
Perhaps the Rigorous Modeling of Economic Phenomena
Requires Hypercomputation ?

SELMER BRINGSJORD1†, NAVEEN SUNDAR G.1‡, EUGENE EBERBACH2¶, YINGRUI YANG1§

1 Dept. of Cognitive Science, Dept. of Computer Science, Lally School of Management (1 only)
Rensselaer Polytechnic Institute (RPI), Troy NY 12180-3590

2 Department of Engineering and Science, Rensselaer Polytechnic Institute (RPI), Hartford CT 06129-2991

received 6 April 2010; in final form 28 September 2010

CONTENTS

1 Introduction 1

2 The Science of Sciences 2
2.1 Science of Sciences applied to Economics . 2

3 The Chain Store Paradox 4

4 Mental Decision Logic 7

5 Economic Planning and Prediction via Turing-level Actors 9
5.1 Description of Hutter’s AIXI model . 10

Preliminaries . 10
The AIXI Model . 11
Properties of AIXI . 11

5.2 Generalized Economic Planning is an Enriched AIXI Problem . 11

6 Modeling Economic Collapse 13
6.1 Economies that Collapse . 14
6.2 Economies that Never Collapse . 15
6.3 On Undecidability of Economy . 16
6.4 An Extended Note on Decidable Economies . 16

7 Conclusion and Next Steps 18

References 18

LIST OF FIGURES

1 Conventional CLT-Based Science of Science . 3
2 Improved Computational Learning Theory . 3
3 Science of Sciences applied to Economics . 4
4 One-Stage, Two-Player Snapshot in CSP . 5
5 Two-Stage, Three-Player Snapshot in CSP . 5
6 CSP in the Slate system . 8
7 Economic-AIXI . 12

LIST OF TABLES

1 Economic-AIXI entities and their specification . 13

? This paper is partially based on a paper presented (by Sundar G.) at the Hypernet 10 workshop, Tokyo 2010.
† email: selmer@rpi.edu
‡ email: govinn@rpi.edu
¶ email: eberbe@rpi.edu
§ email: yangyri@rpi.edu

1

1 INTRODUCTION

Mathematical logic was born from the rigorous formalization and study of mathematics by way of computation
and formal logic, and includes such seminal discoveries as Gödel’s incompleteness theorems and Turing’s halting-
problem result, both proved at the dawn of computer science. These discoveries revealed that a core problem
in mathematics (viz., deciding whether or not a sufficiently rich proposition is a theorem, and producing a proof
that certifies the answer), in certain contexts, is tremendously difficult. Mathematical logic continues to be quite
fertile; recent results include demonstrations that certain theorems in mathematics are in the “independent-of-
Peano-Arithmetic” class drawn to our attention by Gödel, (e.g., Goodstein’s Theorem; for a nice overview, see
[40]), and are so hard to obtain that humans currently find it necessary to deploy infinitary concepts and reasoning
in order to secure them. Parallel comments could of course be made about other parts of formal logic, for example,
the economics-relevant part pertaining to the modeling of dynamically interacting agents with beliefs, perceptual
abilities, goals, and so on (e.g., see the system — heavily indebted to preceding agent-oriented logical systems —
presented in [1]).

Might it be that the rigorous formalization and study of economics, carried out from the perspective of formal
logic and computability theory, will reveal that core problems in that field are likewise tremendously difficult?
Specifically, might it be that some economic phenomena involve hypercomputation, or are at least on plausible
frameworks for doing science best modeled using schemes that are in part hypercomputational? In this short paper
we defend an affirmative answer to this question.

Please note that even if our answer is correct and successfully defended in the present paper, it doesn’t follow
that economic phenomena in fact involve hypercomputation.? This can be seen immediately by reflecting for a
moment upon the fundamental results from mathematical logic we alluded to above. For example, let h be the
halting function from indices i for Turing machines† paired with natural numbers n given to such machines as
input, to 1 or 0 as a verdict on whether or not Turing machine Mi halts or not after being started with n as input
on its tape. As is well known, the Entscheidungsproblem is Turing-solvable if and only if h is Turing-computable.
This shows immediately that it might be that hypercomputation is necessary in order to provide an accurate model
of mathematical reasoning. This might be the case because human mathematicians (and others working in the
formal sciences) might, for all we know, be capable of solving the Entscheidungsproblem. Of course, it could turn
out that great discoveries in mathematics, for example Wiles’ proof of Fermat’s Last Theorem [48, 49], occur in
part because the specific instances of the general problem just happen to be within human reach, while the arbitrary
instance isn’t.‡

The plan of the paper is entirely straightforward. We simply explain how some formal modeling of economic
phenomena may well naturally invoke hypercomputation. After providing an overview of a “science-of-science”
perspective from which we here view economics (§2), we touch upon modeling in the following three areas, viz.,

1. the Chain Store Paradox, the modeling of which can be naturally carried out in logics wherein proof-finding
is beyond Turing machines (§3);

2. use of so-called “mental” logics to model real-world human reasoning and decision-making in ways more
accurate than those enabled by standard, normatively correct logics (§4);

3. economic planning and prediction modeled using interacting Turing machines (§5); and

4. modeling certain macro-economic questions, specifically economic collapse (§6).

? In a parallel, while a formal model of physical reality may involve information-processing above the Turing Limit, it doesn’t follow from
this that physical reality is in fact hypercomputational in nature. We suppose this is why despite such super-Turing models as those presented
in [32], many scientists refuse to accept the proposition that hypercomputation is physically real.

† Here and hereafter herein, when we refer to ‘Turing machines’ independent of specification we leave open which particular definition (e.g.,
quaduple vs. quintuple transition rules, starting and ending conventions, etc.) of such devices is used in the analysis. Accordingly, any and all
generic assertions regarding TMs, if completely formalized, would of course have recourse to all the options for specifying the particulars of
TMs.

‡ In laying down at the outset an open-mindedness as to whether or not hypercomputation is in fact active in the phenomena modeled in
economics we leave aside consideration of some of our own work. E.g., Bringsjord in [7, 8, 9] has argued that human persons hypercompute.

1

We leave for another day consideration of the question of whether such modeling can be non-question-beggingly
dispensed with in favor of mere Turing-level modeling without leaving aside crucial phenomena. It is easy enough
to simplify economic phenomena in such a way that they can be modeled using elementary computation, as long
as one is willing to brutally simplify. For example, Cottrell et al. in [12] explain that “modernized” versions of
socialist planning in the general style of Oskar Lange (e.g. see [26]) can be viewed as standard computation as long
as we simply assume that human persons are themselves incapable of hypercomputation. But of course if human
cognition itself involves hypercomputation, say in the creation of new products, it would hardly be possible for a
Turing-level planning algorithm to model human innovation through time. (These issues are to some degree taken
up later in section 5.) We also leave aside, due to space constraints, many additional economic phenomena the
formal modeling of which might require hypercomputation.

2 THE SCIENCE OF SCIENCES

This section clarifies our overall (rather humble) goal for the paper.
The goal of the rational scientific enterprise can be thought of as that of finding models that fit some observed

data, with the hope that these models eventually accurately describe the underlying reality from which these data
flow. There has been significant work in formally studying and understanding the scientific process, a study we call
the formal science of science.¶ For example, an introduction to a particularly promising computational science of
science can be found in Jain’s [20], which Bringsjord and Sundar G. use in teaching the formal science of science.

One of the first scientific paradigms considered in [20] is Language Identification involving two entities, Nature
and a scientist. § A language L is a set of finite strings composed from a finite alphabet Σ, that is L ⊆ Σ∗. A
language represents some subset of the natural numbers and can be used to represent a posssible reality.|| Only
the recursively enumerable languages E are considered in [20] (which is of course already a presupposition against
hypercomputation). A scientist F operates in some fixed and unknown reality Lt and gets data from nature in
the form of strings from the language Lt. The job of the scientist is to produce hypotheses about the possible
true language from which strings are presented to it. A scientist is modeled as any function F : SEQ → N;
where SEQ is the sequence of all finite strings that nature can produce. The output of the scientist is a natural
number which corresponds to a representation of some partial recursive function in some programming system ν.
A scientist encodes a language L using a natural number i by using the set of strings accepted by the ν program i,
written as W ν

i = L.
Initially, Nature prepares an enumeration T of Lt∪{#}, where # is the blank symbol. Nature then presents the

elements of T , also known as a text for Lt, sequentially to the scientist at each instant in a discretized timeline. The
scientist then produces a hypothesis or a conjecture after examing the data it has seen from Nature so far. Figure 1
illustrates this process.

In our opinion, this framework conspicuously lacks a few aspects which are ubiquitous in science. One missing
aspect is the concept of a proof (or at least a justification or explanation) for the conjectured hypothesis. This
suggests the need for an improved formal science-of-science framework that handles declarative information and
can produce proofs for conjectured hypotheses. Figure 2 contains an overview of one such possible improved
framework. As should be clear from the figure, the basic new idea is that our scientist must justify its conjectures.
This happens because the scientist attempts to ascertain whether or not some conjecture χ follows from a formal
theory Φ, as confirmed by some proof P . If the answer is in the affirmative, χ is added to the knowledge-base for
the science in question.

2.1 Science of Sciences applied to Economics
In accordance with our motivation for seeking a plausible framework for a science of science, and specifically an
instance of such a framework to model the science of economics, we outline version 1 of Bringsjord’s science-of-
economics framework Fecon (see Figure 3). In this framework, the scientist Fecon produces a machineM (which
¶ Please note that we say formal. In e.g. the philosophy of science there has long been somewhat systematic consideration of what science

is, how discovery within it works, and so on. For a non-technical yet crisp introduction to philosophy of science from a formalist see [11].
§ The notion of equating science with language identification is analogous to equating computation with language recognition.
|| Here we assume that physical measurements can be represented with arbitrary precision using the rational numbers, which in turn can be

represented using the natural numbers.

