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Abstract. Predicting and explaining the behavior of others in terms of
mental states is indispensable for everyday life. It will be equally impor-
tant for artificial agents. We present an inference system for representing
and reasoning about mental states, and use it to provide a formal analysis
of the false-belief task. The system allows for the representation of infor-
mation about events, causation, and perceptual, doxastic, and epistemic
states (vision, belief, and knowledge), incorporating ideas from the event
calculus and multi-agent epistemic logic. Unlike previous AI formalisms,
our focus here is on mechanized proofs and proof programmability, not
on metamathematical results. Reasoning is performed via relatively cog-
nitively plausible inference rules, and a degree of automation is achieved
by general-purpose inference methods and by a syntactic embedding of
the system in first-order logic.

1 Introduction

Interpreting the behavior of other people is indispensable for everyday life. It is
something that we do constantly, on a daily basis, and it helps us not only to
make sense of human behavior, but also to predict it and—to a certain extent—
to control it. How exactly do we manage that? That is not currently known,
but many have argued that the ability to ascribe mental states to others and to
reason about such mental states is a key component of our capacity to under-
stand human behavior. In particular, all social transactions, from engaging in
commerce and negotiating to making jokes and empathizing with other people’s
pain or joy, appear to require at least a rudimentary grasp of common-sense
psychology (CSP), i.e., a large body of truisms such as the following: When an
agent a (1) wants to achieve a certain state of affairs p, and (2) believes that
some action c can bring about p, and (3) a knows how to carry out c; then,
ceteris paribus,1 a will carry out c; when a sees that p, a knows that p; when a
fears that p and a discovers that p is the case, a is disappointed; and so on.

Artificial agents without a mastery of CSP would be severely handicapped in
their interactions with humans. This could present problems not only for artificial
agents trying to interpret human behavior, but also for artificial agents trying
to interpret the behavior of one another. When a system exhibits a complex
but rational behavior, and detailed knowledge of its internal structure is not
1 Assuming that a is able to carry out c, that a has no conflicting desires that override

his goal that p; and so on.
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available, the best strategy for predicting and explaining its actions might be to
analyze its behavior in intentional terms, i.e., in terms of mental states such as
beliefs and desires (regardless of whether the system actually has genuine mental
states; for the purposes of this work we take a thoroughly instrumentalist view
of mental states). Mentalistic models are likely to be particularly apt for agents
trying to manipulate the behavior of other agents.

Any computational treatment of CSP will have to integrate action and cog-
nition. Agents must be able to reason about the causes and effects of various
events, whether they are non-intentional physical events or intentional events
brought about by their own agency. More importantly, they must be able to
reason about what others believe or know about such events. To that end, we
present a system which combines and adapts ideas drawn from the event calcu-
lus and from multi-agent epistemic logics. It is based on multi-sorted first-order
logic extended with subsorting, epistemic operators for perception, belief, and
knowledge, and mechanisms for reasoning about causation and action. Using
subsorting, we formally model agent actions as types of events, which enables us
to use the resources of the event calculus to represent and reason about agent
actions. The usual axioms of the event calculus are encoded as common knowl-
edge, suggesting that people have an understanding of the basic folk laws of
causality (innate or acquired), and are indeed aware that others have such an
understanding.

It is important to be clear about what we hope to accomplish through the
present work. In general, any logical system or methodology capable of repre-
senting and reasoning about intentional notions such as knowledge can have at
least three different uses. First, it can serve as a tool for the specification, analy-
sis, and verification of rational agents. Second, in tandem with some appropriate
reasoning mechanism, it can serve as a knowledge representation framework, i.e.,
it can be used by artificial agents to represent their own “mental states”—and
those of other agents—and to deliberate and act in accordance with those states
and their environment. Finally, it can be used to provide formal models of certain
interesting cognitive phenomena. One intended contribution of our present work
is of the third sort, namely, to provide a formal model of false-belief attributions,
and, in particular, a description of the logical competence of an agent capable
of passing a false-belief task. It addresses questions such as the following: What
sort of principles is it plausible to assume that an agent has to deploy in order
to be able to succeed on a false-belief task? What is the depth and complexity
of the required reasoning? Can such reasoning be automated, and if so, how?
These questions have not been taken up in detail in the relevant discussions in
cognitive science and the philosophy of mind, which have been couched in overly
abstract and rather vague terms. Formal computational models such as the one
we present here can help to ground such discussions, to clarify conceptual issues,
and to begin to answer important questions in a concrete setting.

Although the import of such a model is primarily scientific, there can be
interesting engineering implications. For instance, if the formalism is sufficiently
expressive and versatile, and the posited computational mechanisms can be au-



Propositional attitudes and causation 3

tomated with reasonable efficiency, then the system can make contributions to
the first two areas mentioned above. We believe that our system has such po-
tential for two reasons. First, the combination of epistemic constructs such as
common knowledge with the conceptual resources of the event calculus for deal-
ing with causation appears to afford great expressive power, as demonstrated by
our formalization. A key technical insight behind this combination is the mod-
elling of agent actions as events via subsorting. Second, procedural abstraction
mechanisms appear to hold significant promise for automation; we discuss this
issue later in more detail.

The remainder of this paper is structured as follows. The next section gives
the formal definition of our system. Section 3 represents the false-belief task in
our system, and section 4 presents a model of the reasoning that is required
to succeed in such a task, carried out in a modular fashion by collaborating
methods. Section 5 presents an encoding of the system in first-order logic with
a view to making reasoning in the system amenable to ATP technology. Finally,
section 6 discusses some related work and concludes.

