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1 Introduction

This is a premeditatedly polarizing paper — as the title, with help from a little logic, allows you
to immediately infer. Starting with the original DARPA-sponsored conference in 1956, AI has
been a steadfastly ecumenical field, yet things haven’t exactly gone swimmingly; the dreams of
Turing, Newell, Simon, McCarthy, Minsky et al. have to this point been repeatedly dashed. The
refrain that interaction between logicist and non-logicist approaches is crucial for AI’s success, and
that breaking the two camps into wholly separate fields would be counter-productive, now rings
rather hollow. The time for declaring logicist independence has thus arrived. Let’s all face up to
the reality that the logic-based approach (McCarthy 1959, McCarthy & Hayes 1969, Bringsjord
& Ferrucci 1998a, Bringsjord & Ferrucci 1998b, Genesereth & Nilsson 1987, Turner 1984, Nilsson
1991, Bringsjord & Ferrucci 2000, Shapiro 2000)1 to building artificial counterparts to you and me is
self-sustaining, self-contained, and too-long trammeled by unstructured, sub-symbolic approaches
that now need to simply be left to fend for themselves.

The plan for the sequel is straightforward. Subsequent content is partitioned into three main
sections: background material (§2), some of the countless reasons for inaugurating logic-based AI’s
independence (§3), and objections (followed in each case by a rebuttal; §4). The paper ends with
brief concluding remarks on: whether achieving independence, at this particular time, can really be
achieved; two daunting challenges facing LAI; and how to in general move forward on the basis of
the manifesto here proclaimed.

2 Background

The next section (2.1) explains, in broad strokes, what logic-based AI (LAI) is. Then (§2.2) the
reader is reminded of the fundamental difference between “strong” versus “weak” AI, followed by
a brief explanation as to why, in the present paper, the distinction is put aside. After that comes
section 2.3, in which, leveraging the presentation to this point, some small slices of the life of a
LAI-based agent operating at the level of a person are partially formalized.

2.1 Logic-Based AI Encapsulated

LAI is distinguished by three tightly interconnected high-level hallmarks, to wit:

Ambitious LAI is an ambitious enterprise: it aims at building artificial persons.

Logical Systems LAI is specifically based on the formalization of one of the distinguishing features of
persons, namely that they are bearers of propositional attitudes (such as knows, believes, intends,
etc.), and that persons reason over such attitudes (which are often directed toward the propositional
attitudes of other agents). This formalization is achieved via logical systems.

Top-Down LAI is a top-down enterprise: it starts by immediately tackling that which is distinctive of
persons (e.g., propositional attitudes), without wasting dwelling on the adventitious embodiment of

1This paper isn’t, and isn’t intended to be, a comprehensive survey of AI work that uses logic in some manner.
Rather, this paper is a sustained argument for the founding of a self-contained, independent discipline: logic-based
AI (as characterized in section §2). An immediate corollary is that this paper isn’t straight AI or computer science,
but rather philosophy of AI and computer science. Accordingly, references to activity in logic-based AI have been
selected to serve this argument, and fit the philosophical nature of the present paper. It would take a book-length
essay to just briefly discuss and cite the myriad examples of first-rate logicist AI carried out by AI researchers and
engineers since the early 1950’s. Even in cases where I have been specifically charged by publishers and editors to
leave aside communicating to my readers anything fundamentally new, and to simply provide a comprehensive survey
of logicist AI (e.g., in the relevant part of my AI entry in the Stanford Encyclopedia of Philosophy), I’ve frankly
found it difficult to cover even the majority of the first-rate minds subscribing to this approach.
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cognition in particular physical stuff, or (what will later be called stage-one) transduction between
the external physical environment and high-level cognitive processes.

These three attributes can be traced back to the very dawn of LAI. For example, they can be
seen clear as day in perhaps the very first specimen of LAI: the Advice Taker (AT) program from
McCarthy and Minsky (McCarthy 1959).2 For example, with respect to Ambitious, McCarthy
(1959, p. 3) wrote about AT and the like: “In our opinion, a system which is to evolve intelligence
of human order should have at least the following features . . .” (emphasis mine). As to Logical
Systems and the centrality of propositional attitudes, McCarthy writes: “We shall therefore say
that a program has common sense if it automatically deduces for itself a sufficiently wide class
of immediate consequences of anything it is told and what it already knows” (emphasis mine;
McCarthy repeatedly speaks of what AT knows and believes). Thirdly, concerning a Top-Down
methodology, McCarthy’s approach is without question a thoroughgoing top-down one wholly fo-
cused upon high-level symbolic representations in propositional form, to the utter exclusion of
lower-level perceptual, dynamic, or neurocomputational processes and formalisms.3

While it’s true that at the dawn of AI in the 1950’s, logic was used by many of the seminal figures
in the field, at that point ‘logic’ was identified with only a tiny speck in the space of a field that we
now know to be provably larger than classical mathematics;4 that speck was first-order extensional
logic (= part of the predicate calculus) where inference is exclusively deductive. In the AT work
(and, for that matter, in McCarthyian work from that point on), the field of logic isn’t leveraged in
any at once broad and formidable way. To see this, one can simply note that the machine intelligence
achieved, or even aimed at, in AT is restricted to only one mode of inference: deduction.5 But logic
is the science of rigorous reasoning, and that reasoning comes in the following additional modes,
at the very least: inductive, abductive, defeasible, analogical, and visual. AI work that leverages
or at least takes profitable account of all these and other modes is most appropriate for supporting
my manifesto. In addition, while McCarthy and likeminded researchers are great friends of logic-
based AI, and have made historic contributions, the fact is that mathematical logic is itself only a
small part of logic: the part based on the attempt, inaugurated by Frege (as elegantly chronicled in
Glymour 1992), to formalize mathematics. Logic as a whole includes systems much more expressive
than those used to formalize mathematics. The space of intensional logical systems, for example,
grows every month, but none of these systems is designed to model mathematics. Logic-based AI,
as I define and defend it herein, takes account of all of logic.

We turn now to partially explicating each of the three attributes in turn.
2What I say here about the AT paper applies, mutatis mutandis, to other seminal papers at the dawn of logicist

AI. E.g., my comments would apply to (McCarthy & Hayes 1969). They would also seem to apply to the two seminal
logicist papers that singlehandedly brought me into AI: (Hayes 1978, Hayes 1985).

3Some might complain that McCarthy and Minsky had no choice, because (so it’s here claimed) such formalisms
were simply not available. However, such a complaint would be historically inaccurate. E.g., see (Minsky 1967), the
neurologically inspired material in which has its roots in Minsky’s thinking from the the 50’s.

4The systematization of mathematics into logic was provided by many decades of formal exposition in books
authored by “Bourbaki,” a group allonym for the mathematicians who authored a collection of eight painstakingly
rigorous, detailed books showing that all the publishable results of classical mathematics can in fact be expressed as
derivations from axiomatic set theory using the logical system known as first-order logic, which is LI in the family
F of systems referred to later in the present paper. The starting place in the Bourbaki oeuvre is (Bourbaki 2004) —
exposition that shows, formally speaking, that discovery and confirmation in mathematics consists, fundamentally,
in the derivation and use of theorems all extractable from a small set of axioms (e.g., the Zermelo-Fraenkel axioms
for set theory).

5Read again the definition of programs with common sense given by McCarthy and Minsky: “We shall therefore
say that a program has common sense if it automatically deduces for itself a sufficiently wide class of immediate
consequences of anything it is told and what it already knows” (McCarthy 1959, p. 2). Emphasis mine.
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2.1.1 LAI is Ambitious

The first paragraph of the present paper, recall, carries the claim that LAI is the superior way
to build “artificial counterparts to you and me.” But what are we? We are human persons.6

The humble goal of building mere animals can no doubt be pursued by ignoring both the cognitive
powers distinctive of persons, and the only paradigm — logic — suitable for capturing these powers
in computation. Telling here is the more than two-decade-old objective announced by Charniak
and McDermott (1985) in a text that presented AI as a field based entirely on (first-order) logic:

The ultimate goal of AI, which we are very far from achieving, is to build a person, or, more
humbly, an animal. (Charniak & McDermott 1985, p. 7)

A chimp, despite the efforts of scientists who refused to heed Chomsky’s quip that one can no
more teach a chimp to talk than teach it to fly, cannot communicate qua person, and fails to have a
number of additional properties constitutive of persons.7 Needless to say, everything below a chimp
is even dimmer, and so artificial counterparts thereof are not what logicists ultimately aiming to
mechanize. Perhaps non-logicists can build an artificial animal somewhere in the spectrum from
chimp to earthworm,8 but they will never secure the loftier goal Charniak and McDermott imagined:
intelligence at the level of human persons. We turn now to a more careful account of personhood.

One generic account of human personhood has been proposed, defended, and employed by
Bringsjord (1997, 2000). This account is a fairly standard one; for example, it generally coincides
with one given by Dennett (1978), and by others as well, for example Chisholm (1978). In addition,
this account is in line with the capacities covered, chapter by chapter and topic by topic, in surveys
of cognitive psychology (e.g., see Goldstein 2005, Ashcraft 1994). The account in question holds
that x is a person provided that x has the capacity

1. to “will,” to make choices and decisions, set plans and projects — autonomously;

2. for subjective consciousness: for experiencing pain and sorrow and happiness, and a thousand other
emotions — love, passion, gratitude, and so on;

3. for self-consciousness, for being aware of his/her states of mind, inclinations, preferences, etc., and for
grasping the concept of him/herself;

4. to communicate through a language;

5. to know things and believe things, and to believe things about what others believe (second-order
beliefs), and to believe things about what others believe about one’s beliefs (third-order beliefs), and
so on;

6. to desire not only particular objects and events, but also changes in his or her character;

7. to reason (for example, in the fashion exhibited in the writing and reading/studying of this very paper).

Given this list, LAI is seen to be the field devoted to capturing these seven capacities simultane-
ously in a computationally implemented logical system. This position on the ultimate objective of
LAI meshes seamlessly with a recent account of what human-level computational cognitive science
is shooting for given by Anderson & Lebiere (2003), who, instead of defining personhood, give an
operational equivalent of this definition by describing “Newell’s Program,” an attempt to build

6Please note that human person isn’t a redundant phrase. This is so because those attributes that jointly define
what it is to be a person (e.g., see the list of attributes given below) may well apply to creatures who aren’t members
of the species homo sapiens sapiens. Our entertainments, particularly in the science fiction genre, illustrate this
routinely and repeatedly.

7And so apparently by Turing’s (1950) empiricist metric, a chimp would not be classified as a thinking thing.
8A spectrum described in (Bringsjord et al 2000).
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computational simulations of human-level intelligence, where that intelligence is cashed out in the
form of a list of abilities that correspond to those on the list just given. For example, part of
Newell’s Program is to build a computational simulation of natural-language communication at the
normal, adult level. This is attribute 4 on the list above. In the present paper, as the reader by
now realizes, the emphasis is on attributes 5 and 7.

As Aristotle noted rather long ago, we are rational. Put in terms of the definition of personhood
given above, we know things, we believe things, and we reason over this content, often after we
have formalized it in the form of a logical system, the first of which — the theory of the syllogism
— he himself introduced 300 years BC, long, long before such schemes as artificial neural networks
arrived on the scene. We turn now to a closer look at logical systems.

2.1.2 LAI is Based on Logical Systems

As noted, the cognitive level distinguishes persons. And as also noted, at the center of cognition
stand propositional attitudes: knowing, believing, intending, and so on. In light of the fact that if
an agent knows (believes, intends to bring about, etc.) φ, φ must be a proposition (a declarative
statement having a semantic value), the basic units of LAI are formal objects associated with those
particular sentences or expressions in natural languages (like English, German, Chinese) that are
declarative statements (as opposed to expressions in the imperative or inquisitive mode) conveying
propositional content, and taking values such as true, false, unknown, probable (sometimes to
particular numerical degrees), and so on. The basic process over such units is inference, which may,
as noted above, be deductive, inductive, abductive, analogical, etc. Because the basic units of LAI
are propositions, and the basic processes over these units are forms of reasoning, the foundation of
LAI is the infinite class of what can be called logical systems.9

Logical systems are used to both model human cognitive powers (which gives rise to declara-
tive computational cognitive modeling, described in Bringsjord 2008), and to enable a computing
machine to acquire some of that power (which gives rise to LAI). Put very simply, a logical system
L is composed of six parameterized elements, as follows.