2

FIGURE 1
Conventional CLT-Based Science of Science

CLT-based Model of Science

σ ∈ SEQ

i o

Mi, i ∈ NS

L

such that Mi accepts L

T = u0, u1,#,#,#, u2

And when is identification of L achieved?

M3

∀∞n ∈ N S(T [n]) = Mk

(r.e.)

S identifies L iff S identifies every text for L

FIGURE 2
Improved Computational Learning Theory

Better Science of Science

i o

S

φ

E

[φ]

Φ

χ

Φ ! χ?
(Y,P)

(N,P)

χ

¬χ

KBL

is a formal axiomatized theory.Φ

need not be a Turing machine) that is capable of taking in a set of initial or prior states of the relevant market, and
answers whether a certain future state-of-affairs φ will obtain or not in the future (or whether such a state-of-affairs
is possible in the future, etc.), and a proof that supports its answer. The processing that allowsM to be produced
includes consideration of sequences of states si of relevant markets. (We write 〈si〉 to indicate that a state has
been expressed in declarative form in the form of as set of formulas.) Note that in the general case involving only
inexpressive extensional logics like first-order logic this problem is Turing-unsolvable. Hence we don’t impose
the restriction thatM be a Turing machine. To emitM, the scientist takes in a series of declarative statements σt
about the past states of the world and uses a conjecture generator to conjecture a theory Φ∗ which it tests on the
available data. If the conjecture agrees with the available data, the scientist then decides either to publish the theory
in the form ofM or examine more data. If the conjecture does not agree with the available data, the scientist then
revisits the conjecture-generation stage. We assume that Φ∗ is expressive enough to account for basic arithmetic,
agents, agent actions, agent goals, agent percepts, times, events etc. Again, note that in the general case both Fecon

andM can be Turing-unsolvable.
In the specific context of economics, we seek to produce models of Fecon andM for modeling specific eco-

nomic phenomena, but which might require hypercomputational processes. This does not imply that economic
phenomena observed so far are hypercomputational. Once again, our local objective is to show the possibility of

3

FIGURE 3
Science of Sciences applied to Economics

Conjecture Generator Φ∗

Publish theory?

Φ∗ ∪ 〈s1, s2, . . . , st−1〉 $P 〈st〉?

M : [< initial state >, φ]
→ [yes/no,proof]

no?

σt−1 = 〈s1, s2, . . . , st−1〉

σt = 〈s1, s2, . . . , st−1, st〉
σt+1 = 〈s1, s2, . . . , st−1, st, st+1〉

no? yes?
yes?

Φ(agents, actions, times, events, ...)

M

The economic theory produced is

ΦPA

Fecon

hypercomputation in economic phenomena.

3 THE CHAIN STORE PARADOX

Reinhard Selten (see [38]), Nobel laureate in economics, introduced the Chain Store Paradox (CSP); it provides an
excellent example of phenomena the fastidious formal modeling of which may well require hypercomputation.

CSP centers around strategic interaction between a “chain store” (e.g., Wal-Mart, McDonald’s, or even, say,
Microsoft) and those who may attempt to enter the relevant market and compete against this store. The game here
is an n-stage, n + 1 one, in which the n + 1th player is our chain store (CS), and the remaining players are the
potential entrants E1, E2, . . . , En. At the beginning of the kth stage, Ek observes the outcome of the prior k − 1
stages, and chooses between two actions: Stay Out or Enter. An entrant Ek opting for Stay Out receives
a payoff of c, while CS receives a payoff of a. If, on the other hand, Ek decides to enter the market, CS has
two options: Fight or Acquiesce. In the case where CS fights, CS and Ek receive a benefit of d; when CS
acquiesces, both receive b. Values are constrained by a > b > c > d, and in fact we shall here set the values,
without loss of generality, to be, respectively, 5, 2, 1, and 0. Please see Figures 4 and 5, which provide snapshots
of early stages in the game. We specifically draw your attention to something that will be exploited later in this
section, which is shown in Figure 4: viz., that we have used diagonal dotted lines, with labels, to indicate key
timepoints in the action.

But why is CSP called a paradox? Please note that there are at least three senses of ‘paradox’ used in formal
logic and in the formal sciences generally, historically speaking. In the first sense, a paradox consists in the fact
that it’s possible to deduce some contradiction φ ∧ ¬φ from what at least seems to be a true set of axioms or
premises. A famous example in this category of paradox is Russell’s Paradox, which pivots on the fact that in
standard first-order logic

∃x∀y(Rxy ↔ ¬Ryy) ` φ ∧ ¬φ.

As Frege learned, much to his chagrin, Russell’s Paradox demonstrated that Frege’s proposed meta-mathematical

4

FIGURE 4
One-Stage, Two-Player Snapshot in CSP

FIGURE 5
Two-Stage, Three-Player Snapshot in CSP

set-theoretic foundation for mathematics was inconsistent.# (Other examples of paradoxes of this form that are
relevant to economics are the Lottery Paradox and the Paradox of the Preface, but discussing these would take us
too far afield. Both of these paradoxes are in our opinion solved by Pollock in [31], using his Oscar system.)

In the second sense of ‘paradox’ in logic, a theorem is simply regarded by many to be extremely counter-
intuitive, but no outright contradiction is involved. A famous example in this category is Skolem’s Paradox,
elegantly discussed in [15]. Finally, in the third sense of ‘paradox,’ a contradiction is produced, but not by a
derivation from a single body of unified knowledge; rather, the contradiction is produced by deduction of φ from
one body of declarative knowledge (or axiom set, if things are fully formal), and by deduction of ¬φ from another
body of declarative knowledge (or outright axiom set, in the fully formal version, if there is one). Additionally,
both bodies of knowledge are independently plausible, to a very high degree. A famous example of a paradox
in this third sense — quite relevant to decision theory and economics, but for sheer space-conservation reasons
outside of our present discussion — is Newcomb’s Paradox; see for example the first published treatment, [29]. It
is into this third category of ‘paradox’ that CSP falls.

More specifically, we have first the following definition and theorem. (Selten himself doesn’t provide a fully

A classic presentation of axiomatic set theory as emerging from the situation in which naı̈ve set theory was plagued by Russell’s Paradox
(and others of the first type) is [43]. Nice discussion of Russell’s Paradox can be found in [4].

5

explicit proof of the theorem in question. For more formal treatments, and proofs of backward induction, see
e.g.,[2, 3]. In the interest of economy, we provide only a proof sketch here, and likewise for the theorem thereafter
for deterrence.)

————
Definition (GT-Rationality): We say that an agent is GT-rational if it knows all the axioms of standard game
theory, and all its actions abide by these axioms.

Theorem (GT-Rationality Implies Enter & Acquiesce): In a chain-store game, a GT-rational entrant Ek will al-
ways opt for Enter, and a GT-rational chain store CS will always opt for Acquiesce in response.

Proof-Sketch: Selten’s original strategy was “backward induction,” which essentially runs as follows when starting
with the “endpoint” of 20 as he did. Set k = 20. If E20 chooses Enter and CS Fight, then CS receives 0. If, on
the other hand, CS chooses Acquiesce, CS gets 2. Ergo, by GT-rationality, CS must choose Acquiesce. Given
the common-knowledge supposition in the theorem, E20 knows that CS is rational and will acquiesce. Hence E20

enters because he receives 2 (rather than 1). But now E19 will know the reasoning and analysis just given from
E20’s perspective, and so will as a GT-rational agent opt herself for Enter. But then parallel reasoning works for
E18, E17, . . . , E1. QED

————

The other side of the “third-sense” paradox in the case of CSP begins to be visible when one ascertains what
real people in the real world would do when they themselves are in the position of CS in the chain-store game.
As has been noted by many in business, such people are actually inclined to fight those who seek to enter — and
looking at real-world corporate behavior shows that fighting, at least for some initial period of time, is the strategy
most often selected.?? From our formal science-of-science perspective, and specifically from the perspective of
the CLT-based science of sciences framework shown in Figure 3, these empirical factors are of high relevance
because they are to be predicted by the machineM given as output by Fecon . Indeed, the very purpose ofM is to
predict future states of the world on the strength of the declarative representation of past states and/or present state,
along with declarative information about agents, and their goals, beliefs, perceptions, possible actions, and so on.

Sure enough, there does appear to be a formal rationale in favor of thinking that such a prediction machine
as M would predict fighting. This rationale is bound up inseparably with deterrence, and can be expressed by
what can be called forward induction. The basic idea is perfectly straightforward, and can be expressed via the
following definition and theorem (which for lack of space we keep, like its predecessor, somewhat informal and
compressed).

————
Definition (Perception; m-Learning; Two-Option Rationality): We say that an agent α1 is perceptive if, whenever
an agent α2 performs some action, α1 knows that α2 does so. We say that an agent α is an m-learner provided
that when it sees agents perform some action A m times, in each case in exactly the same circumstances, it will
believe that all agents into the future will perform A in these circumstances. And we say that an agent is two-
option-rational if and only if when faced exclusively with two mutually exclusive options A1 and A2, where the
payoff for the first is greater than the second, that agent will select A1.

Theorem (Rationality of Deterrence from CS): Suppose we have a chain-store game based on n perceptive agents,
each of whom are m-learners. Then after m stages of a chain-store game in which each potential entrant seeks to
enter and CS fights, the game will continue indefinitely under the pattern of Stay Out.

