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Abstract.
We share herein information about our logicist agent-based approach to economics. This approach
is: rooted in a space (C C ) of singularly expressive computational logics (cognitive calculi) that
enable fine-grained modeling of cognitive agents; verifiable; and simulation-based. Overall, we seek
to provide (to humans) intelligent artificial agents able to make discoveries about, and explain
and predict the future of, interacting agents (whether human or artificial), where these interacting
agents are in our approach modeled and simulated by taking full, explicit account of all the main
elements of cognition (i.e., belief, knowledge, perception, communication, goals, etc.). We present
two case studies designed to convey a more concrete sense of our approach. One case study involves
the “chain-store paradox,” and the other involves the devious reasoning of someone planning to
establish a Ponzi scheme designed to evade detection by authorities. Both case studies are simpler
than the kind of communication-rich, massive, multi-agent micro- and macro-level simulations we
strive for as our approach matures, but they convey the gist of our approach.

1 Introduction

The plan of the paper is as follows. We first encapsulate our basic model of an economist as one who
produces artificial agents capable of issuing valid fiscal predictions, as well as, when appropriate, expla-
nations and discoveries (§2). Next, we briefly explain that our brand of economics is: rooted in logicist AI;
proof-based (and hence verifiable); simulation-based; and committed to modeling down to all the main
elements of cognition at the individual-agent level (§3). Our new paradigm is logicist for two overarching
reasons: One, in this paradigm, the (idealized) practice of economics is an activity having predictive, ex-
planatory, and discovery power on the strength of using expressive, robust computational logics (which
are members of our space of cognitive caculi C C ) to assess and confirm hypotheses. Two, the use of
these calculi includes the modeling of agents in order to achieve the predictive power in question. In this
paradigm, the full-range of the cognition that distinguishes being a person must be formalized: belief,
knowledge, perception, reasoning, decision-making, communication, reading, goals, planning, emotion,
etc. [1]. As such, ‘agent’ for us is a term roughly in line with the most sophisticated intelligent artificial
agents defined in AI, e.g. the agents defined in [2]. We maintain that all the main elements of cognition
at the individual level are directly relevant to economic behavior of individuals, groups, nations, and
groups of nations; and that ultimately the only way to achieve true precision and power in economics is
to harness technology able to model and reason over all the main elements of cognition of individuals.

Predictions in our paradigm are issued on the strength of simulations generated by formal reasoning;
the simulations in question are verifiable because the reasoning in question, consisting of proofs and
formal arguments, are machine-checkable, and the code needed for proof/argument verification is tiny
and can be formally verified by traditional techniques.1 In the present paper, we use a very robust
cognitive calculus [DyCEC ∈ C C , which alone far exceeds so-called “BDI logics”; for details, see e.g.

? We are deeply grateful for penetrating comments received from three anonymous reviewers, which led to much
deep contexualization of our paradigm. And we are indebted to Naveen Sundar Govindarajulu of Yahoo for
substantial work carried out while in Bringsjord’s RAIR Lab.

1 This overall approach is laid out and explained quasi-formally in [3]. For a quick introduction to standard
program verification, see [4].



[5,6,7], and we take up this issue again briefly in §6] allowing for explicit representation of the internal
structure of multiple, interacting agents.2 Next, with our recommended form of economics in mind, we
carry out two case studies designed to illustrate, at least to a suggestive degree, logicist agent-based
economics. One case study is based on the famous Chain-Store Paradox (§4); the other on a Ponzi
scheme scenario. (More elaborate modeling and simulation in our paradigm is carried out in [5].) In §6
and §7 we discuss related work, and rebut a series of objections, respectively. We conclude with brief
remarks regarding future work (§8).

2 Our Abstract Science-of-Science Framework (High-Level)

2.1 The Generic Human-Agent Model

At least from the standpoint of formal logic, the goal of a rational scientific enterprise like economics
can be conceived as finding models that fit some observed data expressed as formulae in one or more
formal logical languages, with the hope that these models eventually accurately describe the underlying
reality from which these data flow. The formal-and-computational study of the scientific process is what
we call the formal science of science. Because economics, unlike physics, has a number of competiing
paradigms, we believe it is very important to have some kind of rigorous meta-scientific framework to
judge paradigms.

An introduction to a particularly promising computational science of science can be found in [9],
which is recursion-theoretic and hence based on mathematical logic. One of the first scientific paradigms
considered in [9] is language identification, which involves two entities, Nature and a Scientist.3 A language
L here is taken to be the familiar set of finite strings composed from a finite alphabet Σ; that is, L ⊆ Σ∗.
A language represents some subset of the natural numbers and can be used to represent a posssible
reality.4 Only the recursively enumerable languages E are considered in [9].5 Our Scientist F operates
in some fixed and unknown reality Lt, and perceives data from Nature in the form of strings from the
language Lt. The job of the Scientist is to produce hypotheses about the possible true language from
which strings are presented to it. For us, given our computational orientation, it is convenient that these
hypotheses are in fact formally defined information-processing machines (see below).

The Scientist is more specifically modeled as any function F : SEQ → N, where SEQ is the sequence of
all finite strings that Nature can produce. The output of the Scientist is a natural number corresponding
to a representation of some partial-recursive function in some programming system ν. The Scientist
encodes a language L using a natural number i by using the set of strings accepted by the ν program
i, written as W ν

i = L. Initially, Nature prepares an enumeration T of Lt ∪ {#}, where # is the blank
symbol. Nature then presents the elements of T , also known as a text for Lt, sequentially to the Scientist
at each instant in a discretized timeline. The Scientist then produces a hypothesis or a conjecture after
examining the data it has seen from Nature so far. Figure 1a illustrates this process.

In our opinion, this framework conspicuously lacks some elements which are ubiquitous in formal
science.6 One missing aspect is the concept of a proof (or at least a proof-sketch or rigorous argument) for
the conjectured hypothesis. This suggests the need for an improved formal science-of-science framework
that handles declarative information and can produce proofs for conjectured hypotheses. Figure 1b
contains an overview of one such possible improved framework. As should be clear from this figure,
the basic new idea is that the Scientist must justify its conjectures. This happens because the Scientist
attempts to ascertain whether or not some conjecture χ follows from a formal theory Φ,7 as confirmed

2 This calculus is not to be confused with the deontic, as opposed to the — used herein — dynamic calculus.
The former subsumes a dyadic deontic logic. E.g., see [8].

3 The notion of equating science with language identification is analogous to equating computation with language
recognition.

4 Here we assume that physical measurements can be represented with arbitrary precision using the rational
numbers, which in turn can be represented using the natural numbers.

5 This is of course a presupposition against hypercomputation (information-processing above Turing machines
in the Arithmetic Hierarchy), which we find objectionable [10]. But nothing hinges on this issue in the present
paper.