1. An alphabet A, partitioned into those symbols that are invariant across the use of L for any application
area (e.g., mathematical symbols), and those that are included by the human for formalize particular
domains (e.g., Loves as a predicate symbol standing for the dyadic property of one thing loving
another).

2. A grammar G that yields well-formed expressions (formulas) from the alphabet A.

3. An argument theory `M
X (called a proof theory when the reasoning in question is deductive in nature)

that specifies correct (relative to the system L) inference from one or more expressions to one or more
expressions. The superscript is a placeholder for the mode of inference: deductive, abductive, inductive,
probabilistic, analogical, etc. The subscript is a placeholder for particular inferential mechanisms.

4. An argument semantics that specifies the meaning of inferences allowed by `M
X , which makes possible

a mechanical verification of the correctness of arguments.

5. A formula semantics that assigns a meaning of formulas given announcements about what the appli-
cation symbols are. The values traditionally include such things as true, false, indeterminate,
probable, numbers in some continuum (e.g., 0 to 1, as in the case of probability theory), and so on.

6. A metatheory that defines meta-mathematical attributes over the previous five components, and in-
cludes proofs that the attributes are or are not possessed. Examples of such attributes include sound-
ness, completeness, decidability, etc.

9Some refer simply to ‘logics,’ but that is inaccurate for reasons that needn’t detain us.
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The family F of logical systems populated by the setting of parameters in the sextet just given
is (of course) infinite, and includes zero-, first-, and higher-order extensional logics (in Hilbert style,
or sequent style, or natural deduction Fitch style, etc.); modal logics (including temporal, epistemic,
deontic logics, etc.); propositional dynamic logics; Hoare-Floyd logics for reasoning about impera-
tive programs; inductive logics that subsume probability theory in the Bayesian tradition; abductive
logics; strength-factor-based and probabilistic logics; non-monotonic logics, and many, many oth-
ers. All of classical mathematics is derivable from just a few axioms (e.g., the Zermelo-Fraenkel
axioms) in a simple speck (viz., standard first-order extensional logic) within F (Ebbinghaus et al.
1994). For a sustained exposition of F , along with presentation of some examples within it given
in connection with person-level performance on certain problems, see (Bringsjord 2008). When,
later (§2.3), I consider a slice in the life of a LAI agent, I present the rudiments of some specific
(elementary) logical systems.

2.1.3 LAI is a Top-Down Enterprise

LAI is a top-down, rather than bottom-up, approach. As Brachman & Levesque (2004) put it:

[LAI] is at the very core of a radical idea about how to understand intelligence: instead of trying
to understand or build brains from the bottom up, we try to understand or build intelligent
behavior from the top down. In particular, we ask what an agent would need to know in order
to behave intelligently, and what computational mechanisms could allow this knowledge to be
made available to the agent as required. (Brachman & Levesque 2004, p. iv)

As reflected in relevant formalisms commonly associated with bottom-up approaches (e.g., ar-
tificial neural networks), the basic units in bottom-up processing are numerical, not declarative. If
you look back to the list of attributes taken to be constitutive of personhood, you can see that that
list is indeed cognitively, not physiologically, oriented, and that numbers don’t seem particularly
relevant.

Clearly, given the goal of mechanizing personhood, no progress is made by merely noting the
particular DNA structure of humans. When it is said that x is human just in case x has a particular
genetic code, the perspective is not that of LAI. Our minds are not modeled by charting the
physiology of our brains. (After all, AI is committed to the dogma that implementation be produced
in silicon-based substrates, not carbon-based ones.) Rather, logicists are asking what it means to
be a human being from the cognitive, perspective. That is, the question is: What does it mean to
be a human person? This driving question clearly reflects a top-down perspective.

2.2 Ignoring the “Strong” vs. “Weak” Distinction

“Weak” AI can be conveniently defined as the field devoted to engineering intelligent agents able
to pass the Turing Test and various other tests for overt, outwardly observable behavior (for a
sequence of such tests, starting with the Turing Test, see Bringsjord 1995a). Put differently, weak
AI aims at building machines that act intelligently, without taking a position on whether or not
the machines actually are intelligent. “Strong” AI is an ambitious form of the field aptly summed
up by Haugeland:

The fundamental goal [of AI research] is not merely to mimic intelligence or produce some clever
fake. Not at all. AI wants only the genuine article: machines with minds, in the full and literal
sense. This is not science fiction, but real science, based on a theoretical conception as deep as
it is daring: namely, we are, at root, computers ourselves. (Haugeland 1985, p. 2)
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While there are a number of prominent thinkers who have argued forcefully that minds can
be computers (e.g., see Rapaport 1998, Dietrich 1990, Shapiro 1995), this paper leaves aside the
distinction between “strong” and “weak” AI, and hence leaves aside such arguments.10 To ease
exposition, and focus on the main issue at hand (viz., whether or not logic-based AI should come
out from under the ecumenical umbrella that currently covers the field and become a discipline
unto itself), the distinction between an information-processing machine that is is a person, versus
one that merely simulates people is ignored as beside the point at issue. For a sustained treatment
of the strong versus weak issue, and related matters, see (Bringsjord & Arkoudas forthcoming).

2.3 A Slice in the Day of a Life of a LAI Agent

A LAI agent is first and foremost a system that, through time, adopts and manages certain attitudes
toward propositions, and reasons over these propositions, in order to perform the actions that
will secure certain desired ends. The most important attitudes, by far, are ones we’ve already
mentioned: believes that and knows that ; our focus in this brief look at a LAI agent will be on the
latter. (Other propositional attitudes, recall, include wants that and hopes that. A propositional
attitude is simply a relationship holding between an agent, and one or more propositions, where
propositions are declarative statements.) A LAI agent can thus here be viewed as a system whose
knowledge changes in tune with what is learned from the environment, and from reasoning over this
knowledge, where this reasoning must be surveyable. Reasoning is surveyable when it is laid out
explicitly in the form of either a proof or argument, with all inferences unambiguously presented.

That the reasoning in the case of logicist cognitive systems be surveyable is a crucial condition,
one worth expanding upon: While logic, from the dawn of systematic human thought, has been
regarded the science of reasoning, some today use the term ‘reasoning’ in heterodox fashion, using
such phrases as “Bayesian reasoning” to refer to probabilistic calculation. Calculation is not sur-
veyable reasoning. The only proofs allowable in mathematics are surveyable proofs: step-by-step
chains of inference, each and every link formed in conformity with rules of logic having nothing
to do with numerical calculation (Arkoudas & Bringsjord 2007). (We shall employ some of these
rules in two illustrative proofs soon to be crafted.) The reasoning in such proofs is one of the
cornerstones of logicist agents.

In addition, a LAI agent aims at certain goals by changing its environment. In sum, then, we can
conceive of such an agent’s life as a cycle of sensing, reasoning, acting; sensing, reasoning, acting;
. . .. An immortal LAI agent would be one in which this cycle repeats ad infinitum, presumably
with goal after goal achieved (and known to be achieved) along the way. The propositions at the
heart of this cycle are represented as formulas in one or more logical systems, and the reasoning
in question is also regimented by the relevant parameter in a logical system (recall the account of
such systems in §2.1.2).

To cultivate a bit of a first-hand feel for LAI agents, suppose that you are one, and that you
learn from the environment (somehow; the details needn’t detain us) that

• Alvin loves Bill; and that

• Everyone loves anyone who loves someone.11

You have now acquired knowledge from the environment. Your goal, let us assume, is to determine
whether or not everyone loves Bill, and whether or not Katherine loves Dave. However the answers

10In at least the case of Shapiro and Rapaport, logic has played an absolutely pivotal role in building systems able
to display human-level cognitive behavior. E.g., see their long-established work on the basis of the SNePS system,
which is linked with relevance logic (Shapiro 2000).

11Bringsjord is indebted to Phil Johnson-Laird for this challenge.
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turn out, the reasoning in support of your new knowledge must be provided in the form of an
explicit series of inferences (which serves to guarantee that the reasoning in question is surveyable).
Since you are yourself a LAI agent, you should be able to reach these goals. Can you? The best
way to truly understand what a LAI agent is is to try to answer this question, and ones like it.
You are encouraged to carry out the necessary reasoning now. We shall return to the question a
bit later.

I now give a more detailed account of the sense-reasoning-act cycle of a LAI agent, described
in broad strokes earlier.

At any time t during its existence, the cognitive state of a LAI agent S consists in what the
agent knows at that time, denoted by Φt

S . (To ease exposition, we leave aside the distinction
between what S knows, versus what it merely believes. You believe a lot more than you know, for
the simple reason that you believe some propositions that are false, and one cannot possibly know
a false proposition.) We assume that as S moves through time, what it knows at any moment is
determined, in general, by two sources: information coming directly from the external environment
in which S lives, through the transducers in S’s sensors that turn raw sense data into propositional
content; and from reasoning carried out by S over its knowledge. For an example related to the
first source, recall the example we introduced earlier in the paper. Given what we said there,
your knowledge (or as it is often said, your knowledge base) includes that Alvin loves Bill. (It
also includes ‘Everyone loves anyone who loves someone’. This will soon become a crucial piece of
knowledge.) You know this because information impinging upon your sensors has been transduced
into propositional content added to your knowledge base. (In the case at hand, you read text
appearing earlier in this paper.) Suppose that at tn, some moment before you read the start of this
paper, you didn’t have this knowledge. We can summarize the situation at this point as follows.
(You will note that we have represented ‘Alvin loves Bill’ in a certain way. As will be explained
momentarily, this representation is a formula in first-order logic.)

Φtn+1

S = Φtn
S ∪ {Loves(alvin,bill)}

Generalizing, we can define a binary function env from timepoint-indexed knowledge bases, and
formulas generated by trans applied to raw information hitting sensors, to a new, augmented
knowledge base at the next timepoint. So we have:

Φtn+1

S = env(Φtn
S , trans(raw))

where trans(raw) = Loves(alvin,bill).
Now let’s consider the second source of new knowledge, in connection with the simple example we

have introduced: viz., reasoning. You know many other propositions on the basis of reasoning over
the proposition that Alvin loves Bill: you know that someone loves Bill, that someone loves someone,
that someone whose name starts with ‘A’ loves Bill, and so on. These additional propositions can
be directly deduced from the single one about Alvin and Bill; each of them can be safely added to
your knowledge base.

Let R[Φ] denote a modification of Φ via some mode of reasoning R. Then your knowledge at
the next timepoint, tn+2, is given by

Φtn+2

S = R[env(Φtn
S , trans(raw))]

As time flows on, the environment’s updating, followed by reasoning, followed by changes the
cognitive system makes to the environment (the system’s actions), define the cognitive life of S.
This is the three-part cycle we introduced at the outset of the paper.
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But what is R, and what is the structure of propositions returned by trans and composing
the knowledge base? This is where logic enters the stage. Knowledge, that is, propositions, are
represented by formulas in one or more logical systems, and these systems provide precise machinery
for carrying out reasoning. The simplest logical systems that have provided sufficient expressivity
to allow engineers to build LAI agents that are at least somewhat impressive are the propositional
calculus, and the predicate calculus (or what we have called above first-order logic, or just FOL);
together, this pair comprises what is generally called elementary logic. I proceed now to give a very
short review of how knowledge is represented and reasoned over in these systems, after which we
can return to trying to meet the goals in the challenge presented earlier (viz., determine whether
everyone loves Bill, and whether Katherine loves Dave).

2.3.1 Knowledge Representation in Elementary Logic

Every introductory AI textbook provides an introduction to these logical systems, and makes it
clear how they are used to engineer intelligent systems (e.g., see Russell & Norvig 2002). In the
case of both of these systems, and indeed in general when it comes to any logical system, three
overarching components (which are selected from the six parameters set out in section 2.1.2) are
required: one is purely syntactic, one is semantic, and one is metatheoretical in nature. The
syntactic component includes specification of the alphabet of a given logical system, the grammar
for building well-formed formulas (wffs) from this alphabet, and, more importantly, an argument
theory that precisely describes how and when one formula can be inferred from a set of formulas.
(These are the first three parameters in §2.1.2.) The semantic component includes a precise account
of the conditions under which a formula in a given system is true or false. The metatheoretical
component includes theorems, conjectures, and hypotheses concerning the syntactic component, the
semantic component, and connections between them. In the following, I focus on the syntactic side
of things. Thorough but refreshingly economical coverage of the formal semantics and metatheory
of elementary logic can be found in (Ebbinghaus, Flum & Thomas 1994).