Proof-Sketch: The argument is by induction on N (natural numbers). Suppose that the antecedents of the
theorem hold. Then at stage m + 1 all future potential entrants will believe that by seeking to enter, their
payoff will be 0, since they will believe that CS will invariably fight in the future in response to an enter-

?? Selten in [38] prophetically remarked that he never encountered someone who said “he would behave according to induction theory [were
he the Chain Store].”

6

ing agent. In addition, as these agents are all two-option-rational, they will forever choose Stay Out. QED
————

We see here that the two previous theorems, together, constitute a paradox in the aforementioned third sense.††

In general, paradoxes of the third type can be solved if one simply affirms one of the two bodies of knowledge,
and rejects the other. However, we are under no requirement to take a stand. In fact, the key fact for our purposes
in the present paper is that no matter which body of knowledge one prefers over the other, the process of doing
economics (i.e., what our Fecon does inside the box of Figure 3), and the artifacts produced by doing economics
(i.e., by Fecon), may well involve hypercomputation. This is easy to see, as follows.

One can fully formalize and prove a range of both “highly-expressive” backward induction and deterrence
theorems under the relevant assumptions. These theorems are differentiated by way of the level of expressivity
of the underlying logics used. The calculi use more detailed calculi than have been used before in the chain-store
literature in mathematical economics. For example, it is possible to prove a version of both the induction and
deterrence theorems using an “economic cognitive event calculus” (ECEC) based on the cognitive event calculus
in [1], which allows for epistemic operators to apply to sub-formulas in full-blown quantified modal logic, in which
the event calculus is encoded.

Any agent (e.g., Fecon) able to determine in the arbitrary case whether or not some proposition holds in ECEC
under some axiom set would be capable of hypercomputation, and would therefore, if accurately modeled, require
hypercomputation. From the standpoint of theoretical computer science and logic, all versions of the chain-store
game, hitherto, have involved exceedingly simple formalizations of what agents know and believe in this game,
and of change through time. To see this more specifically, note that in standard axioms used in game theory, for
example in standard textbooks like [30], knowledge is interpreted as a simple function, rather than as an operator
that can range over very expressive formulas. This same limited, simple treatment of knowledge and belief is the
standard fare in economics. Yet, it can be shown that the difficulty of computing, from the standpoint of some
potential entrantEk or chain store CS in some version of a chain-store game, is at the level, minimally, of Σ1 when
attempting to compute whether by induction or deterrence they should opt for Enter or Stay Out.

We conclude this section by directing your attention to Figure 6. This figure shows a proof in ECEC, imple-
mented and machine-checked in the Slate system [10], for the prediction that, from the start of the chain-store
game, at the seventh timepoint (t7), the third agent will Stay Out. Note that the production of this proof con-
stitutes a simulation that demonstrates that this future timepoint will be reached from the initial state, and so the
process here coincides nicely with the process summarized pictorially in Figure 3. General predictions of this kind,
made by the imaginedM produced by our idealized economist Fecon , would obviously require hypercomputation,
for the simple reason that ECEC inherits the undecidability of first-order logic.

4 MENTAL DECISION LOGIC

Jones, suppose, is trying to decide which of two cars to purchase. One car is a so-called sport-utility vehicle (SUV),
and the other option is a sedan. In light of the key possibility that his drives will often take him through the snowy
(Berkshire and Taconic) mountains, which vehicle ought he to buy?

We can represent such a decision problem using the machinery of some established decision theory. The theory
we prefer happens to be a merging of the decision theory of Savage (e.g. see [37]), often embraced by economists,
with the decision theory of Jeffrey [21], often welcomed by those in related fields (logic and computer science,
e.g.) inclined toward logic-based modeling. The hybrid theory is Joyce’s, given in [23]. However, in the interests
of space, we severely compress the language of Joyce, and regard a decision problem D as only the problem of
deciding which one of two competing actions a1 and a2 provides more utility to an agent s in the light of a set
Φ of logical formulas. (When actions appear as arguments to > we assume that it’s the utility of the actions that
are being related.) Φ is assumed to include information about the world, about causal connections between actions
†† We would be remiss if we didn’t mention two points of scholarship, to wit: (1) Game theorists have long proposed modifications or

elaborations of the chain-store game which allow game theory to reflect sensitivity to the cogency of the deterrence line of reasoning. E.g., see
[24]. (2) Innovative approaches to CSP that in some sense opt for a third approach separate from both backward induction and deterrence have
been proposed. E.g., see the one based in evolutionary computation proposed by Tracy in his [46].

7

FIGURE 6
An entrant’s action in the Slate system. We are grateful to Joshua Taylor, Chief Developer of Slate, for helping with this proof
and implementing it in Slate.

! elim !

! elim !

! elim !

Dr7 !

Dr2 !

Dr11 !

Dr11 !

Dr11 !

Dr5 !

Dr7 !

Dr2 !

Dr11 !

Dr11 !

Dr11 !

Dr5 !

Dr7 !

Dr10 !

Dr10 !

" elim !

Dr5 !

Dr2 !

R11 !

Dr7 !

Dr10 !

Dr10 !

Dr5 !

Dr2 !

Dr10 !

Dr10 !

Dr10 !

FOL ! !

FOL ! !

Dr4 !

Dr4 !
! elim !

! elim !

! elim !

elim !

! elim !

! elim !

! elim !

" elim !

R11 !

FOL ! !

20. learns(a3) # !a,!,t,t' ((K(a3,does(a,!,t)) $ K(a3,does(a,!,t')) $ t " t') " !t'' (((t < t'') $ (t' < t'')) " B(a3,does(a,!,t''))))
{LEARN}

LEARN. !l (learns(l) # !a,!,t,t' ((K(l,does(a,!,t)) $ K(l,does(a,!,t')) $ t " t') " !t'' (((t < t'') $ (t' < t'')) " B(l,does(a,!,t'')))))
{LEARN} Assume !

a3 LEARN. learns(a3)
{a3 LEARN} Assume !

OBS8. P(a3,does(cs,rec(p1),t6))
{OBS8} Assume !

OBS7. P(a3,does(a2,rec(p1),t6))
{OBS7} Assume !

OBS6. P(a3,does(cs,fight,t5))
{OBS6} Assume !

OBS3. P(a3,does(a1,rec(p1),t3))
{OBS3} Assume !

OBS4. P(a3,does(cs,rec(p1),t3))
{OBS4} Assume !

OBS5. P(a3,does(a2,enter,t4))
{OBS5} Assume !

OBS1. P(a3,does(a1,enter,t1))
{OBS1} Assume !

OBS2. P(a3,does(cs,fight,t2))
{OBS2} Assume !

29. K(a3,does(cs,fight,t5))
{OBS6}

28. K(a3,does(cs,fight,t2))
{OBS2}

TIME3. !t,t',t'' (((t < t') $ (t' < t'')) " (t < t''))
{TIME3} Assume !

TIME2. !t ¬(t < t)
{TIME2} Assume !

TIME1. (t1 < t2) $ (t2 < t3) $ (t3 < t4) $ (t4 < t5) $ (t5 < t6) $ (t6 < t7) $ (t7 < t8) $ (t8 < t9)
{TIME1} Assume !

25. (K(a3,does(cs,fight,t2)) $ K(a3,does(cs,fight,t5)) $ t2 " t5) " !t'' (((t2 < t'') $ (t5 < t'')) " B(a3,does(cs,fight,t'')))
{LEARN,a3 LEARN}

24. !t' ((K(a3,does(cs,fight,t2)) $ K(a3,does(cs,fight,t')) $ t2 " t') " !t'' (((t2 < t'') $ (t' < t'')) " B(a3,does(cs,fight,t''))))
{LEARN,a3 LEARN}

23. !t,t' ((K(a3,does(cs,fight,t)) $ K(a3,does(cs,fight,t')) $ t " t') " !t'' (((t < t'') $ (t' < t'')) " B(a3,does(cs,fight,t''))))
{LEARN,a3 LEARN}

22. !!,t,t' ((K(a3,does(cs,!,t)) $ K(a3,does(cs,!,t')) $ t " t') " !t'' (((t < t'') $ (t' < t'')) " B(a3,does(cs,!,t''))))
{LEARN,a3 LEARN}

21. !a,!,t,t' ((K(a3,does(a,!,t)) $ K(a3,does(a,!,t')) $ t " t') " !t'' (((t < t'') $ (t' < t'')) " B(a3,does(a,!,t''))))
{LEARN,a3 LEARN}

13. (t5 < t8) " B(a3,does(cs,fight,t8))
{LEARN,OBS2,OBS6,TIME1,TIME2,TIME3,a3 LEARN}

12. !t'' ((t5 < t'') " B(a3,does(cs,fight,t'')))
{LEARN,OBS2,OBS6,TIME1,TIME2,TIME3,a3 LEARN}

39. B(a3,!!,p ((does(a3,!,t7) " does(a3,rec(p),t9)) " (payout(a3,!,t7,t9) = p)))
{PAY}

38. B(a3,!t',!,p ((does(a3,!,t7) " does(a3,rec(p),t')) " (payout(a3,!,t7,t') = p)))
{PAY}

37. B(a3,!t,t',!,p ((does(a3,!,t) " does(a3,rec(p),t')) " (payout(a3,!,t,t') = p)))
{PAY}

27. B(a3,!a,t,t',!,p ((does(a,!,t) " does(a,rec(p),t')) " (payout(a,!,t,t') = p)))
{PAY}

30. K(a3,!a,t,t',!,p ((does(a,!,t) " does(a,rec(p),t')) " (payout(a,!,t,t') = p)))
{PAY}

PAY. C(!a,t,t',!,p ((does(a,!,t) " does(a,rec(p),t')) " (payout(a,!,t,t') = p)))
{PAY} Assume !

