possessed by nonhuman
animals. A non-technical version of this observation is provided by Penn
et al. (2008). A more specific, technical analysis, undertaken from a logico-
mathematical standpoint, allows us to simply observe that only members
of H. sapiens sapiens are capable of such things as®®

— understanding and employing indubitable abstract inference schemas
that are independent of physical stuff (e.g. modus tollens; see Ross
1992);

— understanding and employing arbitrary, layered quantification (such
as that ‘Everyone likes anyone who likes someone’ along with ‘Alvin
likes Bobby’ allows us to prove that ‘Everyone likes Bobby’);

— recursion (e.g. as routinely introduced in coverage of the recursive
functions in an intermediate formal-logic course, which might wisely
use (Boolos et al. 2003));

— infinite structures and infinitary reasoning (a modern example being
the proof that the Goodstein sequence goes to zero; see (Goodstein
1944));

— etc.

Step 2: We next exclude forms of “learning” made possible via exclusive use of
reasoning and communication powers in nonhuman animals, and set a
focus on learning enabled by human-level-and-above (HLAB) reasoning and
communication powers. (Given the previous two subsections, this step
makes perfect sense. Recall our discussion, for example, regarding Luger’s
layout for learning in modern Al, all of which, save for what might be
possible in the future, made no use whatsoever of the human capacity to
read.)

Step 3: Within the focus arising from Step 2, we next avail ourselves of basic facts
of cognitive development in order to narrow the focus to HLAB reasoning
and communication sufficiently mature to perceive, and be successfully
applied to, both (i) cohesive, abstract bodies of declarative content, and to
(ii) sophisticated natural-language content. A paradigmatic case of such
content would be axiom systems, such as those for geometry routinely
introduced in high school. Another such case would be elementary number
theory, also introduced routinely in high school; such coverage includes

25 Note that all occurrences of ‘understanding’ in the itemized list that follows, in
keeping with the psychometric operationalization introduced at the outset in order
not to rely on the murky concept of understanding, could be invoked here; but doing
so would take much space and time, and be quite inelegant.
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the example of the factorial function, with which we started the present
paper.?® Let’s denote such reasoning and communication by ‘RCM"

Step 4: Finally, we proceed to define real learning = RL as the acquisition of
new knowledge by using RC"". For example, forms of reasoning that use
sophisticated analogical reasoning, or deduction applied to the axiom sys-
tem PA (see note 26), can be used to allow an agent to really learn new
things in the formal domain. Of course, the specific account of real learn-
ing will always boil down to specifics such as those given in (c1’)—(c3), but
we have sought here to put real learning in a broader context, via our tour
and, following on that, the four steps now concluded.

7 Final Remarks

We have heard echoes of an objection not explicitly presented and rebutted
above; viz., “Perhaps you should do some soul-searching. For does it not simply
boggle the mind that, if you're right, real learning hasn’t even been seriously
targeted by Al, despite all the praise that it receives for machines that ‘learn’?!”
Well, it does boggle the mind. All of us, the authors and all our readers, know
quite well what real learning is, and how it came to be that on its shoulders
we all arrived at a place that allows us to study and do AI: we got here by
learning in precisely the fashion that RL, in its three conditions, prescribes. We
thus take ourselves to have simply revealed in the present paper what everyone
in their heart of hearts knows: the exuberant claims of today that machine-
learning machines learn are, when stacked against how we all learn enough to
put ourselves in position to study and do Al, are simply silly. Accordingly, since
AT in the new millennium increasingly penetrates the popular consciousness, we
recommend that those working to advance non-real forms of ML extend to the
public the courtesy of issuing a disclaimer that the type of learning to which
they are devoted isn’t real learning. This is a public, of course, that thinks of
learning in connection not with artificial agents, but with schoolchildren, with
high-schoolers, with undergraduates, with those in job-training programs, etc.,
all these groups being, of course, natural agents in the business of real learning.

Finally, we admit that the case we have delivered herein isn’t yet complete,
for there is an approach to computation, and an approach to the study of intelli-
gence, neither of which we have discussed in connection with our core claim that
contemporary ML isn’t real learning. The approach to computation can be called
natural computation, and the core idea is that nature itself computes (and per-
haps is computation) (an excellent introduction is provided in Dodig-Crnkovic
and Giovagnoli 2013); the approach to intelligence that we have left aside puts
a premium on bodies and their interconnection with the physical environment
(see e.g. Barrett 2015). In subsequent work, we plan to consider the relationship
between RL and forms of learning based on these two intertwined approaches.