As to the alphabet for propositional logic, it’s simply an infinite list

p1, p2, . . . , pn, pn+1, . . .

of propositional variables (according to tradition p1 is p, p2 is q, and p3 is r), and the five familiar
truth-functional connectives ¬,→,↔,∧,∨. The connectives can at least provisionally be read,
respectively, as ‘not,’ ‘implies’ (or ‘if then ’), ‘if and only if,’ ‘and,’ and ‘or.’ Given this alphabet,
we can construct formulas that carry a considerable amount of information. For example, to say
that ‘if Alvin loves Bill, then Bill loves Alvin, and so does Katherine’ we could write

al → (bl ∧ kl)

where the propositional variables, as you can see, are each used to represent declarative statements.
We move up to first-order logic when we allow the quantifiers ∃x (‘there exists at least one

thing x such that . . .’) and ∀x (‘for all x . . .’); the first is known as the existential quantifier, and
the second as the universal. We also allow a supply of variables, constants, relations, and function
symbols. Using this machinery, the proposition that ‘Everyone loves anyone who loves someone’ is
represented as

∀x∀y(∃zLoves(y, z)→ Loves(x, y))

2.3.2 Deductive Reasoning

Most readers will be familiar with the concept of deductive reasoning, the hallmark of which is that
if the premises are true, then that which is deduced from them must be true as well. If in fact it’s
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true that Alvin loves Bill (and we are given that it is), nothing is more certain than that someone
loves Bill. In logic, deduction is formalized in what is called a proof theory.

A number of proof theories are possible, for either of the propositional or predicate calculi.
When reasoning is to be understood by humans (whether that reasoning is carried out by a human
or a machine), it is almost universally agreed that the proof theory of choice is natural deduction, not
resolution. (This is not to say that logicists shouldn’t use resolution-based systems. The nature of
the engineering challenge at hand must be allowed to dictate selection of one’s logical system.) The
latter approach to reasoning (whose one and only rule of inference, in the end, is that from φ∨ψ and
¬φ one can infer ψ), while used by a number of automated theorem provers (e.g., Otter, which, along
with resolution, is presented in Wos et al. 1992), is generally impenetrable to human beings (save for
those few who, by profession, generate and inspect resolution-based proofs). On the other hand,
professional human reasoners (mathematicians, logicians, technical philosophers, etc.) invariably
reason in no small part by making suppositions, and by discharging these suppositions when the
appropriate time comes. Suppositional reasoning is at the heart of natural deduction. For example,
one such common suppositional technique is to assume the opposite of what one wishes to establish,
to show that from this assumption some contradiction (i.e., an absurdity) follows, and to then
conclude that the assumption must be false. The technique in question is known as reductio ad
absurdum, or indirect proof, or proof by contradiction. Another natural rule is that to establish
that some conditional of the form φ → ψ (where φ and ψ are any formulas in a logic L), it
suffices to suppose φ and derive ψ based on this supposition. With this derivation accomplished,
the supposition can be discharged, and the conditional φ → ψ established. For an introduction
to natural deduction, replete with proof-construction and proof-checking software, see (Barwise &
Etchemendy 1999)

What follows is a natural deduction-style proof (using the two rules just described) written in
the proof construction environment known as NDL, used at my university for teaching formal logic
qua programming language.12 It is a very simple proof of a theorem in the propositional calculus —
a theorem that Newell and Simon’s Logic Theorist, to great fanfare, was able to muster at the dawn
of AI in 1956, at the original Dartmouth AI conference. Readers will note its natural structure.
The rule modus ponens, the most fundamental rule in the formal sciences, allows one to infer ψ
when one knows two things: that if φ then ψ, and φ.

// Logic Theorist’s claim to fame (reductio):
// (p ==> q) ==> (~q ==> ~p)

Relations p:0, q:0. // this is the signature in this case;
// propositional variables are 0-ary
// relations

assume p ==> q
assume ~q

suppose-absurd p
begin
modus-ponens p ==> q, p;
absurd q, ~q

end

This style of discovering and confirming a proof parallels what happens in computer programming.
12NDL was invented by Konstantine Arkoudas. To acquire the system for your own local use, got to

http://www.cogsci.rpi.edu/courses/intrologic/materials.php
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You can view the proof immediately above as a program. If, upon evaluation, the desired theorem
is produced, we have succeeded. In the present case, sure enough, we receive this back from NDL
when the code is executed:13

Theorem: (p ==> q) ==> (~q ==> ~p)

The example just given, note, relies on human ingenuity: the machine in this case doesn’t find
for itself that the theorem holds. But a LAI agent that does that is easy to build, and there is no
need to insist that such an agent use natural deduction. For example, a few minutes ago I built such
an agent by using the Otter (Wos, Overbeek, e. Lusk & Boyle 1992) automated theorem prover;
the agent responds to a query as to whether the formula in question is a theorem by finding and
yielding as output this proof:

---------------- PROOF ----------------
1 [] -p|q.
2 [] -q.
3 [] p.
4 [hyper,3,1] q.
5 [binary,4.1,2.1] $F.
------------ end of proof -------------

Notice that this proof is surveyable. Lines 1–3 are the clausification of the negated conditional
in question; line 4 is the result of applying the rule of hyper-resolution to lines 3 and 1 (which in a
nutshell is to allow p and -p to “cancel” each other out, leaving just q alone. Line 5, the final step,
can be seen to result from applying binary resolution to lines 4 and 2: That is, q in line 4 and -q in
line 2 cancel each other out, leaving nothing, that is, leaving the empty clause ($F), which indicates
the sought-for contradiction has been found. The upshot is that surveyability is an attribute that
proofs have or lack independent of the type of proof calculus (e.g., natural versus resolution-based)
used. The essential thing for surveyability is that some proof calculus is employed.

The previous reasoning is in the propositional calculus. What about the predicate calculus,
that is, first-order logic? Recall that you were challenged to determine whether or not everyone
loves Bill, given that Alvin loves Bill, and that everyone loves anyone who loves someone. How
did you fare on that challenge? Well, in fact, it can be rather easily proved that everyone loves
Bill. The following program/proof shows this (and along the way shows that Bill loves Alvin, a
rather crucial intermediate conclusion). The comments (text coming after ‘//’) should provide all
the guidance you might need to follow the reasoning.

Constants alvin, bill. // We declare two constants.

Relations Loves:2. // This concludes our simple signature, which

// declares Loves to be a two-place relation.

13Note that the proof here is unquestionably surveyable. This is after all precisely why the computer is able to
verify the proof, and add the theorem to the knowledge base. Each inference can be independently inspected and
certified; and since each inference rule in NDL yields some output, there is the composite output, viz., the theorem.
By contrast, consider a computer program P which, upon receiving some formula φ in some logical system, simply
returns yes, and nothing more. In this case there is no surveyable proof provided: there is no explicit chain of
deductively valid inferences that can be inspected, and certified. More realistically, suppose that φ is of the form
∀xRx, where the domain of quantification is the natural numbers N . And suppose that P returns as justification
for its affirmative response that R1, R2, R3, . . . , Rn, for some n ∈ N . In this case, once again, there is no surveyable
proof provided, because there is no rule of inference that sanctions the inference to ∀xRx from R1 ∧R2 ∧ . . . ∧Rn.
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// We add ’Alvin loves Bill’ to the knowledge base:

assert Loves(alvin, bill).

// We add ’Everyone loves anyone who loves someone’ to the knowledge base:

assert (forall x (forall y ((exists z (Loves(y, z))) ==> (Loves(x, y))))).

// Now we write the program in earnest:

// We begin by adding to the knowledge based that someone loves Alvin:

ex-generalize (exists z (Loves(alvin,z))) from bill;

// Next, we substitute ’bill’ for x, and put the result into the knowledge base:

specialize

(forall x (forall y ((exists z (Loves(y, z))) ==> (Loves(x, y))))) with bill;

// And now we substitute ’alvin’ for y, and put the result into the knowledge base:

specialize (forall y ((exists z (Loves(y, z))) ==> (Loves(bill, y)))) with alvin;

// We now have (exists z (Loves(alvin, z))) ==> Loves(bill, alvin)

// in the knowledge base.

modus-ponens (exists z (Loves(alvin,z))) ==> Loves(bill,alvin),

(exists z (Loves(alvin,z)))

// At this point we have ’Bill loves Alvin’ in the knowledge base.

// But we know that everyone loves anyone who loves someone -- and

// Bill loves someone! Let’s finish the proof, showing that everyone

// loves Bill:

// At this point we announce that x is a fresh, arbitrary variable, and proceed to

// prove that everyone loves Bill.

pick-any x

begin

ex-generalize (exists z (Loves(bill, z))) from alvin;

specialize (forall x (forall y ((exists z (Loves(y, z))) ==> (Loves(x, y))))) with x;

specialize (forall y ((exists z (Loves(y, z))) ==> (Loves(x, y)))) with bill;

modus-ponens ((exists z (Loves(bill, z))) ==> (Loves(x, bill))),

(exists z (Loves(bill, z)))

end

When this program is run, we receive back precisely what we desire: two theorems are announced
as having been now added to the knowledge base:

Theorem: Loves(bill,alvin)

Theorem: forall x Loves(x,bill)

The second of these, of course, says in FOL that everyone loves Bill. Once again, please note
that LAI agents able to make such discoveries on their own are easy enough to engineer. Here,
for example, is a proof divined by such an agent armed not with Otter, but rather with snark, a
resolution-based ATP written in Common Lisp by Mark Stickel.14

(Refutation
(Row 1

(loves alvin bill)
assertion)

(Row 2
(or (not (loves ?x ?y)) (loves ?z ?x))
assertion)

(Row 3

14For SNARK, and information about the system, please go to http://www.ai.sri.com/∼stickel/snark.html. The
snark proof shown here was obtained via programming carried out by Joshua Taylor.
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(not (loves skolembrjz1 bill))
negated_conjecture)

(Row 4
(loves ?x alvin)
(resolve 2 1))

(Row 5
(not (loves bill ?x))
(resolve 3 2))

(Row 7
false
(resolve 5 4)))

You were also challenged to determine whether Katherine loves Dave, given the two starting
pieces of knowledge (again: Alvin loves Bill, and everyone loves anyone who loves someone). In
this case, I don’t provide the answer. You now have quite enough machinery to settle the issue.
Feel free to email the author if you want your answer assessed.

2.3.3 A Note on Nonmonotonic Reasoning

Deductive reasoning is monotonic. That is to say, if φ can be deduced from some knowledge base Φ
of formulas (written, using notation introduced earlier, Φ `Deduction

ND φ, where ‘ND’ indicates that
the proof theory is of the natural deduction variety), then for any formula ψ 6∈ Φ, it remains true
that Φ ∪ {ψ} `Deduction

ND φ. In other words, when R is deductive in nature, new knowledge never
invalidates prior reasoning. This is not how real life works, at least when it comes to humans; this
is easy to see. At present, I (= Bringsjord) know that my house is still standing (as I’m sitting in
it, typing this sentence). But if, later in the day, while away from my home and working at RPI,
I learn that a vicious tornado passed over the Hudson River, over RPI, moved a bit further east
toward the Taconic Mountains, and touched down in the town of Brunswick, where my house is
located, I have new information that probably leads me to at least suspend judgment as to whether
or not my house still stands. Or to take a slight variant of the much-used example from AI, if I
know that Pete is a bird, I will probably deduce that Pete can fly, on the strength of a general
principle saying that birds can fly. But if I learn that Pete is a penguin, the situation must be
revised: that Pete can fly should now not be in my knowledge base. Nonmonotonic reasoning is the
form of reasoning designed to model, formally, this kind of — as we can say — defeasible inference.

There are many different logical systems that have been designed to model defeasible reasoning
— default logic, circumscription, argument-based defeasible reasoning, and so on. (The locus
classicus of a survey can be found in (Genesereth & Nilsson 1987). An excellent survey is also
provided in the Stanford Encyclopedia of Philosophy.15) In the limited space available to me in
the present paper, perhaps the wisest course is to briefly explain one of these approaches. I select
argument-based defeasible reasoning, because it seems to accord best with what humans actually
do as they adjust their knowledge through time.