6 The two best formal scientists of science, Suppes [11] and the great logician Tarski [12], would agree.
7 Here ‘theory,’ in keeping with formal logic, is an axiom system; see e.g. [13].
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Fig. 1: Two CLT-Based Formal Science-of-Science Views

by some proof P. If the answer is in the affirmative, χ is added to the knowledge-base for the science in
question.8

2.2 Applying the Generic Model to Economics

Our logicist science-of-economics framework Fecon is shown pictorially in Figure 2. In this framework, the
Scientist Fecon produces an information-processing machine M (which needn’t be a Turing machine or
an equivalent thereof), or in AI terms, an intelligent agent [14], that is capable of taking in a set of initial
or prior states of the relevant environment or market, and of answering whether a certain future state-of-
affairs φ is presently true, or will obtain or not in the future (or whether such a state-of-affairs is possible
in the future, etc.), and a proof that supports its answer. The processing that allows M to be produced
includes consideration of sequences of states si of relevant environments. (We write 〈si〉 to indicate that
a state has been expressed in declarative form in the form of as set of formulae.) Note that even in
the general case involving only inexpressive extensional logics like first-order logic (which we far exceed
below by deploying DyCEC), this problem is Turing-unsolvable. Hence we don’t impose the restriction
that M be a Turing machine. To emit M, the scientist takes in a series of declarative statements σt
about the past states of the world and uses a conjecture generator to propose a theory Φ∗ that it tests
on the available data. If the conjecture agrees with the available data, the scientist then decides either
to publicly assert the theory in the form of M, or examine more data. If the conjecture does not agree
with the available data, the scientist then revisits the conjecture-generation stage. We assume that Φ∗

is expressive enough to account for basic arithmetic, agents, agent actions, agent goals, agent percepts,
agent utterances, times, events etc.; more about this issue below. In the specific context of economics,
we of course seek to produce models of Fecon and M for modeling specific economic phenomena.

Fig. 2: Science of Sciences applied to Economics
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8 Because of space limitations, we omit any coverage of the growing body of formal results regarding our new
science-of-science model.
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3 Logicist Agent-Based Economics

In our approach, Fecon , when provided with temporal data from an environment, produces a logical theory
Γ which is used to predict future states of that environment. The logical system in which Γ is expressed
includes, necessarily, expressive intensional operators that allow representation of, and reasoning about,
all of the structure of cognition of interacting individual agents, along with inanimate factors in the
environment or market. Since the system is based on declarative information, theorems announced by
the system are verifiable. Also, since Γ includes information about individual agents, the system can
be used for simulation by deriving theorems about the temporal states of the system. This dimorphism
between simulation and verification parallels and follows from individual agent reasoning vs. system
reasoning in multi-agent systems. The system is cognitive, as we represent the mental states of agents
in detail. Calculi used in representing Γ can be decomposed into two smaller sets of calculi:

Physical Calculi This is the part of the calculus that describes physical systems, external systems,
market rules and the dynamics of inanimate systems. We generally use the event calculus [15] or
situation calculus [16] for our physical calculus; the granularity of the former suffices for the relatively
simple case studies presented below.

Cognitive Calculi Our cognitive calculi contain physical calculi as proper fragments, and should model
as accurately as possible, for a given environment, agents’ beliefs, knowledge, desires, intentions,
communication, etc., and how these elements evolve and change. We present two cognitive calculi
from C C . The first, the aforementioned Cognitive Event Calculus (CEC), is used in the chain-store
paradox study; the second, the Dynamic Cognitive Event Calculus (DyCEC), is used in the
Ponzi-scheme modeling study.

For proof checking and automated theorem-proving, we use in the present paper a system built upon
a denotational proof language (DPL).9 Given a logical language L, a DPL K for that language provides
a way to formally express proofs in L in the language of K. The syntax of a DPL is built using the
λµ calculus [17], whose basic syntactic categories are propositions, deductions, and methods. Evaluation
in a DPL reduces to proof checking. A Deduction D, when evaluated in the context of an assumption
base β, produces a proposition P , denoted as β ` D  P . Methods in the λµ calculus, or λµ-methods,
are arbitrary abstractions over deductions and are analogous to functions in the λ calculus. λµ-methods
abstract over common reasoning scenarios and allow for modular non-monolithic automatic theorem
proving. Methods can be primitive or derived. Derived methods are obtained from primitive methods
through a certain set of operations which, for example, include method composition. Primitive methods
cannot be decomposed any further and correspond to primitive rules of reasoning in L.

We now present a specification of our model in terms of the logicist framework for science-of-science
introduced above. Moments is the set of all timepoints of interest on a discrete timeline, P the set of all
formulae in the cognitive calculus L (CECand DyCEC in the present paper), and fi(P), called formats,
specify subsets of logical formulae we are interested in. The set of all formats is F .

Fecon Viewed from an agent perspective, Fecon could be specified using some inductive formalism, e.g.,
inductive logic programming (see [18]) or probability theory axiomatized declaratively (e.g. [19]). The
economist takes in a finite set of formulae representing experimental data and a finite set of formats
which determine the shape of the theory we are interested in; and outputs a machine specification
〈Mi〉.

Fecon : 2P × 2F 7→ {〈Mi〉|i ∈ N}
Mecon This is defined as a logicist simulation: a function mapping each instant of time and experimental

data represented declaratively to a list of formulae of specific formats.

Simulation : Moments × 2P 7→ f1(P)× . . .× fn(P)

To construct the above definition of a simulation, we have a λµ-method mi for each format of interest
fi. Then Mecon is defined as

Mecon = {m1, . . . ,mn} where mi : Moments × 2P 7→ fi(P)

Γecon The theory is represented in Lecon: Γecon ⊂ P. Two examples, Γcsp and Γponzi, are illustrated
below.

9 DPLs were invented and introduced by Arkoudas [17].
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The following two case studies illustrate how one might go about specifying the details and imple-
menting the formal specification.10

4 The Chain-Store Case Study

In §4.1 we introduce the Chain-Store Paradox (CSP). In §4.2 we show manually how our approach to
economics works in connection with CSP. And in §4.3 we show how our approach can be automated.

4.1 Overview of the Chain-Store Paradox

Nobelist Reinhard Selten [20] introduced the remarkably fertile Chain Store Paradox (CSP), which
centers around strategic interaction between a “chain store” (CS; e.g., Wal-Mart, McDonald’s, or even,
say, Microsoft) and those who may attempt to enter the relevant market and compete against CS. The
game here is an n-stage, n + 1 one, in which the n + 1th player is CS, and the remaining players are
the potential entrants E1, E2, . . . , En. At the beginning of the kth stage, Ek observes the outcome of the
prior k− 1 stages, and chooses between two actions: Stay Out or Enter. An entrant Ek opting for Stay
Out receives a payoff of c; CS receives a payoff of a. If, on the other hand, Ek decides to enter the market,
CS has two options: Fight or Acquiesce. In the case where CS fights, CS and Ek receive a benefit of d;
when CS acquiesces, both receive b. Values are constrained by a > b > c > d, and here by the fact that
we set the values, without loss of generality, to be, resp., 5, 2, 1, and 0. Please see Figures 3a and 3b,
which provide snapshots of early stages in the game. We specifically draw your attention to something
that will be exploited later in this section, which is shown in Figure 3a: viz., that we have used diagonal
dotted lines, with labels, to indicate key timepoints in the action.