26. B(a3,does(cs,fight,t8))
{LEARN,OBS2,OBS6,TIME1,TIME2,TIME3,a3 LEARN}

TABLE2. B(a3,does(cs,fight,t8)) " B(a3,(does(a3,StayOut,t7) " does(a3,rec(p2),t9)))
{TABLE2} Assume !

TABLE1. B(a3,does(cs,fight,t8)) " B(a3,(does(a3,Enter,t7) " does(a3,rec(p1),t9)))
{TABLE1} Assume !

33. B(a3,(does(a3,Enter,t7) " does(a3,rec(p1),t9)))
{LEARN,OBS2,OBS6,TABLE1,TIME1,TIME2,TIME3,a3 LEARN}

41. B(a3,((does(a3,Enter,t7) " does(a3,rec(p1),t9)) " (payout(a3,Enter,t7,t9) = p1)))
{PAY}

40. B(a3,!p ((does(a3,Enter,t7) " does(a3,rec(p),t9)) " (payout(a3,Enter,t7,t9) = p)))
{PAY}

31. B(a3,(payout(a3,Enter,t7,t9) = p1))
{LEARN,OBS2,OBS6,PAY,TABLE1,TIME1,TIME2,TIME3,a3 LEARN}

44. B(a3,(p2 # p1))
{PREF3}

66. K(a3,(p2 # p1))
{PREF3}

PREF3. C((p2 # p1))
{PREF3} Assume !

45. B(a3,((payout(a3,Enter,t7,t9) = p1) $ (p2 # p1)))
{LEARN,OBS2,OBS6,PAY,PREF3,TABLE1,TIME1,TIME2,TIME3,a3 LEARN}

46. B(a3,(p2 # payout(a3,Enter,t7,t9)))
{LEARN,OBS2,OBS6,PAY,PREF1,PREF3,TABLE1,TIME1,TIME2,TIME3,a3 LEARN}

35. B(a3,(does(a3,StayOut,t7) " does(a3,rec(p2),t9)))
{LEARN,OBS2,OBS6,TABLE2,TIME1,TIME2,TIME3,a3 LEARN}

42. B(a3,!p ((does(a3,StayOut,t7) " does(a3,rec(p),t9)) " (payout(a3,StayOut,t7,t9) = p)))
{PAY}

43. B(a3,((does(a3,StayOut,t7) " does(a3,rec(p2),t9)) " (payout(a3,StayOut,t7,t9) = p2)))
{PAY}

PREF1. C(!x,y,x' (((x' = x) $ (y # x)) " (y # x')))
{PREF1} Assume !

48. C(!y,x' (((x' = p1) $ (y # p1)) " (y # x')))
{PREF1}

49. C(!x' (((x' = p1) $ (p2 # p1)) " (p2 # x')))
{PREF1}

50. C((((payout(a3,Enter,t7,t9) = p1) $ (p2 # p1)) " (p2 # payout(a3,Enter,t7,t9))))
{PREF1}

51. K(a3,(((payout(a3,Enter,t7,t9) = p1) $ (p2 # p1)) " (p2 # payout(a3,Enter,t7,t9))))
{PREF1}

52. B(a3,(((payout(a3,Enter,t7,t9) = p1) $ (p2 # p1)) " (p2 # payout(a3,Enter,t7,t9))))
{PREF1}

58. B(a3,(((payout(a3,StayOut,t7,t9) = p2) $ (p2 # payout(a3,Enter,t7,t9))) " (payout(a3,StayOut,t7,t9) # payout(a3,Enter,t7,t9))))
{PREF2}

57. K(a3,(((payout(a3,StayOut,t7,t9) = p2) $ (p2 # payout(a3,Enter,t7,t9))) " (payout(a3,StayOut,t7,t9) # payout(a3,Enter,t7,t9))))
{PREF2}

56. C((((payout(a3,StayOut,t7,t9) = p2) $ (p2 # payout(a3,Enter,t7,t9))) " (payout(a3,StayOut,t7,t9) # payout(a3,Enter,t7,t9))))
{PREF2}

55. C(!y' (((y' = p2) $ (p2 # payout(a3,Enter,t7,t9))) " (y' # payout(a3,Enter,t7,t9))))
{PREF2}

54. C(!y,y' (((y' = y) $ (y # payout(a3,Enter,t7,t9))) " (y' # payout(a3,Enter,t7,t9))))
{PREF2}

PREF2. C(!x,y,y' (((y' = y) $ (y # x)) " (y' # x)))
{PREF2} Assume !

36. B(a3,(payout(a3,StayOut,t7,t9) = p2))
{LEARN,OBS2,OBS6,PAY,TABLE2,TIME1,TIME2,TIME3,a3 LEARN}

59. B(a3,((payout(a3,StayOut,t7,t9) = p2) $ (p2 # payout(a3,Enter,t7,t9))))
{LEARN,OBS2,OBS6,PAY,PREF1,PREF3,TABLE1,TABLE2,TIME1,TIME2,TIME3,a3 LEARN}

OPT. !a,t,t' (optimizing(a,t,t') # ((B(a,(payout(a,Enter,t,t') # payout(a,StayOut,t,t'))) " does(a,Enter,t)) $ (B(a,(payout(a,StayOut,t,t') # payout(a,Enter,t,t'))) " does(a,StayOut,t))))
{OPT} Assume !

62. !t,t' (optimizing(a3,t,t') # ((B(a3,(payout(a3,Enter,t,t') # payout(a3,StayOut,t,t'))) " does(a3,Enter,t)) $ (B(a3,(payout(a3,StayOut,t,t') # payout(a3,Enter,t,t'))) " does(a3,StayOut,t))))
{OPT}

63. !t' (optimizing(a3,t7,t') # ((B(a3,(payout(a3,Enter,t7,t') # payout(a3,StayOut,t7,t'))) " does(a3,Enter,t7)) $ (B(a3,(payout(a3,StayOut,t7,t') # payout(a3,Enter,t7,t'))) " does(a3,StayOut,t7))))
{OPT}

64. optimizing(a3,t7,t9) # ((B(a3,(payout(a3,Enter,t7,t9) # payout(a3,StayOut,t7,t9))) " does(a3,Enter,t7)) $ (B(a3,(payout(a3,StayOut,t7,t9) # payout(a3,Enter,t7,t9))) " does(a3,StayOut,t7)))
{OPT}

60. B(a3,(payout(a3,StayOut,t7,t9) # payout(a3,Enter,t7,t9)))
{LEARN,OBS2,OBS6,PAY,PREF1,PREF2,PREF3,TABLE1,TABLE2,TIME1,TIME2,TIME3,a3 LEARN}

DOES. !a,!,t (does(a,!,t) # happens(action(a,!),t))
{DOES} Assume !

a3 OPT. optimizing(a3,t7,t9)
{a3 OPT} Assume !

17. happens(action(a3,StayOut),t7)
{DOES,LEARN,OBS2,OBS6,OPT,PAY,PREF1,PREF2,PREF3,TABLE1,TABLE2,TIME1,TIME2,TIME3,a3 LEARN,a3 OPT}

8

and outcomes, about the beliefs of s, and so on; recall the comprehensive calculus Φ∗ postulated in Figure 3. We
thus write a decision problem D as a quadruple (Φ, s, a1, a2), and such a problem would for example be solved if
it could be determined for or by s that Φ `C a1 > a2.

But what exactly does it mean to say that Φ `C a1 > a2? In general, this means that a1 > a2 can be proved
from Φ. However, we can only genuinely answer this question if we have defined the context; if, that is, we have
defined the background logic and proof calculus C. Suppose for example that the background logic is standard
first-order logic and that C is some standard proof calculus for first-order logic — say F from [4], or the proof
calculus of our own Slate system (. [10]) Then the meaning of a decision problem is clear. But it’s now well-
known in cognitive science that if this background logic and associated calculus is a normatively correct one (such
as first-order logic), the modeling will fail, for the simple reason that even the vast majority of college-educated
adults are incapable of reasoning in normatively correct deductive fashion. (For a nice survey, see [42].) This
brute fact, quite in line with what is today called “behavioral” economics, has catalyzed the creation of “mental”
logics: logics that are specifically tailored to reflect how human beings (save for e.g. logicians and so on) reason.
Researchers who have invented and refined such logics include Braine in [6], Johnson-Laird in [22], Rips in [34],
and Yang et al. in [50]. Of these, Yang (in e.g. [51]) has recently presented a logic (mental decision logic; ‘MDL’
for short) designed specifically for representing decision-making in scenarios commonly studied by economists.

Let’s refer to the space of mental logics asML; and let ML ∈ML be without loss of generality here be some
mental logic whose inferential machinery is C ′, and let ΦML be some set of formulas expressed in the language
of ML which captures the above situation involving Jones, where a1 > a2 is one such formula. (Note that we
must speak of “inferential machinery” rather than a standard proof calculus (or theory). This is the case because
what can be inferred in C ′ departs from standard deductive inference.) At present, so far as we know, it’s an open
question as to whether ΦML `C

′
a1 > a2 in the general case is decidable using an ordinary Turing machine.‡‡

Given this, and given that accurate predictions about Jones’s behavior by scientist Fecon may require a capacity to
judge whether a1 > a2 can be inferred from the knowledge base in question, it may be that hypercomputation on
the decision-theoretic front is part of rigorous economics.

5 ECONOMIC PLANNING AND PREDICTION VIA TURING-LEVEL ACTORS

Minimally, an economic system can be modeled as consisting of a planning agent which tries to control the econ-
omy so that some utility is maximized, a set of independent economic agents, and an environment which provides
a setting in which these agents function. In this particular scenario, Fecon plays not only the role of a scientist but
also that of a planner in an economy. Fecon acts in the economy it studies to increase some utility or reward. The
purpose of this section is to argue for the following claim.