Let us return to the tornado example. What is the argument that Bringsjord might give to
support his belief that his house still stands, while he sits within it, typing? There are many
possibilities, one respectable one is what I call ‘Argument 1’:

(1) I perceive that my house is still standing.
(2) If I perceive φ, φ holds.

∴ (3) My house is still standing.

15At

http://plato.stanford.edu/entries/logic-ai
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The second premise is a principle that seems a bit risky, perhaps. No doubt there should be some
caveats included within it: that when the perception in question occurs, I’m not under the influence
of drugs, not insane, and so on. But to ease exposition, let’s leave aside such clauses. So, on the
strength of this argument, we assume that my knowledge base includes (3), at time t1.

Later on, as we have said, I find myself working in my office, at RPI, overlooking the Hudson
River. A tornado passes over my building. I quickly query my browser once the roar and rumble
dies down, and learn from the National Weather Service this very same tornado has touched down
due east of RPI, somewhere in Brunswick, and devastating damage to some homes has come to
pass. At this point (t2, assume), if I were pressed to articulate my current position on (3), and
my reasoning for that position, and I had sufficient time and patience to comply, I might offer
something like this (Argument 2):

(4) A tornado has just (i.e., at some time between t1 and t2)
touched down in Brunswick, and destroyed some houses
there.

(5) My house is located in Brunswick.
(6) I have no evidence that my house was not struck to

smithereens by a tornado that recently passed through the
town in which my house is located.

(7) If a tornado has just destroyed some houses in town T , and
house h is located in T , and one has no evidence that h is
not among the houses destroyed by the tornado, then one
ought not to believe that h wasn’t destroyed.

∴ (8) I ought not to believe that my house is still standing. (I.e.,
I ought not to believe (3).)

Assuming that I meet all of my “epistemic obligations” (in other words, assuming that I’m
rational), I will not believe (3) at t2. Therefore, at this time, (3) will not be in my knowledge base.
(If a LAI agent s doesn’t believe φ, it follows immediately that s doesn’t know φ.)

The challenge is to devise formalisms and mechanisms that model this kind of mental activity
through time. The argument-based approach to nonmonotonic reasoning does this. While the
details of the approach must be left to outside reading (see Pollock 1992), it should be easy enough
to see that the main point is to allow one argument to shoot down another (and one argument to
shoot down an argument that shoots down an argument, which revives the original, etc.), and to
keep a running tab on which propositions should be believed at any particular time. Argument 2
above rather obviously shoots down Argument 1; this is the situation at t2. Should I then learn that
only two houses in Brunswick were leveled, and that they are both located on a street other than
my own, Argument 2 would be defeated by a third argument, because this third argument would
overthrow (6). With Argument 2 defeated, (3) would be reinstated, and back in my knowledge
base. Notice that this ebb and flow in argument-versus-argument activity is far more than just
straight deductive reasoning.

2.3.4 Beyond Elementary Logical Systems

So far, we have only discussed three logical systems from the infinite space F . (Given this, and
given that you now know it, you are prepared to correct anyone who identifies logic-based AI
with research that is based just on elementary logic.) In general, you can partition them into
two sub-spaces: those appropriate for formalizing purely mathematical concepts and relationships,
and those appropriate for formalizing concepts that have psychological dimensions (such as the
propositional attitudes that have been central to our discussion). The former category is referred
to as mathematical logic; the latter as philosophical logic. Philosophical logic has proved to be
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especially useful in AI. Mathematical logic can be viewed as the foundation and circulatory system
for computer science (Halpern, Harper, Immerman, Kolaitis, Vardi & Vianu 2001), a point I return
to below.

The Alvin-Bill problem given above requires only elementary logical systems be active in the
“mind” of a LAI agent. Allow me to quickly present a problem that requires moving to more
advanced systems. I present the so-called Wise Man Puzzle (WMP):

Suppose there are three blindfolded wise men who are told by their king that he is going to
select a fez for each of them, and place it on their heads. Each fez will be selected, he informs
them, from a collection of five fezes, three of which are white, and two of which are black. The
king puts a white fez atop each of the three heads, and then he removes the blindfolds. We
assume that each wise man can see the others’ hats but not his own, and thus each knows
whether the others have white fezes. Suppose we are told that the first wise man says, “I do not
know whether I have a white fez,” and that the second wise man then says, “I also do not know
whether I have a white fez.” Now we would like to ask you to attempt to answer the following
questions:

(1) Does the third wise man now know whether or not he has a white fez?

(2) If so, what does he know, that he has one or doesn’t have one?

(3) And, if so, that is, if the third wise man does know one way or the other, provide a detailed
account (showing all work, all notes, etc.; use scrap paper as necessary) of the reasoning
that produces his knowledge.

Figure 1: Graphical Summary of Solution to WMP3

The logic that allows a LAI agent to answer these questions is a (modal) propositional epistemic
logic; we refer to it simply as LKT . This logic is produced by adding to the propositional calculus the
modal operators B (for believes) and K (for knows). To see how this can be all be implemented so
as to produce a logicist cognitive system, running in real time, that solves the problem in question,
see (Arkoudas & Bringsjord 2005). We give here only the intuitive idea behind the relevant proof
(expressed as if being uttered by Wise Man C to the king), which is encapsulated in Figure 1:

“Dear King, I know that I have a white fez! I know this on the strength of the following
deduction. First, once Wise Man A spoke, and confessed his ignorance, I deduced immediately
that the two heads he was looking at couldn’t possibly both have black fezes — for had this
been the case, A would have immediately declared that he knew he had a white fez. (There
weren’t enough black fezes to go around, remember.) Second, once Wise Man B spoke, and
admitted his ignorance, I was immediately able to rule out the possibility of a white fez atop
his head, combined with a black one atop my own. After all, had he seen a black one atop
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mine, he would have immediately proclaimed that he had a white one atop his own, since the
mine-black-and-his-black option had already been ruled out. This leaves only a situation where
I have a white fez, and that, O king, is what I have!”

Alert readers will have realized that this kind of reasoning works in the general case, that is, it holds
for any n wise men and corresponding n + 2 (suitably color-partitioned) fezes. However, proving
that the result holds in the general case requires an even more sophisticated logical system; see
(Arkoudas & Bringsjord 2005) for details.

2.4 Examples of Logic-Based Cognitive Systems

There is of course insufficient space to put on display a LAI agent of considerable size. But I have
put on display a perfectly respectable, non-trivial example of such an agent in the foregoing (2.3):
namely, you — if you have studied and followed the discussion. Specifically, recall that we left off
noting that your knowledge at tn+2 is

Φtn+2

S = R[env(Φtn
S , trans(raw))]

Knowing what we now know after further investigation, we can let R be deductive reasoning, and
we can draw upon what the proof above disclosed. This let’s us set

Φtn+2

S = R[env(Φtn
S , trans(raw))] =

Φtn+1

S ∪ {Loves(bill,alvin), (forall x Loves(x,bill)}

as a summary of your progress on the problem in question as a LAI agent. You will also remember
that we asked you to consider whether Katherine loves Dave, given your knowledge base to this
point. Were we to inform you that the answer is “Yes,” then it would be information directly
from the environment that would settle the issue for you. However, we have left it up to you; this
means that it’s reasoning that will settle the issue, not information coming directly to you from
the external environment.

3 Factors Supporting Logicist AI as an Independent Field

There are myriad reasons for the independence I recommend. Here are six of them.

3.1 History Supports the Divorce

As is well-known, in 1956, Logic Theorist was demonstrated at the original Dartmouth AI conference
to much fanfare. Yes, the theorems were simple. Today’s automated theorem provers (ATPs) laugh
at the challenge of deriving ¬q → ¬p from p → q, which LT famously met.16 But the top-down
orientation five decades back was wise, and fortunately it is sustained to this day. This orientation
was established long before Newell and Simon’s success half a century ago. It began with Euclid’s
archival reasoning, and puzzlement as to why this reasoning is indestructibly compelling. This
Euclid-started history is not the history of the mish-mash that AI has become, the grab-bag of
techniques and formalisms that students are unfortunately taught in the mad, heterogeneous scurry

16This is true whether the ATP in question is resolution-based (by far the more frequent case), or natural deduction-
based. E.g., resolution-based Vampire (Voronkov 1995) can find this proof in an instant, and so can natural deduction-
based Oscar (Pollock 1995). (Examples much more challenging than proving transposition are available for study in
the two publications just cite, and in many others.)
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that introductory AI courses have now become. In the beginning there was something shining like
nothing else in the intellectual landscape: a proof. Euclid was able to establish certain declarative
sentences as indubitable, and the question of what made his reasoning indubitable was answered, at
least in large part, when, standing on the shoulders of Boole and his precursor to the modern-day
propositional calculus, Frege gave us (albeit in a bizarre notation) first-order logic. Now, Frege’s
logic is but a dot in the infinite space F of logical systems, since, as noted earlier, they cover not only
the extensional realm (which we now know to include n-order logic, infinitary logic, etc.), but also
the modal, epistemic, deontic, paraconsistent, trivalent (indeed, n-valent) . . . realms. The history
is one in which reasoning gave birth to computation, and has ascended to the point where there is
no information processing-based aspect of personhood beyond the reach of logic to simulate, and
hence no need of non-logic to capture intelligence.

3.2 The Advent of the Web

There can be little question that the World Wide Web (= W3, or simply “the Web”) has galvanized
not only AI, but indeed the entire world of computing. But more importantly, what the Web
is becoming underscores the importance of logic. Specifically, because knowledge on the Web
is increasingly represented in logical systems, so that automated reasoning can take place over
this knowledge, the usefulness and power of the Web will skyrocket. In short, when the Web is
supplanted by the Semantic Web, LAI agents will usher in a new epoch in the information age.
This is nicely explained by Berners-Lee, Hendler & Lassila (2001).

It’s already being realized that the true power of the Web can be harnessed only if logical sys-
tems occupy a position front and center. Oracle’s Semantic Technologies Center17 makes this point
immediately. There, you will find that web-based computing, and in fact relational computing,
has now explicitly embraced simple logical systems (viz., description logics; for an elegant, compre-
hensive presentation see Baader, Calvanese & McGuinness 2007) for representing knowledge, and
reasoning over it. This is a trend that, it’s safe to say, will continue onward and upward. Part
of the impetus for this trend is the mathematical fact that relational databases and logic-based
knowledge bases can interoperate on the strength of logical systems that have been shown to be
unifiers (e.g., see Taylor, Shilliday & Bringsjord 2007).18

3.3 The Remarkable Effectiveness of Logic

We now know beyond a shadow of a doubt that logicism in the purely mathematical realm is true.
The systematization of mathematics has been provided by many decades of formal exposition in
books authored by Bourbaki19 — exposition that shows, formally speaking, that discovery and
confirmation in mathematics consists, fundamentally, in the derivation and use of theorems all
extractable from a small set of axioms (e.g., the Zermelo-Fraenkel axioms for set theory) by the
use of formal logic.

Likewise, there is simply no denying the power and centrality of logic in computer science
(Halpern et al. 2001). For example, formal logic (when used to build the Arithmetical Hierarchy;
see Davis, Sigal & Weyuker 1994) is exactly the framework used to specify relative computability.

17The Center can be accessed at

http://www.oracle.com/technology/tech/semantic technologies/index.html

18The unifying power of multi-sorted logic (MSL) goes back to the 1950’s, as explained in (Manzano 1996), which
also offers proofs confirming the unifying power of MSL.

19See note 4.

16

http://www.oracle.com/technology/tech/semantic_technologies/index.html


When we specifically turn to intelligence and cognition, and try to be as rigorous about these
concepts as logic has allowed us to be about mathematics and computer science, logic quickly
becomes the only game in town. For example, consider the problem of determining how impressive
is the human ability to take as input the specification of a function, in the context of the attempt
to build a computing machine able to itself write computer programs; that is, in the context of
the challenge of achieving a program that can automatically write computer programs. It is logic
and logic alone that informs us how difficult this engineering challenge is.20 It’s high time that
the remarkable effectiveness of logic in mathematics and computer science be naturally extended
to cover AI, which is after all in large part a part of computer science.21

The present point can be tied specifically to AI itself. That we possess such powers is why
we’re smart enough, in the first place, to do AI, which is itself, as any decent textbook reveals
(e.g., Russell & Norvig 2002), a deliberative, logic-based enterprise. One of the great ironies of
non-logicist AI is that following it alone precludes doing AI itself. In particular, we wouldn’t have
a single theorem undergirding any part of AI were it not for cognition based on explicit declarative
information, and logical reasoning over that information. And the point can be generalized: We
understand computation only because logic has been brought to bear in the attempt to answer
such questions as what, precisely, a computer is, and what are its limits.