(a) One-Stage, Two-Player Snapshot in CSP (b) Two-Stage, Three-Player Snapshot in CSP

Fig. 3: Example Snapshots in CSP

But why is CSP called a paradox? Please note that there are at least three senses of ‘paradox’ used
in formal logic and in the formal sciences generally, historically speaking. In the first sense, a paradox
consists in the fact that it’s possible to deduce some contradiction φ ∧ ¬φ from what at least seems to
be a true set of axioms or premises. A famous example in this category of paradox is Russell’s Paradox,
which pivots on the fact that in standard first-order logic

∃x∀y(Rxy ↔ ¬Ryy) ` φ ∧ ¬φ.

In the second sense of ‘paradox,’ a theorem is simply regarded by many to be extremely counter-
intuitive, but no outright contradiction is involved. A famous example in this category is Skolem’s
Paradox, elegantly discussed in [13]. Finally, in the third sense of ‘paradox,’ a contradiction is produced,

10 They are not complete, in a sense, as they lack an implementation or a specification of automating Fecon . The
formal specification also holds if one considers Fecon to be a human practitioner. The specification, if not the
implementation, of the case studies can be considered complete in this latter sense.
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but not by a derivation from a single body of unified knowledge; rather, the contradiction is produced by
deduction of φ from one body of declarative knowledge (or axiom set, if things are fully formal), and by
deduction of ¬φ from another body of declarative knowledge (or outright axiom set, in the fully formal
version, if there is one). Additionally, both bodies of knowledge are independently plausible, to a very
high degree. A famous example of a paradox in this third sense — quite relevant to decision theory and
economics, but for sheer space-conservation reasons outside of our present discussion — is Newcomb’s
Paradox; see for example the first published treatment: [21]. It is into this third category of ‘paradox’
that CSP falls. More specifically, we have first the following definition and theorem.11

————
Definition (GT-Rationality): We say that an agent is GT-rational if it knows all the axioms of standard game
theory, and all its actions abide by these axioms.

Theorem (GT-Rationality Implies Enter & Acquiesce): In a chain-store game, a GT-rational entrant Ek will
always opt for Enter, and a GT-rational chain store CS will always opt for Acquiesce in response.

Proof-Sketch: Selten’s original strategy was “backward induction,” which essentially runs as follows when

starting with the “endpoint” of 20 as he did. Set k = 20. If E20 chooses Enter and CS Fight, then CS receives

0. If, on the other hand, CS chooses Acquiesce, CS gets 2. Ergo, by GT-rationality, CS must choose Acquiesce.

Given the common-knowledge supposition in the theorem, E20 knows that CS is rational and will acquiesce.

Hence E20 enters because he receives 2 (rather than 1). But now E19 will know the reasoning and analysis just

given from E20’s perspective, and so will as a GT-rational agent opt herself for Enter. But then parallel reasoning

works for E18, E17, . . . , E1. QED

————

The other side of the “third-sense” paradox in the case of CSP begins to be visible when one ascertains
what real people in the real world would do when they themselves are in the position of CS in the chain-
store game. As has been noted by many in business, such people are actually inclined to fight those who
seek to enter — and looking at real-world corporate behavior shows that fighting, at least for some initial
period of time, is the strategy most often selected.12 From our formal science-of-science perspective, and
specifically from the perspective of the CLT-based science of sciences framework shown in Figure 2,
these empirical factors are of high relevance because they are to be predicted by the machineM given as
output by Fecon . Indeed, the very purpose of M is to predict future states of the world on the strength
of the declarative representation of past states and/or present state, along with declarative information
about agents, and their goals, beliefs, perceptions, possible actions, and so on.

Sure enough, there does appear to be a formal rationale in favor of thinking that such a prediction
machine as M would predict fighting. This rationale is bound up inseparably with deterrence, and can
be expressed by what can be called forward induction. The basic idea is perfectly straightforward, and
can be expressed via the following definition and theorem (which for lack of space we keep, like its
predecessor, somewhat informal and compressed).

————
Definition (Perception; m-Learning; Two-Option Rationality): We say that an agent α1 is perceptive if, when-
ever an agent α2 performs some action, α1 knows that α2 does so. We say that an agent α is an m-learner
provided that when it sees agents perform some action A m times, in each case in exactly the same circumstances,
it will believe that all agents into the future will perform A in these circumstances. And we say that an agent is
two-option-rational if and only if when faced exclusively with two mutually exclusive options A1 and A2, where
the payoff for the first is greater than the second, that agent will select A1.

Theorem (Rationality of Deterrence from CS): Suppose we have a chain-store game based on n perceptive
agents, each of whom are m-learners. Then after m stages of a chain-store game in which each potential entrant
seeks to enter and CS fights, the game will continue indefinitely under the pattern of Stay Out.

11 Selten himself doesn’t provide a fully explicit, verifiable proof of the theorem in question. For more formal
treatments, and proofs of backward induction, see e.g.,[22,23]. In the interest of economy, we provide only a
proof-sketch here, and likewise for the theorem thereafter for deterrence.

12 Selten in [20] prophetically remarked that he never encountered someone who said “he would behave according
to induction theory [were he the Chain Store].”
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Proof-Sketch: The argument is by induction on N (natural numbers). Suppose that the antecedents of the

theorem hold. Then at stage m+ 1 all future potential entrants will believe that by seeking to enter, their payoff

will be 0, since they will believe that CS will invariably fight in the future in response to an entering agent. In

addition, as these agents are all two-option-rational, they will forever choose Stay Out. QED

————

We see here that the two previous theorems, together, constitute a paradox in the aforementioned
third sense.13 In general, paradoxes of the third type can be solved if one simply affirms one of the two
bodies of knowledge, and rejects the other. However, we are under no requirement to take a stand, since
the purpose of the present paper is of course to introduce and take genuine steps toward a new approach
to economics rooted in logicist agent-based AI.

4.2 Semi-Automated Analysis of the Chain-Store Paradox

One can fully formalize and prove a range of both “highly-expressive” backward induction and deter-
rence theorems under the relevant assumptions. These theorems are differentiated by way of the level
of expressivity of the underlying logics/calculi used. Our calculi use more detailed machinery than has
been used before in the chain-store literature. For example, it is possible to prove a version of both
the induction and deterrence theorems using an “economic cognitive event calculus” (ECEC) based on
the cognitive event calculus in [7], which allows for epistemic and communication operators to apply to
sub-formulas in full-blown quantified modal logic, in which, as we have said, the standard event calculus
is encoded.