Claim: Even if real economies and agents in those economies can be modeled as Turing machines, formal so-
lutions to non-trivial planning problems can be Turing unsolvable.

To model such agents, we look at Hutter’s computational model: the AIXI Model [18] for an agent seeking to
maximize the reward that it obtains in an unknown environment. The purpose of Hutter’s model is to provide a
formal model for artificial intelligence (AI). This model can be adapted with some extensions to specifically model
an economic planner seeking to derive maximum utility in an economy comprised of zero or more other cognitive
agents. Hutter’s model is composed of simple conceptual ingredients and can be naturally adapted to the economic
domain. We start with a condensed, yet informal, description of Hutter’s model, closely following notation used
in [18]. A simpler description can be found in [27]. Detailed descriptions, definitions and proofs can be found in
[17, 18, 19].

‡‡ That this is an open question may not be due to the technical difficulty of obtaining proofs that settle the question for some L and C.
Openness may be due to other factors, e.g., to the fact that mental logics are often left too imprecise for the decidability question to be posed
with sufficient rigor.

9

5.1 Description of Hutter’s AIXI model
Hutter’s AIXI model is a formal model of an agent operating in an unknown environment. Given certain reasonable
assumptions, this model is universally optimal across all possible environments and has certain provable optimality
properties. This model builds upon Solomonoff’s Theory of Induction [41] and Sequential Decision theory [44].
Before we describe Hutter’s AIXI model, we present some necessary preliminaries.

Preliminaries
We are concerned with sequence-prediction tasks in the AIXI model. Any prediction task can be modeled as a se-
quence prediction task. In the AIXI model, the agent will observe the sequence x1, . . . , xt−1 from the enviroment,
which corresponds to percepts that an agent will obtain in an enviroment. The agent then predicts xt and then
outputs an action y∗t which maximizes its expected reward. The following concepts play a role in the specifica-
tion of the optimal action y∗t . Following Hutter, we denote the sequence x1, x2, . . . , xn by x1:n and the sequence
x1, x2, . . . , xn−1 by x<n

Bayesian Mixture Distribution We have some data x which is explained/produced by a hypothesis/model H∗ ∈
M. We don’t know the true model producing our data. We have prior probability for model Hi given by
prior(Hi). The Bayesian mixture distribution of Hi with respect to the prior probabilities prior(Hi) is
specified by ∑

i

prior(Hi)P (x|Hi)

Prefix Code A prefix code P is a set of strings such that no string in P is the prefix of another string in P .

Monotone Universal Turing Machine A monotone Turing machine is a Turing machine with 1) one or more
bi-directional working tapes; 2) a unidirectional input tape which is read-only and left-to-right; and 3) a
unidirectional output tape which is write-only and left-to-right. The unidirectional input and output tapes
are necessary to make the technical task of imposing chronological conditions on Turing machines easier.

Minimal Programs When the input tape of a monotone universal Turing machine U contains p to the left of the
input head when the last bit of a string x is output, we write U(p) = x∗. The set of all such strings p forms
a prefix code, and the codes are called minimal programs for x.

Universal Prior The universal prior is the probability that the output of a universal monotone Turing machine
U starts with the string x when provided a random input drawn uniformly from the space of all inputs. We
consider all possible minimal programs p for which the Turing machine U has output x. The universal prior
M is defined as

M(x) =
∑

p:U(p)=x∗
2−l(p) (1)

Intuitively, the above equation can be interpreted as a Bayesian mixture distribution. The model class is the
set of all programs p which produce x∗. If we consider deterministic programs, the probability of a minimal
program for x producing x is 1. In accordance with Occam’s razor, the prior for any particular model is
2−l(p).

Convergence of the Universal Prior If the true distribution µ from which the sequence is drawn is a Turing
computable distribution, the posterior universal prior M(xt|x<t) converges to the true posterior distribution
µ(xt|x<t).

Generalized Universal Prior If the model classM is the class of all enumerable semi-measures then the Bayesian
mixture obtained by using the prior 2−K(ν) for ν ∈M is denoted by ξ and is defined as

ξ(x) =
∑
v∈M

2−K(ν)ν(x) (2)

K(ν) is the Kolmogorov complexity of ν, and this factor penalizes more complex distributions. An enu-
merable function is one for which lower bounds can be finitely computable, but the function itself need not

10

be finitely computable. A measure is a semi-measure which is also normalized. The generalized prior is a
Bayesian mixture of enumerable (not just finitely computable) semi-measures (not just measures) and takes
into account more distributions than the universal prior defined above. The generalized universal prior ξ is
also an enumerable semi-measure.

Convergence of ξ It can be show that the posterior distribution ξ(xt|x<t) converges to the true posterior distribu-
tion µ(xt|x<t) in a finite amount of time if µ is enumerable.

The AIXI Model
The AIXI model is an agent-based model in which an agent P performs an action yt ∈ Y in an environment Q at
time t. The environment responds with xt ∈ X , which can be split into a unique percept ot = o(xt) and a reward
rt = r(xt). This continues till some time m termed as the horizon or the lifetime of the agent.

We assume that the environment is modeled by a true probability distribution µ which is also enumerable.
The probability of the environment producing the percept sequence x1:n is µ(x1:n), which can be reasonably
approximated by ξ(x1:n) if µ is computable. Now consider the agent at time k. The expected reward at time k+ 1
if the agent chooses action y is

R(k + 1) =
∑
x∈X

r(x)µ(xk+1 = x|x1:k, y<ky) (3)

The action to maximize the expected reward at time k + 1 (denoted by y∗k+1) is then given by the action which
maximizes the above equation:

y∗k+1 = arg max
y∈Y

∑
x∈X

r(x)µ(xk+1 = x|x1:k, y<ky) (4)

A rational agent will seek to maximize the rewards that it expects over its entire lifetime and not just the reward
it expects in the next time step. The expected reward to be obtained in cycles k+ 1 to m, given that agent performs
actions y at time k + 1, is given by this recursive equation:

R(k + 1 : m) =
∑
x∈X

[r(x) +R(k + 2 : m)]µ(xk+1 = x|x1:k, y<ky) (5)

The action to maximize the expected reward to be obtained in cycles k + 1 to m is then

y∗k+1 = arg max
y∈Y

∑
x∈X

[r(x) +R(k + 2 : m)]µ(xk+1 = x|x1:k, y<ky) (6)

The AIXI model is then obtained by replacing the unknown µ by ξ in the above equation. The AIXI Model is
an ExpectiMax algorithm [36]. Unfolding the recursive equation and renaming the corresponding indices we get
the following equation which specifies the best action to choose at time k.

y∗k = arg max
yk

∑
xk

. . .max
ym

∑
xm

(rk + · · ·+ rm).ξ(xk:m|x<k, y<ky)

Properties of AIXI
AIXI is Turing-uncomputable. Intuitively, this is due to the involvement of the Turing-uncomputable Kolmogorov
complexity and an infinite sum in the specification of AIXI’s optimal action. The AIXI model has many associated
optimality properties, and Hutter calls the AIXI model universally optimal as it can perform better than any other
agent and can perform well in any environment.¶¶ For proofs of these properties please consult [18].

5.2 Generalized Economic Planning is an Enriched AIXI Problem
Hutter’s model deals with a rational agent seeking to maximize the rewards it obtains in an unknown environment.
It is easy to generalize the AIXI model to that of a rational agent seeking to maximize some reward function
in an environment containing some other cognitive agents. The agent which seeks to control the economy and

¶¶ With some caveats.

11

maximize the reward/utility function models a planner in an economy and the other agents model participants
in the economy. We model the planner, constituent agents in the economy, and the environment/economy as
monotone Turing machines.

Our model, dubbed the Economic-AIXI model, consists of

1. A central planner in the economy. The planner outputs plans to control the economy and the goal of the
planner is to maximize the reward that it obtains from the economy.

2. A set of agents which constitute the economy A = {A1, . . . , An}. The agents can be either producers or
consumers in the economy, or both. The agents in the economy can either ignore or adhere partially or fully
to the planner’s commands.

3. The overall economy. The economy models interactions of different agents, natural resources, and consump-
tion and production in the economy. The economy represents inanimate forces that act in an economy, such
as laws of nature, forces outside the economy, etc.

Figure 7 shows a schematic description of our model. At time k, the planner reads symbols x1
k−1, . . . , x

n
k−1

from the output tapes of the agents 1 . . . n and the symbol ek−1 from the output tape of the economy. The planner
then writes pk on its output tape. Agent i, where i ranges from [1, . . . , n], reads ek−1 from the output tape of the
economy and pk from the output tape of the planner and then writes the symbol xik on its output tape. The economy
reads symbols x1

k−1, . . . , x
n
k−1 from the output tapes of the agents and the symbol pk from the output tape of the

planner and then writes ek on its output tape.

FIGURE 7
Economic-AIXI: Economic Planning Formalized via Primitives in Theory of Computation

!!!

!!!

Planner

Economy

Agent 1

!
!
!

W
o
rk

Ta
p
e

Agent n

W
o
rk

Ta
p
e

q1

p2p3p4p5

q2q3

p1

a1a2a3a4a5

a1a2a3a4a5

p4 A shaded cell indicates a cell on the tape that is currently being written

many more agents

Output tape of the
Planner

Output tape of the
Economy

W
o
rk

Ta
p
e

W
o
rk

Ta
p
e

Output tapes of the
Agents

q4

!!!

!!!