3.4 Logic Top to Bottom Now Possible

In the past, there has been a general consensus that while logic-based approaches might be well-
suited for deliberative processes that aren’t time-sensitive and dynamic, they can’t be extended
to cover lower-level aspects of human intelligence. In short, the view has been that if one takes
the top-down approach described above by Brachman and Levesque, one just doesn’t get that
far down, and moreover, one certainly can’t use logic to work bottom-up, the direction that is
part and parcel, and the supposedly the chief virtue, of approaches based directly modeling neural
information processing. For example, so the story went: “How could you ever use logic for capturing
the real-time interaction between a robot and the physical environment?”

But times, thankfully, are changing. We are now beginning to see that logic can be all-
encompassing. Even dynamic perception and action can be systematically logic-based.

Of course, this is simply an assertion, and the proof, I admit, is in the pudding. The fact
is, we still don’t have ubiquitous logicist robots. But they will come. We know this because, in
certain challenging environments, logicist robots are already here (e.g., see Bernard, Dorais, Fry,
Jr., Kanefsky, Kurien, Millar, Muscettola, Nayak, Pell, Rajan, Rouquette, Smith & Willams 1998,
Bernard, Dorais, Jr., Kanefsky, Kurien, Man, Millar, Muscettola, Nayak, Rajan, Rouquette, Smith,
Taylor & Tung 1999, Ingham, Clark, Williams, Lockhart, Oyake & Aljabri 2001, Williams, Ingham,
Chung & Elliott 2003). While logic has been criticized as too slow for real-time perception-and-
action-heavy computation, as you might see in the computational modeling of a human playing a

20We know, for example, that in order to write computer programs that compute given functions, it’s necessary to
be able to decide whether two computer programs compute the same function. Logic informs us that such a decision,
at bottom, amounts to deciding whether two Turing machines, n and m, upon being given input u, halt and produce
output v. Specifically, the decision revolves around whether the Pi2 formula

∀u∀v[∃kH(n, k, u, v)↔ ∃k′H(m, k′, u, v)]

is true.
21It’s worth nothing at this juncture that LAI is intimately connected to what Eden (n.d.) calls the rationalist

paradigm in computer science, in his excellent analysis of the nature of this field. Somewhat predictably, I happen
to view computer science as a field falling under this paradigm — but this isn’t the place to defend this view, and
my affirmation of it is separate from the view set out and defended in the present paper.
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first-person shooter game (as opposed to a strategy game, which for obvious reasons fits comfortably
under the paradigm of logicism), it has been shown that computational logic, on the strength of
ATPs like Vampire (Voronkov 1995), is so fast that it can enable the real-time behavior of a
mobile robot simulating human behavior in a robust environment. This has been shown in my lab
by having a logic-based mobile robot successfully navigate the wumpus world game (Bringsjord,
Khemlani, Arkoudas, McEvoy, Destefano & Daigle 2005), a staple in AI, and a game that humans
have long played. (See Figures 2 and 3.) In addition, recall the Wise Man Puzzle discussed above
(§2.3.4). LAI engineering carried out in my lab has shown that robots operating in real time can
solve this puzzle in real time, when they compute functions based on a logical analysis of the puzzle
provided in (Arkoudas & Bringsjord 2005); see Figure 4.22 This work augments work done in John
McCarthy’s (logicist) AI Lab that has shown it to be possible to control a real robot, operating
in a realistic office environment in real time (Amir & Maynard-Reid 2001, Amir & Maynard-
Reid 2000, Amir & Maynard-Reid 1999).23 In this approach, a logicist calculus is used to represent
time and change. Usually the calculus is the situation calculus, but the event calculus can also be
used; both are summarized in (Russell & Norvig 2002), and a recent book dedicated to the latter is
(Mueller 2006). It’s important to know that such work is far from peripheral and tentative: Logic-
based AI is starting to reveal that even in the area of perception and action, the speed demands
can be met via well-established techniques that are fast becoming part of the standard toolkit for
the field, as seen by such textbooks as (Reiter 2001).

Figure 2: The Wumpus World Game. In the wumpus world, a robot must navigate a work in matrix
form, where cells in the grid may contain pits or a monster (the Wumpus). The robot must shoot
and kill the Wumpus, and retrieve the gold.

When perception and action yield to logic, non-logic will be reserved for stage-one transduction.
Transduction is discussed below in section 4.4, and there I distinguish between stage-one and stage-
two transduction.

22The robots in my lab are autonomous. Humans do not find the proofs in question. Rather, the robots do.
23This research can be found online at: http://www-formal.stanford.edu/eyal/lsa.
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Figure 3: Performance of a Logic-Powered Robot in the Wumpus World. This graph shows the
time (in secs) it takes the logic-powered robot to succeed in the wumpus world, as a function of the
size of the world (i.e., the size of the grid). The speed is really quite remarkable. Fine-tuning the
use of the SNARK theorem prover was carried out by Matt Daigle.

3.5 Learning and Denial

What has been called ‘learning’ in AI simply isn’t. The field is in denial about this, and logicists
need to call a spade a spade, and then leave to solve the problem on their own.

You have learned that Selmer is inclined to issue some rather strong recommendations regarding
AI — and indeed you’ve learned hundreds of other things since reading from the title of this piece, to
this phrase in this sentence. In general, the bulk of your learning, since you started school, has come
by way of reading and reasoning. And yet in AI we operate with the bizarre concept that “machine
learning” is all and only about divining a function based on multiple trials. In this paradigm, the
sample input-output pairs from which the function is to be induced are far, far removed from the
reading-and-reasoning-based learning that has put you in position to understand the present paper.
The same absurdity is seen when we look at science and engineering itself: We add to our stock
of knowledge about the cosmos by deploying painstaking logic-based formalisms, and by careful
reasoning over representations in them. We build theories by abduction; we look to accumulate
evidence for them by experiment and induction; and we look to refute them by deduction (when
what they predict doesn’t obtain). It’s all declarative reasoning, with a logical system available
to formalize every inch. Again, we are persons, so we can do science and engineering to learn
about the universe, and the learning is of a type that has nothing to do with multi-trial runs in
an impenetrable neural network. Logic and logic alone is the paradigm available for giving the
power of learning by reading, and related techniques, to a machine. (For a look at logicist machine
reading research, see (Bringsjord, Arkoudas, Clark, Shilliday, Taylor, Schimanski & Yang 2007).)

3.6 Logic is an Antidote to “Cheating” in AI

Logic prevents cheating. I’m not talking about turpitude; I’m talking about a form of involuntary
cheating in AI that is all too easy for researchers to slide into when the formalisms upon which their
paradigms are based don’t generate argument-based justifications, including justifications that are
full-blown proofs. Here’s one way to explain the situation.

Suppose one is striving to engineer an intelligent computational agent capable of excelling
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Figure 4: Three Robots In the Wise Man Puzzle; Far-left One Solving the Puzzle. Implementation
carried out by Evan Gilbert.

on tests of intelligence.24 Let’s assume, specifically (but without loss of generality), that this
agent receives a series of short multiple choice questions designed to test for context-independent
reasoning. For example, consider the following simple (from the logicist standpoint) problem, a
slight variant25 of a puzzle introduced by Johnson-Laird (1997).

Assume that the following is true:
‘If there is a king in the hand, then there is an ace in the hand,’ or ‘If there is not a king in the
hand, then there is an ace in the hand,’ — but not both of these if-thens are true.
What can you infer from this assumption?

Now suppose that some AI agent answers in surprising but correct (!) fashion by printing out or
uttering

“That there isn’t an ace in the hand.”

but that it cannot provide a proof that this response is correct. In this case, how do we know
that the agent didn’t cheat? How do we know, for example, that the agent didn’t produce this
response because it blindly computed a function from the number of characters used in the question,
to that-clause strings built randomly from the same question — a function having nothing to do
with the fact that the correct answer is correct precisely because it can be deduced from the given
information? The fact is, we don’t. (For a proof that the right answer is indeed that there isn’t
an ace in the hand, see Figure 5.) This is why the first stage of Project Halo, in which AI systems
able to answer questions on the Advanced Placement (AP) Chemistry Exam26 were engineered,
required of the systems involved that they provide declarative justifications (Friedland et al. 2004).

24One might seek such an agent if one subscribes to the view that the concept of intelligence should be operational-
ized in a way paralleling Turing’s test-based operationalization of thinking: viz., by tests used in psychometrics, the
field devoted to measuring intelligence and other mental abilities. Given this view, an artificial intelligence is an
artifact able to successfully take, and do well, if not excel, on tests of mental ability. For an account of this kind of
AI, called “Psychometric AI,” see (Bringsjord & Schimanski 2003).

25The variation arises from disambiguating Johnson-Laird’s ‘s or else s′’ as ‘either s or s′, but not both.’
26Published and administered by ETS. Information is available on the Web at http://www.ets.org.
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And in general, this is why logicist AI prevents cheating. As AI unfolds into the future, only logic
will prevent researchers from resting content with agents that merely appear to have meaningful,
compelling reasons for doing what they do.

Figure 5: A Proof That There is No Ace in the Hand in F

3.7 Logic Our Only Hope Against the Dark AI Future

As is well-known, Joy (2000) has famously predicted that the future will bring our demise, in no
small part because of advances in AI and robotics. Unless we build robots on the basis of logic, we
will indeed be overrun by malicious robots, and what is now fiction from Asimov, Kubrick, Spielberg
and others will become reality. The antidote is to ensure that robots are reasoning in correct fashion
with the ethical codes we supply. A bit more precisely, we need to put two constraints into play:

1. Robots only take permissible actions.
2. All relevant actions that are obligatory for robots are actually performed by them, subject

to ties and conflicts among available actions.

But here is the interesting thing: Ethics is itself an immutably logic-based field, and we have no
hope of sorting out how these two conditions are to be spelled out and applied unless we bring
ethics to bear. Ethicists work by rendering ethical theories and dilemmas in declarative form, and
reasoning over this information using informal and/or formal logic. This can be verified by picking
up any bioethics textbook (e.g., see Kuhse & Singer 2001). Ethicists never search for ways of
reducing ethical concepts, theories, principles to sub-symbolic form, say in some numerical format,
let alone in some set of formalisms used for dynamical systems. They may do numerical calculation
in part, of course. Utilitarianism does ultimately need to attach value to states of affairs, and
that value may well be formalized using numerical constructs. But what one ought to do, what
is permissible to do, and what is forbidden — this is by definition couched in declarative fashion,
and a defense of such claims is invariably and unavoidably mounted on the shoulders of logic. This
applies to ethicists from Aristotle to Kant to G.E. Moore to J.S. Mill to contemporary thinkers.
If we want our robots to be ethically regulated so as not to behave as Joy tells us they will, we
are going to need to figure out how the mechanization of ethical reasoning can be applied to the
control of robots.27 What is the alternative?28

27Along with others (e.g., Arkin 2008), I’ve partially figured this out: (Bringsjord, Arkoudas & Bello 2006).
28Of course, in general, without logic, we don’t have the foggiest idea whether our software will behave the way we

want it to. It’s no coincidence that programming languages are formalized and verified using logic. Again, what is
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4 Objections; Rebuttals

4.1 “But you are trapped in a fundamental dilemma: your position is either
redundant, or false.”