From the standpoint of theoretical computer science and logic, all versions of the chain-store game,
hitherto, have involved exceedingly simple formalizations of what agents know and believe in this game,
and of change through time. To see this more specifically, note that in standard axioms used in game
theory, for example in standard textbooks like [26] and [27], knowledge is interpreted as a simple function,
rather than as an operator that can range over very expressive formulae that carry parameters for
timepoints, actions, goals, plans, and utterances. This same limited, simple treatment of intensional
operators is the standard fare in economics. Yet, it can be shown that the difficulty of computing, from
the standpoint of some potential entrant Ek or chain store CS in some version of a chain-store game,
is at the level, minimally, of Σ1 when attempting to compute whether by induction or deterrence they
should opt for Enter or Stay Out. We conclude this section by directing interested readers to the rather
intricate proof.14 which is too large to present in the present paper. This proof is in ECEC, implemented
and machine-checked in the Slate system [28], for the prediction that, from the start of the chain-store
game, at the seventh timepoint (t7), the third agent will Stay Out. Note that the production of this
proof constitutes a simulation that demonstrates that this future timepoint will be reached from the
initial state, and so the process here coincides nicely with the process summarized pictorially in Figure
2.

4.3 Toward Automatic Analysis of the Chain-Store Paradox

We have implemented two simulations of the pair of diverging outcomes. Since reasoning in CSP involves
finitely many levels of iterated belief, we include some rules of inference not present in CEC of [7], notably
conjunction introduction and modus ponens within finitely iterated beliefs: [∧I∗] amd [→ E∗].

13 We would be remiss if we didn’t mention two points of scholarship, to wit: (1) Game theorists have long
proposed modifications or elaborations of the chain-store game which allow game theory to reflect sensitivity
to the cogency of the deterrence line of reasoning. E.g., see [24]. (2) Innovative approaches to CSP that in some
sense opt for a third approach separate from both backward induction and deterrence have been proposed.
E.g., see the one based in evolutionary computation proposed by Tracy in his [25].

14 Available for viewing at http://kryten.mm.rpi.edu/chain-store-color.pdf.
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C(P )

C(K(a, P ))
[R0]

C((P1 ↔ P2)→ (P1 → P2))
[R9.1]

C((P1 ↔ P2)→ (P2 → P1))
[R9.2]

B(a1, . . .B(an, P1)) B(a1, . . .B(an, P2))

B(a1, . . .B(an, P1 ∧ P2))
[∧I∗]

B(a1, . . .B(an, P1 → P2)) B(a1, . . .B(an, P1))

B(a1, . . .B(an, P2))
[→ E∗]

Before delving further into the formal analysis, a few notes on our logical vocabulary: plans(a, α, t)
indicates that a plans to perform an action α at a time t, and does(a, α, t) that a actually does. act(a)
and react(a) denote a’s turn in the game and CS immediately following turn, resp. In terms of our
formal-science-of-science framework we have:

fi : We are interested in only one format of formulae:

{B(ā1, . . .B(ān, plans(āk, ᾱ, τ̄)) . . .)|āi ∈ Agent ∧ ᾱ ∈ ActionType ∧ τ̄ ∈ Moment ∧ i ∈ N}

The number of belief iterations is variable. A formula of the above format with no iterated belief operators
is just a plans formula.

Γcsp : The theory is given by the following set of axioms (discussed below).

Γcsp = {γplan, γcs-plan, γent-plan, γcs-rat}

Mcsp : The λµ-method for the above format, plansB∗ak
, comprising Mcsp, is discussed below.

Agents can plan multiple action types at the same moment, but only one action can happen based
on some priority. For CS, the fight action has higher priority than the coop/acquiesce action. An action
performed by an agent must have been planned by the agent.

γplan : ∀ a, α, t [does(a, α, t)→ plans(a, α, t)] (1)

Planning Axioms for the Chain Store: The planning axioms for the CS are assumed to be common
knowledge; there are two axioms for each action type of CS. The following axiom says that it’s common
knowledge that if CS plans to fight against an entrant, then CS believes that the total payoff gained if
CS fights against this entrant is greater than the total payout gained by coöperating with this agent. A
similar axiom governs acquiescence.

γcs-plan : C

∀ e


plans(cs ,fight(e), react(e))→

B

(
cs ,

paytot(e,fight(e)) >

paytot(e, coop(e))

)
 (2)

Planning Axioms for the Entrants: It is assumed that it is common knowledge that if an entrant
plans to enter, then it believes that CS will coöperate.

γent-plan : C

(
∀ e

[
plans(e, enter , act(e))→
B(e, plans(cs , coop(e), react(e)))

])
(3)

Rationality Axioms for the Chain Store: In order to obtain backward-induction (BI) behavior, we
assume all agents have common knowledge of rationality. [29] shows that if in games of perfect information
common knowledge of rationality is present, the BI argument holds in that game. We assume that it is
common knowledge that CS is a rational planner (but not necessarily a rational actor; and hence CS
is defined in terms of plans rather than does). It is common knowledge that if all later entrants have
planned to enter, the total payout for CS is better if it coöperates with the current entrant. There is one
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such axiom for each entrant. The following axiom is about the CS’s rationality for the first entrant when
there are only three entrants in the game.

γcs-rat : C


plans(e2, enter , act(e2)) ∧
plans(e3, enter , act(e3)) ∧(

paytot(e1,fight(e1)) >

paytot(e1, coop(e1))

)
 (4)

For a given number of entrants, we have λµ-generators for automatically producing λµ-methods for
mimicking the reasoning carried out by individual entrants and the chain store. Specifically, the method
plansB∗ak for agent ak takes in as arguments a list of agents and proves an iterated belief statement about
the plan for ak. In the λµ calculus notation, with β denoting the assumption base of the axioms needed
for the simulation:

β ` plansB∗
ak

(a1, . . . , an) B(a1, . . .B(an, plans(ak, α, τ)) . . .)

The output of the simulation is obtained by running these methods on an empty list of agents:

β ` plansB∗
ak

() plans(ak, α, τ)

The run times and the number of λµ-method calls for simulating the BI argument for varying numbers
of entrants are shown in Table 1.

Though theoretically appealing, the outcome of BI argumentation is not very realistic for many rea-
sons, foremost among which is the opposing result based on deterrence. In the next section we introduce
constructs needed in an entrant agent for deterrence to be successful, mainly learning/generalization
and a percept operator which allows us to model agents which observe their environment. Before that
we demonstrate a small scenario in which CS “steps over” the BI argument and plans to fight against
entrants to deter them. This can occur if CS carries out the BI argument and decides on the basis of
the argument to fight and deter. We assume that the following axiom, deterrence, for deterrence, holds.
The axiom say that if for each entrant CS believes that entrant plans to enter, then CS will plan to fight
(possibly in the hope of deterring future entrants).

∧n
i=1 B(cs , plans(ei, enter , act(ei)))→

∧n
i=1 plans(cs ,fight(e1), react(e1)) (5)

The deterrence action “over stepping” the BI argument is then obtained by the following proof, which
uses methods defined for the BI argument.