At time instance t, the planner outputs plan pt based on prior actions (x1
<t, . . . , x

n
t<) by different agents in the

economy and the past states of the economy characterized by e<t on the output tape of the economy. The agents
compute their next action based on the plan history p1:t and the economic history e<t. The economy then moves

12

TABLE 1
Economic-AIXI entities and their specification

Economic Entity Action
Agent i Ai(p1:t, e<t) = xi1:t.

Economy Q(x1
<t, . . . , x

n
<t, p1:t) = et

Planner P (x1
<t, . . . , x

n
<t, e<t) = p1:t

to a different state based on the past actions of the agents (x1
<t, . . . , x

n
t<) and the planner’s actions p1:n. Table 5.2

is a specification of each economic entity and the input-output behavior of the function it computes.
Our model has very general assumptions, viz., the entities in an economy are Turing-computable functions.

With this minimal assumption we can model almost any economic problem. For example, consider an agent
which seeks to maximize capital gains by trading stock in some market. The economy for this agent is the set of
companies trading in that market and factors which affect the fortunes of those companies. The agentsA are other
traders in the market. This same model can be applied to a planner of a national economy seeking to increase the
GDP of his nation. The agents can then be used to model different centers of production and the economy can be
used to specify the relationship between the consumption and production of different products.

The Turing-unsolvability of the Economic-AIXI model follows from the Turing-unsolvability of the AIXI
model.

6 MODELING ECONOMIC COLLAPSE

At present, even though there are no formal models of economic collapse, there are informative, informal notions
of what an economic collapse might look like (for relevant material see [5, 28, 25, 14, 35]). Wikipedia, for example,
has the following synoptic yet informative account of what an economic collapse looks like.

An economic collapse is a devastating breakdown of a national, regional, or territorial economy. It is essentially
a severe economic depression characterized by a sharp increase in bankruptcy and unemployment. A full or
near-full economic collapse is often quickly followed by months, years, or even decades of economic depression,
social chaos and civil unrest. Such crises have both been seen to afflict capitalist market economies and state
controlled economies. [47]

Obviously, we should be highly motivated to prevent economies from collapsing, because the associated neg-
ative affects will harshly impact many lives. Currently, at least to our knowledge, commonly recognized formal
theories of economic collapse do not exist. This is so, among other reasons, because economies are enormously
complex and there can be many causes for their collapse, and because much of economics remains highly informal
(at least relative to the success stories that inspire us; e.g., key results in mathematical and philosophical logic). We
will present and analyze a very abstract but powerful formal model of economies based on computability theory.
Specifically, we note that economies (like any other discrete finite systems) can be modeled as Turing machines,
which are believed to be one of the most powerful (if not the most powerful; it depends of course on whether one
accepts hypercomputation or not) type of formal, computational system.

We now consider a scientist Fecon that seeks to model economic-collapse-related problems by producing Turing
machinesM which seek to (but need not) answer the following questions.

Economic Collapse Problem or φECP : Will the economy E started with initial conditions I collapse at time t?

Generalized Economic Collapse Problem or φGECP : Will the economy E started with initial conditions I and
after experiencing a history h collapse at some time t after history h?

Economic Immortality Problem or φECP : Will the economy E started with initial conditions I ever collapse?

13

We show that in the general case a simulatorM capable of answering the above questions with a proof, and a
scientist Fecon that producesM, would both have to be hypercomputational.

We assume that Fecon examines an economic system E and produces a Turing machineM that tries to answer
one of the questions listed above.M has the following characteristics.

1. At a very abstract level, the maximum number of independent entities possible in an economy — such as
the maximum number of companies that can be registered in the stock market, the maximum number of
producers and consumers that are possible, the volume of transactions, existing regulations, interest rate, etc.
— determine in principle the minimum number of states n of the Turing machineM that seeks to model
that economy.

2. If the economy survives, its modeling TMM writes 1 in the current cell pointed to by the read/write head of
the machine and moves one position to the left or to the right; otherwise the machine halts. For simplicity,
let’s assume that transitions from any state to any other state are possible (in reality, for the specific economic
model, some transitions could be disallowed). Let’s further assume that the set of final/halting states of the
TM represents states of economic collapse; that is, after reaching the final state, the economy halts: no
further moves are possible.

We will consider here only “hard” collapses; that is, no further moves in the economy are possible. It is
possible to extend our model to allow “soft” collapses too, by adding the estimates of how far the TM is from the
collapse/terminal state, and then avoiding approaching collapse states, or the recovery transitions from the collapse
states to non-collapse states; but for simplicity we consider here “hard” collapses only.

6.1 Economies that Collapse
DEFINITION 6.1 (THE ECONOMY COLLAPSE PROBLEM (ECP)) Let ECP(n) be the maximum amount of time
for which any economy with n states can function without collapsing. Here collapse can be equated with the
corresponding Turing machine M halting when started on a blank tape. Compute ECP(n) for arbitrary values of
n.

Usually when we study economic systems, we never start from time zero: we usually have some knowledge of
the history of that particular system. (Note that Fecon explicitly factors in histories.) Accordingly:

DEFINITION 6.2 (THE GENERALIZED ECONOMY COLLAPSE PROBLEM (GECP)) Let GECP(n) be the max-
imum amount of time for which any economy with at most n states can function without collapsing, assuming that
it functioned already for some finite amount of time. Compute GECP(n) for arbitrary values of n.

Readers familiar with computability theory can immediately recognize that the above problems are analogous
to the busy-beaver function Σ(n), max-shift function S(n), and non-empty-tape-busy-beaver function Σ(n, x),
respectively [33]. These Turing-uncomputable functions can be reduced to each of the above problems and their
Turing-uncomputability follows from that reduction.

————
To prove the unsolvability of ECP we recall a related problem [33]:

DEFINITION 6.3 (THE BUSY BEAVER PROBLEM (BBP)) Consider a deterministic 1-tape Turing machine with
the unary alphabet {1} and the tape alphabet {1, B}, where B represents the tape’s blank symbol. This Turing
machine starts with an initial empty tape and accepts by halting. For an arbitrary (and, of course, finite) number
of states n = 0, 1, 2, ..., find two functions: the maximum number of 1s written on the tape before halting (known
as the busy-beaver function Σ(n)) and the maximum number of steps before halting (known as the maximum-shift
function S(n).

Note that Σ(n) represents the space complexity and S(n) the time complexity of a BBP TM. Obviously, Σ(n) ≤
S(n). Both functions grow faster than any computable function; that is, the Busy Beaver Problem has been proven
to be TM-unsolvable. If it were possible to solve the BBP, we could reduce the BBP to the halting problem of

14

a universal Turing machine (UTM), and we could then disprove the latter’s undecidability. We could do this by
computing the max-shift function S(n) and running a UTM up to S(n) steps. If the BBP TM halted during first
S(n) steps, then UTM would halt; otherwise it would run forever and the answer for UTM halting would be NO.
In both cases, we would be able to decide in a finite number of steps: YES or NO regarding the halting of UTM.
Of course, the algorithm would not be too practical because both functions grow very fast and their precise values
are known only for small values of n. For example, it is known that S(0) = 0, S(1) = 1, S(2) = 6, S(3) = 21
and S(4) = 107, but S(n) is not known for n > 4. This is so because S(n) grows very rapidly; it is known
that S(5) ≥ 47, 176, 870 and S(6) ≥ 2.5102879. Thus, even assuming that we could find S(n) for arbitrary n,
the practicability of such testing would be at least dubious. Additionally, we do not know precise values or upper
bounds of both functions for reasonable values of n, say 20− 100.

We can generalize this observation as follows.

REMARK 6.4 TM-unsolvable problems have uncomputable time and space complexities.

Otherwise, the known upper limit of time complexity (the number of steps) or the upper limit on space com-
plexity (TM tape cells used) could be used to solve the halting problem of a UTM, to disprove the Rice Theorem,
to disprove the unsolvability of the Post Correspondence Problem, and so on.

————

THEOREM 6.5 (ON UNSOLVABILITY OF ECP) The Economy Collapse Problem is Turing uncomputable.

Proof: By reduction of the BBP TM computing the max-shift function S(n) from the Busy Beaver Problem to the
ECP TM. The reduction is straightforward: The number of states in BBP TM and ECP TM are the same and
equal n = 0, 1, 2, If BBP TM accepts its empty input and halts, then ECP TM halts and the economy collapses
after a finite number of steps. If BBP TM does not accept its input, i.e., does not halt, then ECP TM does not halt
either. Thus ECP is recursively enumerable but not recursive, i.e., uncomputable (semi-decidable).

We can generalize BBP to a TM starting with a non-empty tape. We will consider the latter generalization.

DEFINITION 6.6 (THE NON-EMPTY-TAPE BUSY BEAVER PROBLEM (NBBP)) Compute functions Σ(n) and S(n)
for Busy Beaver TMs starting with nonempty initial tapes.

Let’s recall another auxiliary notion. It is known that the language Lne of codes of TMs accepting at least one
string is recursively enumerable but not recursive, i.e., the halting problem of UTM can be reduced to Lne. On the
other hand, the language Le of codes of TMs that do not accept any word is not recursively enumerable. Note that
Le is the complement of Lne.

THEOREM 6.7 (ON UNSOLVABILITY OF NBBP) The Non-Empty-Tape Busy Beaver Problem is Turing-uncomputable.

Proof: By reduction of language Lne to the NBBP. If TM computing Lne accepts wordw, then NBBP TM computes
Σ(n) and S(n) and halts. If TM computing Lne does not accept, then NBBP TM does not halt either.

Now we are ready to prove the Generalized Economy Collapse Problem.

THEOREM 6.8 (ON UNSOLVABILITY OF GECP) The Generalized Economy Collapse Problem is Turing-uncomputable.