“Unfortunately, you stand between the horns of a dilemma, and either way you lose. On one
interpretation of the ‘independence’ you’re advancing, your recommendation is already functionally
in place, which makes your paper superfluous. After all, in the day-to-day life of AI, all the subfields
are already essentially ‘divorced.’ Just like cell biologists work independently of whole-animal
biologists, and topologists work independently of number theorists (usually, anyway), in AI (and,
for that matter, Cog Sci) logicist researchers work independently of, for example, connectionists.
Surely you must concede that, as a rule, fields are composed of sub-fields, and those sub-fields often
are driven by radically different methodologies and formalisms. What unifies the sub-fields is a
shared objective. For example, psychology seeks to understand the mind/brain, and has under its
umbrella behaviorists standing alongside cognitive psychologists, and both groups stand alongside
neuropsychologists. But on the other hand, perhaps you’re recommending something stronger,
namely, logicist AI uber alles. Here arises the other horn of the dilemma you face. For the fact is,
LAI uber alles is highly contentious, and worse, it’s probably false (e.g., see Michael Spivey’s The
Continuity of Mind).”29

Actually, the fact of the matter is that I’m advancing both propositions; that is, that (i) LAI,
at the operational level (if you will), should be independent in concrete practice, and that (ii) LAI
uber alles is correct. As to (ii), my critic is without question right that logicist independence is
contentious — but that, of course, is no small part of why I have crafted a sustained argument in
support of such independence. Were there no controversy, were there no unsettled questions about
the best relationship between the logic-inclined and those focused on continuous systems, there
would be no point in articulating and defending this present manifesto. (Now the critic also claims
that LAI is overthrown, in light of specific arguments in favor of the continuity of mind. I rebut
this part of the objection in a separate dialectic below (§4.3).) Regarding the alleged superfluity of
my case for (i), the objection simply goes wrong, for many reasons. Let me explain.

First, mathematics is actually not at all a field whose compartmentalization supports the ob-
jection here given against my call for logicist independence. This is easy to see once one studies
sufficiently robust theorems. A recent example would be Wiles’ proof of Fermat’s Last Theorem
(Wiles 1995, Wiles & Taylor 1995). Wiles’ reasoning shows, without question, that subfields of
mathematics (in this case, number theory, geometry, and algebra) are actually connected at a deep
level — a level that some brilliant humans can access, and exploit. In fact, in general, it is now
known that every subfield is related to every other subfield, for at the deepest level (axiomatic set
theory expressed in first-order logic) all subfields are about the very same structures (see note 4).
Nothing like this unites logicist AI with (say) connectionist AI: Advances in the former (latter) are
not made by linking to advances in the latter (former).30

the alternative?
29Some of those inclined to press the objection just given against me might also claim that logic uber alles runs

afoul of the brute fact that no one knows how to build a computing machine with human-level intelligence. But my
manifesto in no way presupposes any such thing as that logicists have solved the AI problem. Instead, the idea is that
to assemble the best possible attack on this problem, a new, standalone field (logic-based AI) needs to be founded.
In short, the idea is that the best bet for reaching AI’s ultimate goal of building an artificial person is to establish
logic-based AI as a field unto itself.

30Of course, it nonetheless remains true that any classical mathematics used in any subfield of AI, from dynamical
systems to artificial neural networks to Bayesian networks to quantified modal logic to . . ., is all based on formal
logic. This is simply an indisputable aspect of the formal sciences, and cuts through any and all controversy.
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For the next step in my rebuttal, consider that philosophy, along with psychology, has the ob-
jective of understanding the mind/brain — indeed this goal is what drives philosophy of mind. But
psychology, as is well-known, split off from philosophy nonetheless. The divorce occurred because
psychology wanted to discover things via the a posteriori route, not the a priori one. Psychologists
put controlled, empirical experiments at the heart of their modus operandi. Philosophers, though
sometimes empirically inclined, continue to place armchair reasoning and reflection at the heart of
what they do. So the split did take place because of a difference in methodologies and formalisms,
and having an objective in common failed to keep the marriage intact. Were the objection here
allowed to stand, the divorce between philosophy and psychology would have made, and indeed
would now make, little sense. Parallel points could be made for the other major splits; for example,
for philosophy and physics, philosophy and linguistics, and so on. Methodologically speaking, the
difference between logicist AI and sub-symbolic AI is a vast canyon, and it’s high time that a split
take place in AI that parallels those that have been salubriously achieved in the case of philosophy
and other such examples.

The objection also cites the compartmentalization that exists in AI, and in biology (cell- v.
animal-based). (I have already addressed the example cited in mathematics (topology v. number
theory).) The idea is that such compartmentalization makes my call for independence redundant.
The fatal problem with this part of the objection is twofold: One, compartmentalization of ar-
eas/approaches A1, . . . , An within field F is radically different than fields F1, . . . , Fn overlapping
to a degree by virtue of their long-term objective. As already pointed out, if these scenarios were
the same, or if they could be collapsed, then philosophy and psychology (and any number of such
divorced, now-self-contained, and separate fields) would themselves be the same and collapsible —
which most assuredly they are not. What is the difference between the two scenarios? What’s the
difference between cell biology versus animal biology on the one hand, and the separate fields of
psychology and philosophy, or linguistics and philosophy, or physics and philosophy, on the other?
The answer is surprisingly easy to find, by attending to the fact that whereas the field of biology
offers students of this field single introductory textbooks that cover both the cell and animal levels,
introductory psychology textbooks, which include coverage of all the many compartmentalized sub-
fields in psychology, are quite disjoint from introductory philosophy textbooks, which in turn have
no overlap with introductory physics textbooks, and so on. The textbook situation is a tell-tale sign:
A single textbook for a field F is effective when all those working in Ai under F , to be maximally
effective, should both know of particular structures, tools, techniques, and formalisms relevant to
each Ai, and should also know of each Ai itself. This situation obtains in the case of biology and
mathematics, fields invariably approached by students exposed to comprehensive textbooks. But
the situation in AI is actually the reverse: Not only is it false that all those working in AI, to be
maximally effective, should know of the particular aspects of both (say) connectionism and LAI,
but in point of fact a requirement that students have such knowledge is an obstruction. And, it’s
false as well that to be effective as a connectionist, one should be versed in formal logic (with the
vice versa false as well). In fact, a concrete consequence of my manifesto would be the appearance
of new textbooks dedicated to only one of the approaches to AI that are now typically mashed non-
sensically together is gargantuan introductory textbooks (such as, e.g., the encyclopedic Russell &
Norvig 2002).

4.2 “But you’re neglecting probabilistic AI.”

“You have been speaking as if the choice is between top-down logic and bottom-up neurocompu-
tational approaches. But that is an illusory dichotomy. The real choice is between a symbolic ap-
proach that is probabilistic in nature, armed now with Bayesian networks, versus the non-symbolic
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bottom-up neurocomputational approach.”
Of course, I’m well aware of the resurgence of probabilistic techniques in AI, the start of which,

in my opinion, coincided with the arrival of (Pearl 1988). These techniques are indeed symbolic
in nature,31 and should be dutifully included in any purportedly complete overview of AI — but
of course the present paper is no such overview. Furthermore, yes, Bayesian nets provide a rep-
resentation framework that allows for the calculation of posterior probabilities in a manner much
more efficient than standard calculation over a full probability distribution. But what, pray tell,
is the relationship between these facts and the call for logicist independence? I very much hope
that no one is silly enough to propose any such idea as that because probabilistic techniques are so
powerful, logical systems can be defenestrated. The reason this is silly is because even the simplest
of logic problems, in fact ones given to students in Logic 101, cannot be answered by intelligent
agents powered solely by probabilistic inference. We have already seen an example earlier: the
King-Ace Puzzle. How would a Bayesian system solve this problem, where the solution includes
a full, watertight deduction in support of the answer that there is in fact no ace in the hand? I
don’t even think Bayesian systems can possibly solve logic problems that involve probability. For
example, here is another problem involving cards, kings, and aces that Johnson-Laird challenged
me with quite a while back:

If one of the following assertions is true then so is the other:

1. There is a king in the hand if and only if there is an ace in the hand.

2. There is a king in the hand.

Which is more likely to be in the hand, if either: the king or the ace? Prove that you are correct.

I would very much like to see a Bayesian system take this declarative information in as input, and
yield the correct answer, and a proof that that is the answer. I assure you that I will not hold my
breath. For a human or machine using just elementary techniques in logicist AI, this is a trivial
problem.32 We will return to this problem in the section immediately below, in our discussion of
the dynamicist’s rejection of LAI.

To sum up, Bayesian approaches are parasitical on, and in fact derived from, a smallish amount
of knowledge expressed in relatively simple logical systems. To the extent that Bayesian approaches
are desirable, logicism is desirable. However, as illustrated by the impotence of Bayesianism to solve
even simple problems that persons can routinely solve using logic, Bayesianism is only a tiny part of
logicist AI. And finally, to make a point there isn’t space to fully consider, persons routinely handle
uncertainty in ways that don’t involve probabilities in the least, but center around arguments and
counter-arguments, sometimes along with strength factors, instead.33

31In fact, they are ultimately logicist in nature! Kolmogorov’s axioms, viz.,

1. All probabilities fall between 0 and 1. I.e., ∀p(0 ≤ P (p) ≤ 1).

2. Valid (in the traditional logic-based sense of being true on all formal interpretations) propositions have a
probability of 1; unsatisfiable (in the traditional logic-based sense) propositions have a probability of 0.

3. P (p ∨ q) = P (p) + P (q)− P (p ∧ q)
are simple formulas from a simple logical system, and modern probability theory can be derived from them in
straightforward fashion. The expressiveness of probabilistic representation and reasoning is bounded by the logical
system in which it’s expressed, and the two systems in question (the propositional calculus and first-order logic), from
the standpoint of the infinite space of logical systems available in LAI, are two particles of sand on a beach reaching
from here to Mars.

32A full solution generated by these techniques will be supplied upon request. The proof is not difficult.
33For logicist AI based on this way of formalizing and mechanizing uncertainty, see (Pollock 2001, Pollock 1992).
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4.3 “But we now know that the mind, contra logicists, is continuous, and hence
dynamical, not logical, systems are superior.”

“You argue for logic uber alles, as you yourself say. Unfortunately, we now know that the mind is a
continuous thing, one best understood and modeled by bringing together dynamical systems theory,
cognitive and computational neuroscience, connectionism, and ecological psychology to provide an
understanding of the mind (Spivey 2006). Logic-based AI is passé.”

Spivey’s book provides an elegant review of work designed to understand aspects of the brain and
cognition in terms of his preferred collection of subfields. (To facilitate exposition, let’s denote this
collection — dynamical systems theory, cognitive and computational neuroscience, connectionism,
and ecological psychology; the collection is characterized in Chapter 1 of (Spivey 2006) — as L̄.)
Of course, everyone knows that within the confines of L̄, many, many impressive achievements have
been won under the banner of AI, just as everyone knows that within the confines of logicist AI,
many, many impressive achievements have also been won under the very same banner. In general,
prize achievements within L̄ have been those that require low-level perception and action, and
are in the sphere of the sensible; and prize achievements in LAI have been in the sphere of the
intellectual, and involve high-level reasoning and problem-solving. Spivey (2006) hits the nail on
the head in Chapter 10 by pointing out that logicists are with Kant in the following quote, while
dynamicists reject the dichotomy:

Now, man actually finds in himself a power which distinguishes him from all other things—and
even from himself so far as he is affected by objects. This power is reason . . . Because of this, a
rational being must regard himself qua intelligence (and accordingly not on the side of his lower
faculties) as belonging to the intelligible world, not the sensible one. (Kant, as trans. by Seidler
1986)

Everyone (including even the dualists Spivey lampoons) also knows that every physical object,
including the brains and central nervous systems of intelligent carbon-based creatures, are objects
moving through time and space in a manner that, from certain perspectives (e.g., physics), are best
described using continuous formalisms. But in the context of the debate in which my manifesto
figures, the issue is whether (a) the kind of intelligence at the heart of the specific arguments in
favor of independence given above (§3)34 can be captured by L̄ in light of The Continuity of Mind,
and whether (b) in light of Spivey’s book it’s revealed that there are elements of AI’s ultimate goal
that can be reached only if pursued in the paradigm of L̄. Does Spivey make a case for either (a)
or (b)? If so, is the case successful?