β `

[
conjoin plansB∗

a1
(cs ), . . . , plansB∗

an
(cs ));

modus-ponens deterrence, ∧n
i=1plansB∗

ai
(cs )

]
 ∧n

i=1plans(cs , fight(ei), react(ei)) (6)

On Implementing λµ-Methods: A simulation of agents in the chain-store scenario depends on
agents perceiving the actions of other agents through time. However, many of the axioms and inference
rules that describe agents’ behaviors are based on an agent knowledge. It will be very common, then, as
a result, that certain deductive procedures will depend on the presence of formulae of the form K(a, P ),
indicating that an agent a knows some proposition P ; but the simulation will have only asserted that
P(a, P ), i.e., that a perceived P . A useful deductive method, then, takes a list of formulae from the
assumption base of the form P(a, P ) and derives (through the use of rule DR4 of the CEC) the formula
K(a, P ), and then invokes another deductive procedure within the scope of these additional results:
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(define-method invoke-with-perceived-knowledge (perceptions method)
(if (endp perceptions) (! method)

(dseq
(!’dr4 (first perceptions))
(!’invoke-with-perceived-knowledge (rest perceptions) method))))

The following formula encodes the definition of 2-learning in the CEC. It says that an agent l learns
if and only if when l knows that an agent a does some action α at distinct moments t and t′, then l
believes that, at any subsequent moment t′′, a will again perform α.

∀ l



learns(l)↔

∀ a, α, t, t′



K(l, does(a, α, t))∧
K(l, does(a, α, t′))∧
t 6= t′

→
∀ t′′

(
t < t′ < t′′ →
B(l, does(a, α, t′′))

)




A common pattern is to show, provided that an agent learns, and given some of its relevant perceptions,

that the agent believes that another agent will do some particular action at a subsequent moment.
The λµ-method, learning, takes as arguments two agents, a1 and a2, an action, α1, and three mo-

ments, t1, t2, and t3. It specializes the learning definition with the first agent, obtains the right-hand side
of the resulting biconditional, and specializes that to produce a conditional that claims that if a1 knows
that a2 did α1 at t1, and t2 and t1 and t2 are distinct, then a1 believes that a2 will do α1 at any subsequent
moment. An automated reasoner, in this case SNARK [30], is invoked with this result, the prerequisite
knowledge, and the axioms describing time. SNARK, as only a first-order system, sees the knowledge
and belief formulae only as opaque propositions, but can perform the necessary reasoning concerning
moments, to prove the universally quantified conditional ∀t′′t1 < t2 < t′′ → B(a1, does(a2, α1, t

′′)) which
is then specialized with t3 to produce t1 < t2 < t3 → B(a1, does(a2, α1, t3)) (which SNARK cannot
confirm directly, since B(a1, . . . ) appears as an opaque proposition). SNARK can be used, however, to
then prove that t1 < t2 < t3, and that as a result, the consequent B(a1, does(a2, α, t3) holds. The success
of learning as applied to a1, a2, α, and t1, . . . , t3, depends on the following formulae being present in
the assumption base: (i) the definition of learning; (ii) that a1 is a learner; (iii) that a1 knows that a2 did
α1 at t1 and t2; and (iv) the time axioms (used to confirm that t1 < t2 < t3). The definition of learning
follows:

(define-method learning (agent1 agent2 action time1 time2 future)
(dlet* ((x (!’uspec*

(!’iff-elim
(!’uspec (!’claim *defn-learn*) agent1)
(!’claim ($‘(learns ,agent1))))

(list agent2 action time1 time2)))
(k1 (!’claim ($‘(knows ,agent1

(does ,agent2 ,action ,time1)))))
(k2 (!’claim ($‘(knows ,agent1

(does ,agent2 ,action ,time2)))))
(uc (!’snark-prove

($‘(forall ((?ttt moment))
(if (prior ,time2 ?tt)

(believes ,agent1
(does ,agent2 ,action ?ttt)))))

(list* x k1 k2 *time-axioms*)))
(c (!’uspec uc future)))

(!’snark-prove
($‘(believes ,agent1 (does ,agent2 ,action ,future)))
(list* c *time-axioms*))))

The simulation does not provide the knowledge necessary for learning to successfully prove that
a3 believes that CS will choose Fight at the moment t8. In particular, the simulation provides only the
perceptions (among others) P(a3, does(cs ,Fight, t2)) and P(a3, does(cs ,Fight, t5)). However, provided
that these perceptions are in the assumption base and recorded, invoke-with-perceived-knowledge
and learning can be easily combined to prove B(a3, does(cs ,Fight, t8)) by first deriving all the knowledge
associated with the perceptions, and then invoking learning:

(!’invoke-with-perceived-knowledge *observations*
(mu () (!’learning (%’a3) (%’cs) (%’fight) (%’t2) (%’t5) (%’t8))))
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By using these types of abstractions over deductive procedures, we have automated significant por-
tions of the reasoning that occurs in these cognitively-based simulations. This automation incorporates
standard off-the-shelf reasoning components, and integrates them with EC-specific procedures. These
combinations provide powerful proof-based tools for automating computational simulation and produc-
ing verifiable results. Table 1 shows simulation/proving run times, as well the number of λµ-methods
called to produce the proofs for the backward-induction and deterrence scenarios.

Table 1: Performance on a 2.8 GHz quad core 2 GB machine

Backward Induction Deterrence
Entrants Time (s) λµ calls Time (s) λµ calls

1 0.23 262 0.26 321
2 1.12 1296 1.13 1201
3 4.60 4330 3.87 3440
4 15.76 12322 11.93 8878
5 51.03 32150 36.42 21674
6 161.70 79490 109.63 51106
7 520.72 189534 374.86 117650
8 1948.42 440346 1344.13 266098

The run times grow exponentially due to the nature of the problem; every time an entrant is added, the
new entrant has to repeat the reasoning of all previous entrants in order to plan. Fortunately, λµ-methods
allow easy parallelization via a simple blackboard-style architecture. The blackboard prover takes in a
goal G to be proved and a set M of λµ-methods relevant to the reasoning problem represented by the
goal. This prover contains a blackboard B containing the current goal to be proved. Initially, the goal
to be proved is written on the blackboard and the prover tries all the methods until one of the methods
produces a deduction of the form G′ → G. The prover then erases G as the current goal and writes G′ on
B as the new goal to be proved; it continues until it is left with no further goal, at which point it signals
success.