Proof: By reduction of NBBP to GECP .

6.2 Economies that Never Collapse
Now, we are ready to define the Economy Immortality Problem, which is even more interesting than finding the
maximum time that an economic system has before it collapses. Unfortunately, and not surprisingly, immortality
of an economic system is not easier to achieve/decide than the maximum possible survivability of the economic
system.

15

While there are trivial non-halting n-state machines for any given n, we assume that constraints on real eco-
nomic systems will rule out such trivial, simple non-halting machines. Or in other words, we could engineer
economies which were guaranteed to never collapse, but those trivial economies wouldn’t be very useful or prac-
tical. On the other hand, there are infinitely many non-trivial TMs/economies that never halt. However, finding
them is not easier than finding halting TMs. The problem is also unsolvable; even worse, it is non-recursively
enumerable.

DEFINITION 6.9 (THE ECONOMY IMMORTALITY PROBLEM (EIP)) Let EIP represent economies that never
collapse, i.e., are immortal. For arbitrary values of n, decide whether any economy with n states is immortal.

We observe that the Economy Immortality Problem is the complement of the Extended Generalized Economy
Collapse Problem (EGECP), where we want to prove that an economy will collapse. We can prove that EGECP
is Turing-unsolvable too (by reduction from Lne). This implies immediately that EIP as the complement of
EGECP is non-recursively enumerable (another proof can be obtained directly by reduction from Le). This leads
us immediately to the following theorem.

THEOREM 6.10 (ON UNDECIDABILITY OF EIP) The Economy Immortality Problem is Turing-uncomputable.

Note that EIP TMs (i.e., immortal economies) describe systems that never terminate; thus they violate the clas-
sical definition of algorithms, and they, together with operating systems and client/server programs, belong to the
class of reactive systems. And reactive systems are the functional examples of implemented hypercomputational
systems (claimed by many researchers to be non-implementable).

6.3 On Undecidability of Economy
As a consequence of EPP and ECP /GECP /EIP unsolvability (being some of many economic problems), we
conclude:

COROLLARY 6.11 (ON UNSOLVABILITY OF ECONOMY) Economy is TM-undecidable.

REMARK 6.12 This seems to be a rather pessimistic result, but who cares? Mathematics and computer science
have also been proven to be TM-unsolvable; nevertheless, this did not stop fruitful research on their decidable
sub-areas. However, one has to be very careful for which questions we can have a definite answer and for which
we can decide only some specific cases. We cannot even conclude from above that state-controlled economies lead
to undecidable economies, because some of their special cases can be decidable.

6.4 An Extended Note on Decidable Economies
The simplest example of decidable ECP problems are economies where the Turing machineM output by Fecon

has read/write heads allowed to move only to the right or to the left in each transition. Turing machines whose
read/write heads move only to the right (or only to the left) are equivalent to push-down automata, and their
accepted languages are decidable (see, e.g. [16]). This means that if the collapse/halting state exists, it will
be reached after a finite number of moves of the underlying economy. We can try to interpret the meaning of
economies where the TM head is allowed to move only to the right. One possible interpretation would be that each
transition is associated with the unidirectional flow of time, and we are not allowed to reinterpret or correct past
decisions.

Another interesting example would be the case of economies which collapse because their reusable resources
(e.g., capital) ceased to be available.

A special case of decidable EIP would be modeling problems that avoid collapse of the economy caused by
deadlocks when multiple clients compete for shared resources/bank capital. This includes the algorithmic solution
for the Banker Problem by Dijkstra’s famous Banker’s Algorithm and its unsolvable generalizations. On the other
hand, deadlock detection and recovery would cover the case of decidable ECP with soft collapses (soft: pending
we can recover from the deadlock).

In 1965, Edsger Dijkstra [13] posed and solved (by providing a deadlock-free simple solution) the Banker
Problem.

16

DEFINITION 6.13 (THE BANKER PROBLEM (BP)) The Banker Problem is the abstraction of the allocation of
non-shareable and reusable resources in an operating system. A banker is supposed to give loans to customers of
his bank, who may apply for them as many times as they please, requesting in each application no more than the
whole capital of the banker, and committing themselves to give back the loan and not apply for new loans before
having returned the previous one. The banker wants to avoid any deadlock (to have money for a new client/loan)
or starvation, and to spread his money as much as possible.

Dijkstra’s solution for the Banker Problem is by produced by avoiding unsafe states that might potentially lead to
deadlocks. If the state will always lead to a deadlock independently of the lending order, it will be unsafe;otherwise
it will be safe. The Banker’s Algorithm assumes single-type or multiple-type non-shareable and reusable resources.
In the BP problem (accidently, having nothing to do with the oil spill in the Gulf), instead of operating systems,
we return to the original interpretation, that is, the bank and its generalization: the whole economy.

The economic crisis of 2008 resembles the typical scenario taken directly from the Banker’s Algorithm: The
banks and the world economy were in danger of immediate and unavoidable collapse (the US and world economy
entered an unsafe state leading with almost certainty to a deadlock: halting of the whole US/world economy),
because of the evaporation of capital resources.§§ The solution provided by the US government was different from
Dijkstra’s recommendation of avoiding unsafe states, but relied on replenishing lost resources, i.e., the famous
$700bn bailout by borrowing money mainly from China, Japan, and Saudi Arabia.||||

The Banker Problem seems to capture well, at the abstract level (in a way roughly parallel to dining philosphers,
readers/writers, or producers/consumers, problems successfully used in concurrency and computer science from
the 1960s), the danger of economic collapse caused by a lack of capital resources. Those inclined to resist for-
malization may well maintain that the Banker Problem is a poor analog for the financial crisis, or even for merely
the part of it limited to credit freeze. But in a similar manner, one could complain that the dining-philopshers
problem did not capture in all details synchronized access to i/o devices, readers/writers were not a good analog
of databases, and producers/consumers did not capture properly sending messages in the internet. Nevertheless,
these abstract models, by their simplicity and concentration on the most important aspects only, allowed us to solve
many practical problems that initially seemed impossible to be solved properly. It does not matter that banks don’t
lend only their capital, and most of what they lend is what they borrowed from depositors. Simply, the banker’s
resources will include the banker’s own capital as well as money borrowed from depositors, or received from the
government (perhaps, by the bailout).

Some have claimed to us that the freeze happened because there was a sudden across-the-board change in
institutions’ willingness to trust the future capabilities of counterparties to repay. It has been claimed further that
there is no way to build a computational account of this without making mental states of belief about other agents’
prospects a fundamental part of the story. In other words, as the story here goes, the resources existed, but the
bankers did not believe that their clients would repay their loans, and hence stopped lending almost completely.
But beliefs can be incorporated directly into the notions of “safe” states. Unsafe states will simply be the states
where we cannot get money (either because the banker does not have enough capital or does not trust his/her
clients’ ability to repay). It does not matter that the resource existed if the client could not get it. For the client, the
bare effect is that the resource stopped being available for whatever reasons. If we wish to make life and economies
more complicated, we can include a recursive (perhaps, infinite) chain of “mental” states of the type: “I believe that
you believe that he believes that the society stopped to believe but perhaps would believe if” Unfortunately
(or, perhaps, fortunately), all of the above has been anticipated by Dijkstra’s “simple” BP/BA, and of course our
own calculi (e.g., aforementioned ECEC) are tailor-designed to represent iterated beliefs).##

There is however a much more severe problem with the Banker’s Algorithm. As is pointed out by Tanenbaum

§§ In truth, they changed only their owners, but the bare effect seemed like they disappeared. This is confirmed by the well-known case of
John Paulson, a hedge-fund manager with his $20 billion “insurance” against the housing bubble, i.e., at least we know how to account for 20
billion of the losses. Another, less likely, option was that the resources never existed in the first instance, i.e., were “virtual” and losses and
gains were also virtual, thus truly the danger of deadlock was also “virtual.”
|||| Unfortunately, we cannot ask Edgser Dijkstra whether he would recognize the bailout as a deadlock-free alternative solution to the Banker’s

Problem.
In writing this section, we benefited from insightful reactions we received from the National Science Foundation on some of our related
work.

17

[45], the Banker’s Algorithm, although wonderful in theory, in practice (e.g., to use it as a scheduler in an operating
system) is essentially useless, because it requires advance knowledge of required resources, and assumes that
the number of processes and the amount of resources are static. In practice, the required resources are either
unknown or difficult to estimate, and the number of processes and the amount of resources are highly dynamic.
On the other hand, Silberschatz [39] claims that the centralized Banker’s Algorithm can be easily extended to be
used in a distributed system by designating one of the processes (the banker) as the process that maintains the
information necessary to carry the Banker’s Algorithm. However, he acknowledges that every resource request
must be channeled through the banker, and this may require too much overhead. As we know, the capital resources
in an economy are typically very dynamic and distributed.

The question is: Was the bailout the only available solution to prevent an economic freeze? We already know
that the answer to this question is negative: the Banker’s Algorithm provides an alternative solution (and perhaps
the only real one). Did the bailout really provide a solution or only delay the time of deadlock/collapse? Can
we somehow extend the Banker’s Algorithm not to be used as the loan decision scheduler, but at least to send
warning signals to the banker? If one is to agree that the deadlock avoidance is impossible in practice, is deadlock
prevention by attacking circular-wait condition somehow possible (e.g., using semaphores, monitors or message-
passing)? In other words, can we design a dynamic and distributed extension of the Banker’s Algorithm for either
signaling and warning of approaching deadlocks (unsafe states) or preventing deadlocks all together? Obviously,
there is much opportunity for future work.