Actually, the fact of the matter is that Spivey doesn’t really make a clear case for (a) or (b).
When it comes to reasoning, when it comes to the kind of intellectual activity that makes use
of logical systems (which by definition are highly abstract; in fact, often they are abstractions of
abstractions, as when for example a logical system is used to formalize abstract mathematics),
Spivey does not maintain that L̄ is up to the task. For example, we read:

[C]ontrary to the attitude that I cop throughout most of the book, reasoning and problem
solving may very well be the one area of cognition where the rule-and-symbol framework has
not yet run its course, and some further useful advances may still be coming from this approach
from a little longer. (Spivey 2006, p. 259)

Given that logical systems, as defined above, from the mathematical standpoint, have “rule-and-
symbol frameworks” as but a tiny part; and given that, hitherto, LAI has not implemented logical
systems in parallelized fashion on high-performance hardware, Spivey should no doubt be even

34And others that I haven’t the space to cover in this paper.
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more cautious, in my opinion. And indeed later in his book, he is: A more circumspect attitude
is divulged at the conclusion of Spivey’s chapter on reasoning, where he writes that “Perhaps . . .
continuous dynamical descriptions of cognitive phenomena [will] finally wash up against some firm
bedrock that forms the core of highly complex mental processes like reasoning and problem solving
. . . And then again perhaps not” (Spivey 2006, p. 285).

Nonetheless, Spivey does make a few brave gestures in the direction of supporting (a) and (b).
I don’t have the space to evaluate all these gestures; I consider just one now, one given in support
of (a). This gesture consists in Spivey’s pointing out that some reasoning problems are cracked by
the triggering and use of perceptual-motor subsystems in the human case. (Such subsystems, as is
well known, are traditionally modeled rather credibly by L̄.) For example, he discusses Duncker’s
(1945) candle-mounting problem, in which subjects, after being given as tools a candle, a box of
tacks, and a book of matches, are asked to try to figure out how to mount the candle on the wall
using only these items. Only some subjects see the solution, which is to tack the box onto the wall,
and place the candle on (or in, possibly) the box. Spivey, echoing Glucksberg (1964), explains that
when subjects do physically touch and manipulate the items in question, they are more likely to
have that “Aha!” discovery of the solution.

Unfortunately, the candle-mounting problem (and others cited by Spivey) is tailor-made to fit
the L̄ paradigm. In order to substantiate (a), or even take appreciable steps toward substanti-
ating this proposition, it would be necessary to take a problem that is firmly within the — to
harken back to Kant’s distinction — intellectual realm, and show that somehow the solution to the
problem doesn’t involve processes defined over the relevant logical system. For example, recall the
probabilistic king-ace problem presented above. Here is an abstract version of the problem:

If one of the following propositions is true then so is the other:

1. K if and only if A

2. K

Which is more likely, if either: K or A? Prove that you are correct.

I submit that all readers, whether of the logicist or dynamicist persuasion (or for that matter any
persuasion), can rather easily see (esp. if they manage to solve the problem in question) that solving
this problem happens only on the strength of manipulating symbols, pure and simple. There is
absolutely nothing in The Continuity of Mind, nor in the literature it ranges over in order to find
results that support the dynamicist position, that provides even an iota of guidance for how such
a problem can be solved without relying upon one or more logical systems. Therefore, from the
standpoint of an AI researcher who wants to engineer a system able to autonomously solve such a
problem (which, frankly, compared to the kind of problems that those in the formal sciences get
paid to solve is laughably concrete and simple), it is a complete non-starter to forsake LAI.

4.4 “But surely human-level cognition is partly sub-symbolic.”

“Well, okay, I concede it can’t be concluded that the mind does everything on the strength of
continuous processes, nor that a computing machine can be engineered to operate at the level of
human persons only if such processes are discovered, dissected, and implemented to operate on that
machine. But surely persons do some things on the strength of non-symbolic processing. Logicist
AI as you define it, if launched, would be a field completely ignoring these things!”

It’s probably true that a toddler catches a ball on the strength of a process that, though
logicizable in a machine, is not logic-in-action in her body, at least at some level of description.
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But there are at least three reasons why this kind of rapid, non-deliberative perception and action
is no threat to my declaration of independence.

First, if the toddler seeks to be maximally proficient at such tasks as she grows, she must rely
on logic. This is why great athletes have coaches: to bring them to the next level by tapping into
training based on explicit reasoning and knowledge.

Second, AI isn’t cognitive science (CogSci). The latter is often quite computational, but com-
putation in this field is used to model and understand human (and animal) cognition. By contrast,
AI is concerned with engineering artifacts that are intelligent, whether or not what’s under the
hood matches processing in the human case.

Third, it’s important to realize that the first stage of transduction is not part of what it is to be
a first-rate cognizer. Transduction is the translation of raw data from the environment into logicist
form. This translation occurs in two stages. In stage one, the physical changes in sensors caused by
their direct interchange with the external environment is recorded and represented in some format,
for example in an array of pixels each of which has some particular value. In stage two, these values
are translated into declarative representations expressed in some logical system. For example, an
array of zero’s and one’s might lead to some configuration of objects having semantic value, in
the sense that the agent in question already has some declarative knowledge about these objects.
In general, stage-two transduction is not a conscious process, but at least in principle it can be.
As such, it is a process that can itself be carried out by reasoning; hence, naturally enough, the
reasoning can be captured in a logical system.

I’m happy to concede that stage-one transduction may best be mechanized in non-logicist ways.
But as has been pointed out rather long ago, it is entirely possible, mathematically speaking, for a
creature with the intelligence of a person to exist without there having been any physical interaction
between this creature and an outside environment (Bringsjord & Zenzen 1991) at the level of
stage-one transduction. In other words, the cognition constitutive of personhood doesn’t include
stage-one transduction (and for that matter doesn’t include perception and action in interchange
with an external environment). Work by non-logicists on stage-one transduction-level problems
can complement work done by logicists, but only the latter effort pertains directly to personhood,
which is after all the goal (recall §2.1.1).

4.5 “But what concrete benefits flow from divorce?”

“What benefits accrue from declaring independence, instead of staying under the umbrella? After
all, at present, parts of AI are certainly logic-based: there are logicists doing planning, and even
(e.g., through inductive logic programming) learning. Plenty of logicists seem happy and productive
in the current under-one-umbrella situation, even if folks under that umbrella are arranged in
cliques, and indeed cliques within cliques (e.g., logicist planning people working unto themselves).”

We’ve already discussed some of the thrust of This objection, but it certainly compels one to
consider the general question as to why any field is unto itself — or better: why any field ought to be
unto itself. It seems to me that there can only be one general rationale in favor of a field unto itself,
as opposed to being a sub-field: there must be something that separatism buys that ecumenism
doesn’t. Well, there is something that an independent logic-based AI buys us that is apparently
otherwise unattainable: unification of logicist activities in the service of reaching the ultimate goal:
building a person. As of now, logicist AI as practiced under the all-inclusive tent is fragmented.
There are logicist researchers doing NLP, planning, learning, theorem proving, robotics, and so on
— but these researchers aren’t working together in order to build an artificial system that calls upon
all these areas at once. In short, the goal of building an artificial person is not one that logicists seem
to be able to shoot for, in the present situation. Ironically, logicists in AI are working in the kind
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of stultifying (relative to reaching the grand goal of mechanizing personhood) isolation that Newell
(1973) detected and damned in psychology. Recent developments indicate that a recrudescence
of human-level AI is underway (Cassimatis 2006, Nilsson 1995, Nilsson 2005, Brooks, Breazeal,
Marjanovic, Scassellati & Williamson 1999, Pollock 1989, Pollock 1995), and in my opinion this
activity is sustainable only if logic leads the way, something that appears to be the case as of now,
given the nature of the work of these researchers.

In addition, logicist independence will allow us to once and for all stop pretending to ignore
deep sociological rifts at the heart of the logicist vs non-logicist clash — rifts I used to believe were
just an immutable part of the nature of the field (Bringsjord 1991). Breaking off, I believe, will
release cathartic honesty.

5 Conclusion

5.1 Is Independence Realistic?

How realistic is independence for LAI? My view is that, at this particular time, there really and
truly is a chance to plant logic-based AI as a self-contained field. This belief stems not just from the
fact that I affirm the reasoning given above, and expect rational readers to do so as well, but from a
more concrete development in funded AI R&D. As a covering label for the phenomenon in question,
‘logicist interoperability’ is as good as any. The basic idea is that there is a growing realization that
different logical systems can be connected in very fertile ways. One of these ways is a downward
direction in which a logical system L is encoded, at least in part, in a less expressive logical system
L′, where the key algorithms run on knowledge in L′ are much more efficient than their counterparts
run on knowledge in L. For example, it has been shown by Arkoudas & Bringsjord (2005) that
computationally expensive epistemic logics can be “encoded down” to multi-sorted logic, known
via some longstanding theorems to be a “grand unifier” (Manzano 1996). MSL provides a very
efficient framework for automated reasoning. As another example, knowledge in FOL can often
be encoded down to knowledge in the propositional calculus, allowing SAT solvers, which are very
efficient compared to general reasoning in FOL, to be employed. This approach is taken by Mueller
(2006). (For information on SAT-based work, see (Kautz & Selman 1999, Kautz & Selman 1996).)
In addition, Common Logic, about now an ISO standard, is currently being used in funded R&D
to serve as an inter lingua enabling machine translation from knowledge bases expressed in one
logical system L to another L′. The bulk of this work, to date, has been funded by the research
arm of the U.S. intelligence community.

5.2 The Two Big Challenges

Logicists must confess that two mammoth obstacles stand in the way of full success. The first big
challenge is the mechanization of natural language understanding and generation.

Turing (1950) predicted over half a century back that by now we would be able to engineer
machines linguistically indistinguishable from us (i.e., machines able to pass his so-called “Turing
Test”), but the fact of the matter is that, today, a bright toddler’s conversational reach still exceeds
that of any and all computers on our planet. No robust computational accounts of human-level
communication (attribute 4 in the list of capacities constitutive of personhood, given, recall, in
§2.1.1) exist. Even Anderson (2003), someone quite sanguine about the future of attempts to reduce
human-level cognition to computation, concedes that natural language is currently out of reach;
that in this regard “Newell’s Program” has not yet succeeded. There are those (e.g., Moravec 1999)
who hold that, relatively soon, person-level communication will be mechanized. Unfortunately, such
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writers are confident because of the continuous increase in processing speed produced by Moore’s
Law, but raw processing speed is not the problem (as explained in Bringsjord 2000): the challenge,
from the standpoint of LAI, is to discover the logic-based structures and procedures that enable
human persons to communicate in natural languages.

What are the prospects for this discovery coming to pass? At the dawn of AI in the United
States, and for at least three decades thereafter, the dream was to capture natural languages like
English, German, and Norwegian completely in first-order logic (= in LI) (e.g., see the FOL-based
Charniak & McDermott 1985). Unfortunately, this specific logic-based approach has not succeeded.
In fact, some originally logic-based experts in computational language processing have turned their
backs on logic, in favor of purely statistical approaches. Charniak himself is an example. In 1985, his
comprehensive-at-the-time Introduction to Artificial Intelligence, which we of course visited at the
outset of the present essay, gave a strikingly unified presentation of AI, including natural language
processing. This unification was achieved via LI , which runs throughout the book and binds things
together. But Charniak abandoned logic in favor of purely statistical approaches (Charniak 1993).

To this point, despite the richness of the family F , natural language has resisted attempts to
model it in logico-computational terms (and, indeed, in any terms). However, it seems clear that
some traction has taken hold in the attempt to model fragments of natural language in formal logic
(e.g., see Fuchs, Schwertel & Schwitter 1999), and this direction is certain to see more investment,
and, I believe, great progress. Only time will tell if this research and development will be able to
scale up to all of natural language.

The second major challenge is one that currently paralyzes any approach to AI: subjective
consciousness. While some forms of consciousness have been modeled (e.g., see Sun 1999), there
are today no simulations of subjective consciousness (attribute 2 in the list of capacities constitutive
of personhood). No one has a third-person account of what it is to (say) experience the taste of deep,
dark chocolate, or what it is to be you (Yang & Bringsjord 2003, Bringsjord 1998, Bringsjord 2001,
Bringsjord 1995b, Bringsjord 1999). (For a discussion of these matters in connection with robotics,
see Bringsjord 2007.) Absent such an account, mechanization — indeed, taking just initial steps
toward some mechanization — is rather difficult. Given the importance of consciousness in human
cognition (after all, the reason humans seek to continue to live is to continue to have conscious
experiences), there is little doubt that in the future LAI will increasingly be marked by a persistent
attempt to capture consciousness. Breakthroughs are waiting to be made.