5 Case Study II: Ponzi Scheme Modeling

In this section we show how various aspects of Ponzi schemes can be modeled in our calculi. As is well-
known, the schemer collects money from investors seeking a promised high rate of return, but simply pays
out on the strength of new money coming in from new investors.15 For the dynamics of the underlying
fund and the promised amount to the investors, we use the continuous model presented by [31]. In this
model it is assumed that the Ponzi schemer collects K amount of cash from investors at the beginning
and promises to invest at a rate of rp, the Ponzi rate, but actually invests them at a rate rn, the nominal
rate, with rp > rn. It is assumed that the density of withdrawals is rw, cash comes in at a rate of s0e

rit,
and the initial amount of money present in the fund is C. The amount of actual funds Sa(t) and the
amount of promised funds Sp(t) are then given by

Sa(t) =
rw[s0 − (ri − rp + rw)K]

(rp − rn − rw)(ri − rp + rw)
e(rp−rw)t

+
s0(ri − rp)

(ri − rn)(ri − rp + rw)
erit +

(
C − s0(rn − rp) +Krw(ri − rn)

(ri − rn)(rn − rp + rw)

)
ernt

Sp(t) =
s0

rp − ri − rw

(
e(rp−rw)t − erit

)
+Ke(rp−rw)t

15 One cannot by the way stipulate that these investors are hoodwinked. They may even know or at least suspect
that they are handing their money to a Ponzi schemer. In more robust modeling and simulation using our
tools, we differentiate investor beliefs with respect to the nature of the organization they are giving money to.
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Call the axiomatization of the above dynamics Γdyn. Instead of deploying on-hand axiom systems for
arithmetic (e.g., the well-known PA or Q) to simulate the dynamics, we make of use of primitive λµ-
methods as procedural rewrite methods for functions Sa and St. In order to represent dynamic cognitive
states, we modify CEC once again, this time to include time nominals for the operators for perception,
belief, knowledge, and common knowledge. The syntax and the rules of DyCEC are shown in Figure 4.
We introduce a new operator for declarative communication, S(a, b, t, φ): a communicates φ to b at time
t. This operator is based on the Inform speech act operator discussed in [32], and is modeled, partially,
by inference rule R12. Another new operator is the future intention operator I, which parallels similar
operators in the literature on BDI agents.

Fig. 4: Dynamic Cognitive Event Calculus

Syntax

S ::=
Object | Agent | Self | ActionType | Action � Event |
Moment | Boolean | Fluent | RealTerm

f ::=

action : Agent×ActionType → Action

initially : Fluent → Boolean

holds : Fluent×Moment → Boolean

happens : Event×Moment → Boolean

clipped : Moment×Fluent×Moment → Boolean

initiates : Event×Fluent×Moment → Boolean

terminates : Event×Fluent×Moment → Boolean

prior : Moment×Moment → Boolean

interval : Moment×Boolean

t ::= x : S | c : S | f (t1, . . . , tn)

φ ::=

t : Boolean | ¬φ | φ∧ψ | φ∨ψ |
M(a, t,φ)P(a, t,φ) | K(a, t,φ) | C(t,φ) |
B(a, t,φ) | D(a, t1,φ) | I(a, t1,φ) | S(a,b, t,φ)

Rules of Inference

C(t,P(a, t,φ) ⇒ K(a, t,φ))
[R1] C(t,K(a, t,φ) ⇒ B(a, t,φ))

[R2]

C(t,φ) t ≤ t1 . . . t ≤ ln
K(a1, t1, . . .k(an, tn,φ) . . .)

[R3]
K(a, t,φ)

φ
[R4]

C(C(t,K(a, t1,φ1 ⇒ φ2)) ⇒ K(a, t2,φ1) ⇒ K(a, t3,φ3))
[R5]

C(C(t,B(a, t1,φ1 ⇒ φ2)) ⇒ B(a, t2,φ1) ⇒ B(a, t3,φ3))
[R6]

C(C(t,C(t1,φ1 ⇒ φ2)) ⇒ C(t2,φ1) ⇒ C(t3,φ3))
[R7]

C(t,∀x. φ ⇒ φ[x �→ t])
[R8] C(t,φ1 ⇔ φ2 ⇒ ¬φ2 ⇒ ¬φ1)

[R9]

C(t, [φ1 ∧ . . .∧φn ⇒ φ] ⇒ [φ1 ⇒ . . . ⇒ φn ⇒ φ])
[R10]

B(a, t,φ1) B(a, t,φ2)

B(a, t,φ1 ∧φ2)
[R11]

S(s,h, t,φ)

B(h, t,B(s, t,φ))
[R12]

1

Consider a small scenario in which there is one Ponzi schemer agent p, one investor or buyer agent b,
and one investigator agent i. The goal of the Ponzi schemer is to lure investors and avoid the investigator;
that of the investigator is to avoid fund collapses Sa < 0 by investigating a potential Ponzi schemer.
The event-calculus fluent ponzi represents whether p is a Ponzi schemer or not, and the fluent collapse
represents the state of the fund, i.e. whether Sa(t) > 0 or not. The action investigate is available to the
investigator when the investigator believes that p is a Ponzi schemer. In terms of our formal science-of-
science framework we have:

fi : We are interested in formulae of the following forms

1. f1 ={ā = Sa(t)|ā ∈ RealTerm ∧ t̄ ∈ Moment}
2. f2 ={p̄ = Sp(t)|p̄ ∈ RealTerm ∧ t̄ ∈ Moment}
3. f3={happens(action(i, investigate, t̄))|t̄ ∈ Moment}

Γponzi : The theory of this system is given by

Γponzi = {γPonzi, γNI , γCI γsusp, γinvestigate, γcollapse, γp-susp, γp-investigate, γp-collapse} ∪ Γdyn

Mponzi : m1 and m2 corresponding to f1 and f2 are implemented using primitive methods which employ pro-
cedural rewrites and call simple arithmetic functions. m3 is implemented using a derived method in our
DPL.

A simple investor who trusts the Ponzi schemer’s rate-of-return claims and thus invests in the fund
can be modeled as below. Here γPonzi denotes the fact of the initial communication of the Ponzi rate to
the investor.

S(p, b, t0, rn(t0) = α′)
[γPonzi]

B(b, t0,B(p, t0, rn(t0) = α′))
[R12]

∀ rB(b, t0,B(p, t0, rn(t0) = α′))→ B(b, t0, rn(t0) = α′)
[γNI ]

B(b, t0,B(p, t0, rn(t0) = α′))→ B(b, t0, rn(t0) = α′)
[Uelim]

B(b, t0, rn(t0) = α′)
[MP ]
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A näıve investor would trust the Ponzi schemer to be correct about the latter’s beliefs re. the nominal
interest rate. We can approximate this trust by stipulating that whatever rate α′ the investor believes
that the Ponzi schemer believes rn is, the investor believes the same. The investor’s trust in the Ponzi
schemer’s beliefs re. the interest rate is represented by the axiom γNI ; ‘NI’ abbreviates ‘näıve investor.’
If the investor’s criteria for investing is a belief in a rate above α, with α′ > α, then he invests in the
scheme; this is represented by γCI ; ‘CI’ abbreviates “criteria for investing.”

B(b, t0, rn(t0) = α′) B(b, t0, rn(t0) = α′ → happens(action(b, invest), t0))
[γCI ] & [Arith.]

happens(action(b, invest), t0)
MP

A simple investigator looking at the amount of funds claimed to be in the system gets suspicious if they
are above a threshold value τ for a number of consequent time points: γsup.

γsusp : ∀(t1, . . . , tn) ∧n
i=1 P(i, ti, Sa(ti) >= τ)→ B(i, tn+1, ponzi)

A simple investigator also decides to investigate the moment they become suspicious without any consid-
eration of possible negative consequences of a failed investigation: γinvestigate. The intention of the Ponzi
schemer is to avoid a collapse of the fund, represented by γcollapse, which uses the intention operator I.