26 Peano Arithmetic (PA) is rarely introduced by name in K-12 education, but all
the axioms of it, save perhaps for the Induction Schema, are introduced and taught
there.



Do Machine-Learning Machines Learn? 153

Even now, though, it’s safe to say that because RL takes little to no account
of the physical (it’s after all based in the formal sciences), and because it’s con-
ception of an agent is of a disembodied one,?” it’s highly unlikely that forms of
physical-and-embodied learning not considered above will overlap real learning.

8 Appendix: The Formal Method

The following deduction uses fonts in an obvious and standard way to sort
between functions (f), agents (a), and computing machines (m) in the Arith-
metical Hierarchy. Ordinary italicized Roman is used for particulars under these
sorts (e.g. f is a particular function). In addition, ‘C’ denotes any collection of
conditions constituting jointly necessary-and-sufficient conditions for a form of
current ML, which can come from relevant textbooks (e.g. Luger 2008; Russell
and Norvig 2009) or papers; we leave this quite up to the reader, as no effect
upon the validity of the deductive inference chain will be produced by the pre-
ferred instantiation of ‘C.” It will perhaps be helpful to the reader to point out
that the deduction eventuates in the proposition that no machine in the ML
fold that in this style learns a relevant function f thereby also real-learns f. We
encode this target as follows:

(x) =3m 3f [¢ := M Llearns(m,f) A := RLlearns(m,§) A Cy(m,§) F* (c1’) — (€3),(m, )]

Note that () employs meta-logical machinery to refer to particular instantiations
of C for a particular, arbitrary case of ML (¢ is the atomic sub-formula that
can be instantiated to make the particular case), and particular instantiations
of the triad (ci’)—(ciii) for a particular, arbitrary case of RL (¢ is the atomic
sub-formula that can be instantiated to make the particular case). Meta-logical
machinery also allows us to use a provability predicate to formalize the notion
that real learning is produced by the relevant instance of ML. If we “pop” ¢/
to yield ¢’'/v¢’ we are dealing with the particular instantiation of the atomic
sub-formula.

The deduction, as noted earlier when the informal argument was given, is
indirect proof by cases; accordingly, we first assume — (%), and then proceed as
follows under this supposition.

27 This conception matches that of an agent in orthodox AlI: see the textbooks, e.g.
(Luger 2008; Russell and Norvig 2009).



154 S. Bringsjord et al.

(1) |V f,a [f: N N = (RLlearns(a, f) — (c1’)—(c3))]|Def of Real Learning

(2) | MLicarns(m, f) A RLlearns(m, f) A f : N = N [supp (for 3 elim on —())
(3) |V m,§ [f: N> N = (MLlearns(m, f) < C(m, §))] |Def of ML

(4) |V [f: N> N — (TurComp(f) V TurUncomp(f))] |theorem

(5) | Tur Uncomp(£) supp; Case 1

(6) |73 m 3§ [(f: N+— NA TurUncomp(f) A C(m, f)] [theorem

| (7) |3 m MLlearns(m, f) (6), (3)
L)L (7, (2)
(9) | TurComp(f) supp; Case 2
~|aoey m, £ @), 3)
] (11) (Cl/)*(CS)wl(m, f) from supp for 3 elim on —(%) and provability
~[(12) —*(Cll)*(CS)w/(m, f) inspection: proofs wholly absent from C
sl@asy|L (11), (12)
(14) | L reductio; proof by cases

A final remark to end the present Appendix: Note that the explicit deductive
argument given immediately above conveys a general method, m, for showing
that real learning = RL can’t be achieved by other forms of limited learning.
(Methods, or proof methods, are generalized proof “recipes” that can be com-
posed and built up like computer programs. Proof methods were first introduced
in (Arkoudas 2000), and extensive usage of proof methods can be found in (Ark-
oudas and Musser 2017).) This method m, given suitable input, produces a valid
formal proof. All that needs to be done in order to follow the method is to shift
out the set C of conditions to some other set C’ that captures some alternative
kind of ML, i.e. some alternative kind of limited learning Xlearning. For instance,
Bayesian learning (Blearning) can by this method be proved to fail to yield real
learning in a machine (or agent) that employs Blearning.
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