5.3 Forward to What Could Have Been

DARPA sponsored the original 1956 conference at Dartmouth because the proposal for that confer-
ence contained a rather attractive idea, one that still rings as strong today as it did then, namely:
“It may be speculated that a large part of human thought consists of manipulating words according
to rules of reasoning and rules of conjecture.” The original proposal, however, was ecumenical. For
example, it also called for work carried out on the basis of “neuron nets.”35 Well, enough; enough
AI by multi-paradigm coalition. For the reasons expressed above, and others, it is time to simply
delete ‘a large part’ from the quote above, and to forge ahead full steam with the intention of
showing that even synthetic workalikes for those parts of the human person generally considered
to be below “thought” can be engineered through logic.

35The original proposal is available online, e.g. at

http://www-formal.stanford.edu/jmc/history/dartmouth/dartmouth.html

. It is entitled “A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence,” and was authored
by McCarthy, Minsky, Rochester, and Shannon.

29

http://www-formal.stanford.edu/jmc/history/dartmouth/dartmouth.html


References

Amir, E. & Maynard-Reid, P. (1999), Logic-based subsumption architecture, in ‘Proceedings of the Sixteenth
International Joint Conference on Artificial Intelligence’.

Amir, E. & Maynard-Reid, P. (2000), Logic-based subsumption architecture: Empirical evaluation, in ‘Pro-
ceedings of the AAAI Fall Symposium on Parallel Archittectures for Cognition’.

Amir, E. & Maynard-Reid, P. (2001), LiSA: A robot driven by logical subsumption, in ‘Proceedings of the
Fifth Symposium on the Logical Formalization of Commonsense Reasoning’.

Anderson, J. & Lebiere, C. (2003), ‘The newell test for a theory of cognition’, Behavioral and Brain Sciences
26, 587–640.

Arkin, R. C. (2008), Governing lethal behavior: Embedding ethics in a hybrid deliberative/reactive robot
architecture – Part iii: Representational and architectural considerations, in ‘Proceedings of Technology
in Wartime Conference’, Palo Alto, CA. This and many other papers on the topic are available at the
url here given.
URL: http://www.cc.gatech.edu/ai/robot-lab/publications.html

Arkoudas, K. & Bringsjord, S. (2005), Metareasoning for multi-agent epistemic logics, in ‘Fifth International
Conference on Computational Logic In Multi-Agent Systems (CLIMA 2004)’, Vol. 3487 of Lecture Notes
in Artificial Intelligence (LNAI), Springer-Verlag, New York, pp. 111–125.
URL: http://kryten.mm.rpi.edu/arkoudas.bringsjord.clima.crc.pdf

Arkoudas, K. & Bringsjord, S. (2007), ‘Computers, justification, and mathematical knowledge’, Minds and
Machines 17(2), 185–202.
URL: http://kryten.mm.rpi.edu/ka sb proofs offprint.pdf

Ashcraft, M. (1994), Human Memory and Cognition, HarperCollins, New York, NY.

Baader, F., Calvanese, D. & McGuinness, D., eds (2007), The Description Logic Handbook: Theory, Imple-
mentation (Second Edition), Cambridge University Press, Cambridge, UK.

Barwise, J. & Etchemendy, J. (1999), Language, Proof, and Logic, Seven Bridges, New York, NY.

Bernard, D. E., Dorais, G. A., Fry, C., Jr., E. B. G., Kanefsky, B., Kurien, J., Millar, W., Muscettola,
N., Nayak, P. P., Pell, B., Rajan, K., Rouquette, N., Smith, B. & Willams, B. C. (1998), Design
of the Remote Agent Experiment for Spacecraft Autonomy, in ‘Proceedings of the IEEE Aerospace
Conference’, Vol. 2, pp. 259–281.

Bernard, D. E., Dorais, G. A., Jr., E. B. G., Kanefsky, B., Kurien, J., Man, G. K., Millar, W., Muscettola,
N., Nayak, P. P., Rajan, K., Rouquette, N., Smith, B., Taylor, W. & Tung, Y.-W. (1999), Space-
craft Autonomy Flight Experience: The DS1 Remote Agent Experiment, in ‘AIAA Space Technology
Conference and Exposition’, Albuquerque, NM.

Berners-Lee, T., Hendler, J. & Lassila, O. (2001), ‘The semantic web: A new form of web content that is
meaningful to computers will unleash a revolution of new possibilities’, Scientific American 284(5), 34–
43.

Bourbaki, N. (2004), Elements of Mathematics: Theory of Sets, Verlag, New York, NY. This is a recent
release. The original publication date was 1939.

Brachman, R. J. & Levesque, H. J. (2004), Knowledge Representation and Reasoning, Morgan Kauf-
mann/Elsevier, San Francisco, CA.

Bringsjord, S. (1991), ‘Is the connectionist-logicist clash one of AI’s wonderful red herrings?’, Journal of
Experimental & Theoretical AI 3.4, 319–349.

Bringsjord, S. (1995a), Could, how could we tell if, and why should–androids have inner lives?, in K. Ford,
C. Glymour & P. Hayes, eds, ‘Android Epistemology’, MIT Press, Cambridge, MA, pp. 93–122.

Bringsjord, S. (1995b), ‘In defense of impenetrable zombies’, Journal of Consciousness Studies 2(4), 348–351.

30



Bringsjord, S. (1997), Abortion: A Dialogue, Hackett, Indianapolis, IN.

Bringsjord, S. (1998), ‘Chess is too easy’, Technology Review 101(2), 23–28.

Bringsjord, S. (1999), ‘The zombie attack on the computational conception of mind’, Philosophy and Phe-
nomenological Research 59.1, 41–69.

Bringsjord, S. (2000), ‘A contrarian future for minds and machines’, Chronicle of Higher Education p. B5.
Reprinted in The Education Digest 66.6: 31–33.

Bringsjord, S. (2001), ‘Is it possible to build dramatically compelling interactive digital entertainment (in
the form, e.g., of computer games)?’, Game Studies 1(1). This is the inaugural issue.
URL: http://www.gamestudies.org

Bringsjord, S. (2007), ‘Offer: One billion dollars for a conscious robot. If you’re honest, you must decline’,
Journal of Consciousness Studies 14(7), 28–43.
URL: http://kryten.mm.rpi.edu/jcsonebillion2.pdf

Bringsjord, S. (2008), Declarative/logic-based cognitive modeling, in R. Sun, ed., ‘The Handbook of Com-
putational Psychology’, Cambridge University Press, Cambridge, UK, pp. 127–169.
URL: http://kryten.mm.rpi.edu/sb lccm ab-toc 031607.pdf

Bringsjord, S. & Arkoudas, K. (forthcoming), The philosophical foundations of artificial intelligence, in
K. Frankish & W. Ramsey, eds, ‘The Cambridge Handbook of Artificial Intelligence’, Cambridge Uni-
versity Press, Cambridge, UK.
URL: http://kryten.mm.rpi.edu/sb ka fai aihand.pdf

Bringsjord, S., Arkoudas, K. & Bello, P. (2006), ‘Toward a general logicist methodology for engineering
ethically correct robots’, IEEE Intelligent Systems 21(4), 38–44.
URL: http://kryten.mm.rpi.edu/bringsjord inference robot ethics preprint.pdf

Bringsjord, S., Arkoudas, K., Clark, M., Shilliday, A., Taylor, J., Schimanski, B. & Yang, Y. (2007), Report-
ing on some logic-based machine reading research, in ‘Proceedings of the 2007 AAAI Spring Symposium:
Machine Reading (SS–07–06)’, AAAI Press, Menlo Park, CA, pp. 23–28.
URL: http://kryten.mm.rpi.edu/sb ka machinereading ss07 012907.pdf

Bringsjord, S. & Ferrucci, D. (1998a), ‘Logic and artificial intelligence: Divorced, still married, separated...?’,
Minds and Machines 8, 273–308.

Bringsjord, S. & Ferrucci, D. (1998b), ‘Reply to Thayse and Glymour on logic and artificial intelligence’,
Minds and Machines 8, 313–315.

Bringsjord, S. & Ferrucci, D. (2000), Artificial Intelligence and Literary Creativity: Inside the Mind of
Brutus, a Storytelling Machine, Lawrence Erlbaum, Mahwah, NJ.

Bringsjord, S., Khemlani, S., Arkoudas, K., McEvoy, C., Destefano, M. & Daigle, M. (2005), Advanced
synthetic characters, evil, and E, in M. Al-Akaidi & A. E. Rhalibi, eds, ‘Game-On 2005, 6th International
Conference on Intelligent Games and Simulation’, European Simulation Society, Ghent-Zwijnaarde,
Belgium, pp. 31–39.
URL: http://kryten.mm.rpi.edu/GameOnpaper.pdf

Bringsjord, S., Noel, R. & Caporale, C. (2000), ‘Animals, zombanimals, and the total Turing test: The
essence of artificial intelligence’, Journal of Logic, Language, and Information 9, 397–418.

Bringsjord, S. & Schimanski, B. (2003), What is artificial intelligence? Psychometric AI as an answer, in
‘Proceedings of the 18th International Joint Conference on Artificial Intelligence (IJCAI–03)’, Morgan
Kaufmann, San Francisco, CA, pp. 887–893.

Bringsjord, S. & Zenzen, M. (1991), In defense of hyper-logicist AI, in ‘IJCAI 91’, Morgan Kaufman, Moutain
View, CA, pp. 1066–1072.

Brooks, R. A., Breazeal, C., Marjanovic, M., Scassellati, B. & Williamson, M. M. (1999), ‘The cog project:
Building a humanoid robot’, Lecture Notes in Computer Science 1562, 52–87.

31



Cassimatis, N. (2006), ‘Cognitive substrate for human-level intelligence’, AI Magazine 27(2), 71–82.

Charniak, E. (1993), Statistical Language Learning, MIT Press, Cambridge, MA.

Charniak, E. & McDermott, D. (1985), Introduction to Artificial Intelligence, Addison-Wesley, Reading, MA.

Chisholm, R. (1978), ‘Is there a mind-body problem?’, Philosophic Exchange 2, 25–32.

Davis, M., Sigal, R. & Weyuker, E. (1994), Computability, Complexity, and Languages: Fundamentals of
Theoretical Computer Science, Academic Press, New York, NY.

Dennett, D. (1978), Conditions of personhood, in ‘Brainstorms: Philosophical Essays on Mind and Psychol-
ogy’, Bradford Books, Montgomery, VT, pp. 267–285.

Dietrich, E. (1990), ‘Computationalism’, Social Epistemology 4(2), 135–154.

Duncker, K. (1945), ‘On problem solving’, Psychological Monographs 58(5 (Whole No. 270)).

Ebbinghaus, H. D., Flum, J. & Thomas, W. (1994), Mathematical Logic (second edition), Springer-Verlag,
New York, NY.

Eden, A. (n.d.), ‘Three paradigms of computer science’, Minds and Machines 17(2), 135–167.

Friedland, N., Allen, P., Matthews, G., Witbrock, M., Baxter, D., Curtis, J., Shepard, B., Miraglia, P.,
Angele, J., Staab, S., Moench, E., Oppermann, H., Wenke, D., Israel, D., Chaudhri, V., Porter, B.,
Barker, K., Fan, J., Chaw, S. Y., Yeh, P., Tecuci, D. & Clark, P. (2004), ‘Project halo: Towards a
digital aristotle’, AI Magazine 25(4), 29–47.

Fuchs, N. E., Schwertel, U. & Schwitter, R. (1999), Attempto Controlled English (ACE) Language Manual,
Version 3.0, Technical Report 99.03, Department of Computer Science, University of Zurich, Zurich,
Switzerland.

Genesereth, M. & Nilsson, N. (1987), Logical Foundations of Artificial Intelligence, Morgan Kaufmann, Los
Altos, CA.

Glucksberg, S. (1964), ‘Functional fixedness: Problem solution as a function of observing responses’, Psy-
chonomic Science 1, 117–118.

Glymour, C. (1992), Thinking Things Through, MIT Press, Cambridge, MA.

Goldstein, E. B. (2005), Cognitive Psychology: Connecting Mind, Research, and Everyday Experience,
Wadsworth, Belmont, CA.

Halpern, J., Harper, R., Immerman, N., Kolaitis, P., Vardi, M. & Vianu, V. (2001), ‘On the unusual
effectiveness of logic in computer science’, The Bulletin of Symbolic Logic 7(2), 213–236.

Haugeland, J. (1985), Artificial Intelligence: The Very Idea, MIT Press, Cambridge, MA.
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