γinvestigate : ∀t. B(i, t, ponzi)→ happens(action(i, investigate), t)

γcollapse : ∀t1, t2. prior(t1, t2) ∧ I(i, t1,¬holds(collapse, t2))

While a simple Ponzi schemer may not have any beliefs about the beliefs of the investigator, a more
sophisticated Ponzi schemer will ascribe the following three beliefs to an investigator. At this point,
we have all that we need to simultaneously prove and simulate such results as that if the infamous
Madoff had been as sophisticated as our Ponzi schemer agent p, barring a “run” on the funds Madoff
controlled, exposing him would have been well nigh impossible. Space constraints preclude presenting
such simulation here.

γp-susp : ∀t. B(p, t, γsusp)

γp-investigate : ∀t. B(p, t, γinvestigate)

γp-collapse : ∀t. B(p, t, γcollapse)

6 Related Work

Given both that formal logic has been vibrantly used to model human thought and action since Aristotle16

invented and deployed his fragment of first-order logic approximately two-and-a-half millennia back, and
that economics is undeniably at least partly in the business of modeling human thought and action (in
connection with commerce), we find the scarcity of logicist economics to be scandalous. Be that as it
may, we do say ‘scarcity,’ not ‘absence’: our pursuit of economics via formal logic isn’t an entirely solitary
one. What is some related work, then?

In light of his lasting reputation and impact, it’s worth mentioning that much of the work of Keynes
(and arguably the tenor of all that he did) is firmly in the logicist mold, as for example Keynes held
probability theory to be a branch of logic [34]. In fact, Keynes specifically viewed probability theory
to be about arguments, and our approach to inductive logic (see §8) extends our proof-centric work in
deductive logic for economics, the focus of the present paper, to argument-centric work in inductive logic
for the same field.17 Yet obviously Keynes made no use of theorem-proving technology to implement
logic as computation (the aforecited work on probability came well before Church, Turing, Post, and
von Neumann), and no use of AI formalisms to build human-level artificial agents. It was left to Herbert
Simon, nobelist in economics, to inaugurate the logicist/theorem-proving approach to simulating human

16 His seminal work is contained in The Organon, available in [33].
17 A marvelous exposition of Keynes qua logician, “John Maynard Keynes: a logicist with a human face,” is given

as a section in [35].
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cognition; it was after all his logic theorist system that, in 1956, at the famous Dartmouth confer-
ence that gave birth to AI, generated the most attention there and thereafter.18 What about related
contemporary work in computational deductive logic at least used to build and simulate such agents, in
connection with economics?

Clearly the impressive work of Kaneko and a number of those he has collaborated with is relevant;
we now mention some examples. In [36], we receive an elegant and extensive introduction to proposi-
tional epistemic logic in connection with game theory. One stark contrast with the calculi in C C that
include epistemic operators and which support some of our modeling and simulation (including specifi-
cally DyCEC), is that these calculi minimally contain as fragments full first-order logic, and maximally
third-order logic, since we find that humans and human-level artificial agents frequently engage in com-
munication, reading, and associated decision-making at the level of second- and third-order logic (where
this cognition and behavior is relevant to economic behavior).19 A second stark contrast, which by now
is apparent to the reader, is that Kaneko’s orientation is game theoretic; ours is not. We view game
theory as a realtively small axiomatic system encompassed by various calculi in C C , and processing
that requires game theory would simply involve proof-based computation over this system. Indeed this
is indicated by the chain-store case study above. In our approach to economics, while games and for-
malisms for them are important, of greater importance, ultimately, would be not epistemic operators and
their regimentation in logic, but operators for communicating and understanding communication, which
is why even the earliest members of C C (e.g. [7]) have machinery for communication and perception.
[6] indicts the expressive power of game theory, meta-game theory, and behavioral game theory, in the
light of nuclear strategy (and also provides a sustained justification for the banishment of possible-world
semantics in C C , in favor of proof-theoretic semantics, an issue referred to momentarily).

Some interesting and impressive Work on quantificational epistemic logic, in connection with eco-
nomics, is in the literature curated by Kaneko; for example, [38]. This work highlights another stark
contrast between our approach and prior work, because while effort in [38] is in significant measure moti-
vated by the uncomputability of quantificational epistemic logic with a common knowledge operator, we
have simply long embraced and engineered under CPU timeouts for proof search. Even standard first-
order logic is after all undecidable, but that doesn’t mean that proof search doesn’t succeed for given
modeling and simulation. In fact, while Goodstein’s Theorem, now known to be an instance of the class
of the undecidable theorems that Gödel abstractly defined in his famous first incompleteness theorem,
has no finitary proof at present (as all proofs of it are based on transfinite ordinals), we are investigating
whether an intelligent agent could nonetheless discover and prove the theorem; see e.g. progress reported
in [39].20

Some readers may wonder about the relationship between cognitive calculi in C C , including specifi-
cally DyCEC, and so-called “Belief-Desire-Intention” logics, or — as they are commonly known — “BDI”
logics [42]. Obviously, given our modeling above of Ponzi scheming, we find such logics to be in many
regards on the right track. Yet there are major differences, and we don’t have the space to provide a
detailed comparison, and instead must rest content with the enumeration of a few differences from among
many, to wit:

1. DyCEC and our other calculi make use of proof-theoretic semantics, rather than possible-worlds semantics;
the latter is explicitly rejected. Possible-world semantics notoriously produces odd formal models when they
are used for formalizing belief, knowledge, desire, and intention; for explanation and defense, see e.g. [7,6].

18 We have found it fascinating that economists familiar with Simon’s bounded-rationality approach are usu-
ally unfamiliar with his seminal applied logicist work on automated theorem proving. We unite these two
Simonesque strands in [5].

19 It is interesting to note that Kaneko himself is aware of pressure pushing toward greater expressivity; e.g., we
read: “For example, extensions, such as predicate logics, of epistemic logics and their applications to economics
are natural problems.” (emphasis ours; [36], p. 56) (Usually, in fact, we use multi-sorted logic (MSL), because it
has advantages at the engineering level — but we leave this issue aside. Readers wanting a nice introduction to
MSL should consult [37].) It is widely recognized that human natural language involves not only quantification
over relations/properties, but also ascribes properties to the variables that range over properties. In fact,
economists, in their scientifiic publications, routinely invoke natural language that appears to be third-order.