7 CONCLUSION AND NEXT STEPS

We conclude that, yes indeed, perhaps economics is partially hypercomputational in nature. A bit more precisely,
there are two overarching reasons for this conclusion, both of which we have seen in play in the foregoing. First,
doing economics, represented by the activity of scientist Fecon, might well require hypercomputation; the reason
in a nutshell is that, as Figure 3 indicates, and as material coming after that figure fleshes out,Fecon may need to
ascertain, repeatedly, the answer to a Turing-undecidable question (provability). Second, economics, in seeking
to provide information-processing machinery that can predict future states of relevant markets, may well need to
provide machinery with the ability to surmount the undecidability that more expressive logics like ECEC inherit
from first-order logic.

Our conclusion may not be accepted by all readers, and we assume some will be skeptics chiefly because either
our modeling is perceived as perversely liberal in the direction of hypercomputation, or because this modeling
is unnatural, or both. In future work, greater detail will be provided (e.g., we can provide formal analysis and
theorems about undecidability in connection with mental logics). Of course, this additional detail will not address
something we must admit, viz., that we don’t have a rigorous set of desiderata which a formal science-of-science
of the targeted economic phenomena must satisfy. On the other hand, we are not aware of the existence of such
desiderata, and therefore not aware of such desiderata that would exclude the possibility of hypercomputation
being part of the nature of the model. In fact, even conservative paradigms for a formal science of science, such as
that presented in (see e.g. Chapter 11 of [20]) and taken whole cloth therefrom, explicitly entertain the possibility
that scientists harness hypercomputation (via old-style oracles, rather than contemporary hypercomputing devices
detailed in the formal literature) to produce what they produce.

REFERENCES

[1] K. Arkoudas and S. Bringsjord. (2009). Propositional attitudes and causation. International Journal of Software and Informatics,
3(1):47–65.

[2] R. J. Aumann. (1995). Backward induction and common knowledge of rationality. Games and Economic Behavior, 8:6–19.

[3] D. Balkenborg and E. Winter. (1997). A necessary and sufficient epistemic condition for playing backward induction. Journal of
Mathematical Economics, 27:325–345.

[4] J. Barwise and J. Etchemendy. (1999). Language, Proof, and Logic. Seven Bridges, New York, NY.

[5] B. Bernanke. (2000). Essays on the great depression. Princeton Univ Pr.

[6] M. Braine. (1998). Steps toward a mental predicate-logic. In M. Braine and D. O’Brien, editors, Mental Logic, pages 273–331.
Lawrence Erlbaum Associates, Mahwah, NJ.

18

[7] S. Bringsjord. (1992). What Robots Can and Can’t Be. Kluwer, Dordrecht, The Netherlands.
[8] S. Bringsjord and M. Zenzen. (2003). Superminds: People Harness Hypercomputation, and More. Kluwer Academic Publishers,

Dordrecht, The Netherlands.
[9] S. Bringsjord and K. Arkoudas. (2004). The modal argument for hypercomputing minds. Theoretical Computer Science, 317:167–190.

[10] S. Bringsjord, J. Taylor, A. Shilliday, M. Clark, and K. Arkoudas. (July 21 2008). Slate: An Argument-Centered Intelligent Assistant
to Human Reasoners. In F. Grasso, N. Green, R. Kibble, and C. Reed, editors, Proceedings of the 8th International Workshop on
Computational Models of Natural Argument (CMNA 8), pages 1–10, Patras, Greece.

[11] R. Carnap. (1995). Introduction to the Philosophy of Science. Dover, Mineola, NY.
[12] A. Cottrell, P. Cockshott, and G. J. Michaelson. (2009). Is economic planning hypercomputational? The argument from Cantor

diagonalisation. International Journal of Unconventional Computing, 5(3-4):223–236.
[13] E. Dijkstra. (1965). Cooperating sequential processes. Programming Languages.
[14] C. Duhigg, (March 2008). Depression, You Say? Check Those Safety Nets. New York Times.
[15] H. D. Ebbinghaus, J. Flum, and W. Thomas. (1994). Mathematical Logic (second edition). Springer-Verlag, New York, NY.
[16] J. E. Hopcroft, R. Motwani, and J. D. Ullman. (2007). Introduction to automata theory, languages, and computation. Prentice Hall, 3rd

edition.
[17] M. Hutter. (2001). Towards a universal theory of artificial intelligence based on algorithmic probability and sequential decisions.

Machine Learning: ECML 2001, pages 226–238.
[18] M. Hutter. (2005). Universal Artificial Intelligence: Sequential Decisions Based on Algorithmic Probability. Springer, New York, NY.
[19] M. Hutter. (2007). Universal algorithmic intelligence: A mathematical top→down approach. In B. Goertzel and C. Pennachin, editors,

Artificial General Intelligence, Cognitive Technologies, pages 227–290. Springer, Berlin.
[20] S. Jain, D. Osherson, J. Royer, and A. Sharma. (1999). Systems that learn. MIT press.
[21] R. Jeffrey. (1964). The Logic of Decision. University of Chicago Press, Chicago, IL.
[22] P. N. Johnson-Laird. (1983). Mental Models. Harvard University Press, Cambridge, MA.
[23] J. Joyce. (1999). The Foundations of Causal Decision Theory. Cambridge University Press, Cambridge, UK.
[24] D. Kreps and R. Wilson. (1982). Reputation and imperfect information. Journal of Economic Theory, 27(2):253–279.
[25] P. Krugman, (March 2009). The Great Recession versus the Great Depression. New York Times.
[26] O. Lange. (1964). On the Economic Theory of Socialism. McGraw Hill, New York, NY. Originally published in 1936.
[27] S. Legg and M. Hutter. (2007). Universal intelligence: A definition of machine intelligence. Minds and Machines, 17(4):391–444.
[28] N. Mankiw. (2008). Principles of macroeconomics. South-Western Pub.
[29] R. Nozick. (1970). Newcomb’s problem and two principles of choice. In N. Rescher, editor, Essays in Honor of Carl G. Hempel, pages

114–146. Humanities Press, Highlands, NJ.
[30] M. Osborne and A. Rubinstein. (1994). A Course in Game Theory. MIT Press, Cambridge, MA.
[31] J. Pollock. (1995). Cognitive Carpentry: A Blueprint for How to Build a Person. MIT Press, Cambridge, MA.
[32] M. Pour-El and I. Richards. (1981). The wave equation with computable initial data such that its unique solution is not computable.

Advances in Mathematics, 39:215–239.
[33] T. Rado. (1963). On non-computable functions. Bell System Technical Journal, 41:877–884.
[34] L. Rips. (1994). The Psychology of Proof. MIT Press, Cambridge, MA.
[35] C. Romer. (2004). The Great Depression. Britannica Encyclopedia.
[36] S. Russell and P. Norvig. (2002). Artificial Intelligence: A Modern Approach. Prentice Hall, Upper Saddle River, NJ.
[37] L. Savage. (1954). The Foundations of Statistics. Dover, New York, NY.
[38] R. Selten. (1978). The chain store paradox. Theory and Decision, 9:127–159.
[39] A. Silberschatz, P. Galvin, and G. Gagne. (2003). Operating system concepts. John Wiley & Sons, Inc. New York, NY, USA, 6th edition.
[40] P. Smith. (2007). An Introduction to Gödel’s Theorems. Cambridge University Press, Cambridge, UK.
[41] R. Solomonoff. (1978). Complexity-based induction systems: comparisons and convergence theorems. IEEE transactions on Informa-

tion Theory, 24(4):422–432.
[42] K. E. Stanovich and R. F. West. (2000). Individual differences in reasoning: Implications for the rationality debate. Behavioral and

Brain Sciences, 23(5):645–665.
[43] P. Suppes. (1972). Axiomatic Set Theory. Dover Publications, New York, NY.
[44] R. Sutton and A. Barto. (1998). Reinforcement learning. MIT Press.
[45] A. Tanenbaum. (2008). Modern Operating Systems. Prentice Hall Englewood Cliffs, NJ.
[46] W. Tracy. (2008). Paradox lost: The evolution of strategies in selten’s chain store game. In Three Essays on Firm Learning. This is a

dissertation at UCLA in the Anderson School of Management.
[47] Wikipedia, (2010). Economic collapse — Wikipedia, the free encyclopedia. [Online; accessed 22-September-2010].
[48] A. Wiles. (1995). Modular elliptic curves and Fermat’s last theorem. Annals of Mathematics, 141(3):443–551.
[49] A. Wiles and R. Taylor. (1995). Ring-theoretic properties of certain Hecke algebras. Annals of Mathematics, 141(3):553–572.
[50] Y. Yang, M. Braine, and D. O’Brien. (1998). Some empirical justification of one predicate-logic model. In M. Braine and D. O’Brien,

editors, Mental Logic, pages 333–365. Lawrence Erlbaum Associates, Mahwah, NJ.
[51] Y. Yang. (2006). Toward a mental decision logic of the small-grand problem: Its decision structure and arithmetization. In Proceedings

of the Twenty-Eighth Annual Conference of the Cognitive Science Society. Lawrence Erlbaum Associates, Mahwah, NJ.

19

	Introduction
	The Science of Sciences
	Science of Sciences applied to Economics

	The Chain Store Paradox
	Mental Decision Logic
	Economic Planning and Prediction via Turing-level Actors
	Description of Hutter's AIXI model
	Preliminaries
	The AIXI Model
	Properties of AIXI

	Generalized Economic Planning is an Enriched AIXI Problem

	 Modeling Economic Collapse
	Economies that Collapse
	Economies that Never Collapse
	On Undecidability of Economy
	An Extended Note on Decidable Economies

	Conclusion and Next Steps
	References