20 Along the same line, we note that a logicist analysis of the two-agent wise-man puzzle appears in Economic
Theory [40]. We confess to never having thought of this puzzle, a longstanding staple in logicist AI (e.g. see
[16]), as relevant to economics. Bringsjord, with Arkoudas, provided to our knowledge the first formal, machine
solution to the puzzle for any (natural) number of agents: [41].
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Our use of proof-theoretic semantics means that, in general, model-based reasoning for epistemic operators
[43] is also not used by any cognitive calculus in C C , and therefore not by any dialect of CEC or DyCEC.21

2. Natural deduction, a revolution that burst on the formal-logic scene in 1934 [48,49] is used; this form of
deduction can faithfully capture many aspects of reasoning used by human beings [17]. This is not the case
for such things as resolution, which is based on inference schemas never instantiated, e.g., in the proofs and
theorems that anchor the formal sciences (e.g., game theorists never give proofs based in resolution, but
rather in natural deduction). Whereas DyCEC inference parallels normative human reasoning by providing
natural justifications via the proofs involved in inference, this is not always the case in BDI logics. In addition,
natural deduction based in hypergraphs, unique to Bringsjord’s Slate system, is never seen in BDI logics (see
footnote 14 for a sample proof). And, we have not seen methods (recall our use of them in the chain-story
study above) used in BDI systems.

3. Uncertainty is handled in C C not only via axiomatized probability calculi given in [50] (available via Gödel
numbering in the object language of cognitive calculi not used in the present paper), but by a 9-valued logic
generally in harmony with, but an aggressive extension of, Pollock’s defeasible logic [51,52]. Each of the nine
values is a strength factor [28].

4. Operators for obligation, perception, communication, and other intensional operators/activities are included
in DeCEC and other deontic cognitive calculi in C C ; in the case of communication, the relevant operators are
associated with built-in semantic parsing, and the λ-calculus is subsumed and employed. In stark contrast,
BDI logics don’t for instance subsume deontic logics (which traditionally formalize obligation; see [53] for
robust modeling and simulation using deontic operators working in conjunction with epistemic ones), and
don’t have operators corresponding to full natural-language understanding (English to formulae in cognitive
calculi) and full generation (formulae in cognitive calculi to English). (Of course, we earlier introduced and
exploited a parallel to the speech acts of [32].)

5. Finally, diagrammatic representation is in and crucial to C C , whereas BDI logics are all provably exclusively
linguistic/sentential in nature, since all formulae in such logics are formed from alphabets of only symbols or
characters.. A logic — Vivid — allowing both standard linguistic formulae and diagrammatic representations
is presented and proved sound in [54]. Vivid continues to heavily influence C C , and is being used for our
work in axiomatic physics, where for example special relativity is reduced to formal logic [55].

7 Objections; Rebuttals

We consider and rebut some inevitable objections to logicist agent-based economics as we define it:

7.1 Objection #1: Complexity

We imagine some will say: “It is very hard to see how your approach can be applied to more complex,
real-world problems. You do not speak to issues of computational complexity at all, and there is also the
worry that, by definition, a ‘complex’ system cannot be totally subsumed by (= reduced to) a formal
model.”

We agree that it is indeed hard to see how our approach can scale to the level of yielding real
world solutions. Of course that which is hard to see is not invisible, and what can be seen is also
undeniably perspective- and person-relative. We believe we already see the possibility of deploying an AI
system into the financial markets that continuously scans for the potential satisfaction of a C C -based
definition P of Ponzi-scheme behavior, extrapolated slightly from the work shown above. The only way
to demonstrate such feasibility is either to provide some kind of inductive proof, or some kind of näıve
empirical form of induction. In the latter case, we, or some other group, would implement a suitable
system and test it empirically — in larger and larger markets. The door is open for this, it would seem.
Parallel comments can be easily imagined by the reader for predictions about whether some entrepreneurs
considering going up against a real-life CS behemoth will encounter a fight or note, where the number of
agents/companies in question is very large. It is true that we don’t speak of computational complexity. For
the most part, doing so would be otiose, since theoremhood in even first-order logic is Turing-undecidable
(semi-decidable); in the richer calculi in C C , theoremhood is fully Turing-undecidable. Computational
complexity gives us a sub-hierarchy of the small part of the Arithmetic Hierarchy that contains Turing-
solvable functions. Finally, we are ignorant of any theorem to the effect that there is some environment

21 Hard-working readers unfamiliar with proof-theoretic semantics are encouraged to consult a body of work that
we find makes for a nice introduction: [44,45,46,47].
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or system such that there is no formal model to which it can be reduced.22 It may be worth remembering
that even Gödelian incompleteness is surmounted by simple infinitary logics.

7.2 Objection #2: Benefits

“You have failed to clearly demonstrate the benefits of your approach in economics. For instance, in the
chain-store case, what more is offered above and beyond computational game theory?”

Our rebuttal to prior objection does serves as a partial reply here. In addition, we have explained
that in our approach, proof-based as it is, processing and outputs are all accompanied by checkable,
verifiable proofs. Game theory, axiomatized, is subsumed by our calculi; but game theory, even in its
recent “behavioral” guise (e.g. [27]), omits those aspects of human cognition that are central to, indeed
constitutive of, economic phenomena. Natural-language communication is a prime example. Another
is planning and re-planning, traditionally a logicist enterprise in AI ([2] provides an overview), but
completely absent in game theory. We could continue.

7.3 Objection #3: Irrationality

“There is overwhelming evidence that humans are frequently, if not fundamentally, irrational. Piaget
claimed that neurobiologically normal humans would in the course of natural development acquire an
ability to for example reason in keeping with first-order logic [56], but this was refuted originally by
Wason [57], and evidence has continued to mount all the way through Simon and his concept of bounded
rationality to nobelist (in economics) Kahneman. This means that logic has very limited applicability.”

Formally speaking, logic isn’t in the least wed to rationality. It is hard for logicians with command
over the full gamut of deductive and inductive logics to fathom how the notion that logic and rationality
are inseparable continues to live on. Rips [58] for instance gives logics in which theorems that irrational
humans fail to grasp (e.g., that from ¬(φ→ ψ) it deductively follows in standard, elementary deductive
logic that φ) are unprovable. We have ourselves provided rather elaborate logicist modeling and simulation
(of a certain class of auctions) that is nonetheless explicitly “Simonesque” [5]. In addition, paraconsistent
logics formalize the ultimate in irrationality: toleration/managment of explicit contradiction. In inductive
logic, the compatibility of logic and irrationality is easy enough to demonstrate, but we haven’t the space
to elaborate.

8 Some Next Steps

While CEC and DyCEC may be commendably expressive along certain cognitive dimensions, there are
clearly deficiencies along others. For example, nothing in them accommodates uncertainty/probability.
Yet even in chain-store scenarios, agents believe in a manner well short of certainty: CS may for instance
believe only that it’s likely that if it fights entrant Ei in plain view of Ej , Ej will decide to stay
out. We are currently refining implemented dialects of our calculi that provide the full machinery of
attractive inductive logics (close to how Fitelson [59] defines such logics, which e.g. Keynes too would find
acceptable), including built-in computational axiomatizations of Kolmogorovian probability at both the
propositional and first-order level [again, as expressed in [50]], and including strength-based approaches
as well [again, as described in [28]].23 Another important next step is the publishing of theorems (which
are not difficult) showing that our paradigm subsumes both the micro-simulation approach to economics
[61], and “thin” agent-based approaches [62]. In both cases, only the first-order extensional fragments of
cognitive calculi in C C are needed for such theorems, and corresponding modeling and simulation.
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