2 A calculus for representing and reasoning about actions
and mental states

The syntactic and semantic problems that arise when one tries to use classical
logic to represent and reason about intentional notions are well-known. Syn-
tactically, modelling belief or knowledge relationally is problematic because one
believes or knows arbitrarily complex propositions, whereas the arguments of re-
lation symbols are terms built from constants, variables, and function symbols.
(The objects of belief could be encoded by strings, but such representations are
too low-level for most purposes.) Semantically, the main issue is the referen-
tial opacity (or intensionality) exhibited by propositional-attitude operators. In
intensional contexts one cannot freely substitute one coreferential term for an-
other. Broadly speaking, there are two ways of addressing these issues. One is
to use a modal logic, with built-in syntactic operators for intentional notions.
The other is to retain classical logic but distinguish between an object-language
and a meta-language, representing intentional discourse at the object level. Each
approach has its advantages and drawbacks. Retaining classical logic has the im-
portant advantage of efficiency, in that (semi-)automated deduction systems for
classical logic, such as resolution provers—which have made impressive strides
over the last decade—can be used for reasoning. This is the option we have cho-
sen in some previous work [3]. One disadvantage of this approach is that when
the object language is first-order (includes quantification), then notions such as
substitutions and alphabetic equivalence must be explicitly encoded. Depend-
ing on the facilities provided by the meta-language, this does not need to be
overly onerous, but it does require extra effort. The modal-logic approach has
the advantage of solving the syntactic and referential-opacity problems directly,
without the need to distinguish an object-language and a meta-language. In this
work we combine both approaches. The system is formulated (and implemented)
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S ::= Object | Agent | ActionType | Actionv Event | Moment | Boolean | Fluent

f ::=

action : Agent× ActionType→ Action

initially : Fluent→ Boolean

holds : Fluent× Moment→ Boolean

happens : Event× Moment→ Boolean

clipped : Moment× Fluent× Moment→ Boolean

initiates : Event× Fluent× Moment→ Boolean

terminates : Event× Fluent× Moment→ Boolean

prior : Moment× Moment→ Boolean

t ::= x : S | c : S | f(t1, . . . , tn)

P ::= t : Boolean | ¬P | P ∧Q | P ∨Q | P ⇒Q | P ⇔Q |
∀ x : S . P | ∃ x : S . P | S(a, P ) | K(a, P ) | B(a, P ) | C(P )

Fig. 1. The specification of sorts, function symbols, terms, and propositions.

as a properly intensional calculus, with knowledge, belief, etc., represented as sen-
tential operators. For purposes of modeling, specification, and verification, the
system is used in this form. For using the system as a knowledge-representation
framework by artifical agents trying to negotiate the behavior of other agents,
we have encoded the system in first-order logic to make reasoning in it more
amenable to automated theorem-proving methods.

The specification of the syntax of our system appears in figure 1, which
describes the various sorts of our universe (S), the signatures of certain built-in
function symbols (f), and the abstract syntax of terms (t) and propositions (P ).
The symbol v denotes subsorting. Propositions of the form S(a, P ), B(a, P ), and
K(a, P ) should be understood as saying that agent a sees that P is the case,
believes that P , and knows that P , respectively. Propositions of the form C(P )

assert that P is commonly known. Sort annotations will generally be omitted, as
they are easily deducible from the context. We write P [x 7→ t] for the proposition
obtained from P by replacing every free occurrence of x by t, assuming that t
is of a sort compatible with the sort of the free occurrences in question, and
taking care to rename P as necessary to avoid variable capture. We use the infix
notation t1 < t2 instead of prior(t1, t2).

We express the following standard axioms of the event calculus as common
knowledge:

[A1] C(∀ f, t . initially(f) ∧ ¬clipped(0, f, t)⇒ holds(f, t))

[A2] C(∀ e, f, t1, t2 . happens(e, t1) ∧ initiates(e, f, t1) ∧ t1 < t2 ∧ ¬clipped(t1, f, t2)⇒ holds(f, t2))

[A3] C(∀ t1, f, t2 . clipped(t1, f, t2)⇔ [∃ e, t . happens(e, t) ∧ t1 < t < t2 ∧ terminates(e, f, t)])

suggesting that people have a (possibly innate) understanding of basic causality
principles, and are indeed aware that everybody has such an understanding.
In addition to [A1]—[A3], we postulate a few more axioms pertaining to what
people know or believe about causality. First, agents know the events that they
intentionally bring about themselves—that is part of what “action” means. In
fact, this is common knowledge. The following axiom expresses this:
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[A4] C(∀ a, d, t . happens(action(a, d), t)⇒K(a, happens(action(a, d), t)))

The next axiom states that it is common knowledge that if an agent a believes
that a certain fluent f holds at t and he does not believe that f has been clipped
between t and t′, then he will also believe that f holds at t′:

[A5] C(∀ a, f, t, t′ . B(a, holds(f, t)) ∧B(a, t < t′) ∧ ¬B(a, clipped(t, f, t′))⇒B(a, holds(f, t′)))

The final axiom states that if a believes that b believes that f holds at t1 and a
believes that nothing has happened between t1 and t2 to change b’s mind, then
a will believe that b will not think that f has been clipped between t1 and t2:

[A6] ∀ a, b, t1, t2, f . [B(a,B(b, holds(f, t1))) ∧B(a,¬∃ e, t . B(b, happens(e, t)) ∧
B(b, t1 < t < t2) ∧B(b, terminates(e, f, t)))]⇒B(a,¬B(b, clipped(t1, f, t2)))

This captures a form of closed-world reasoning, for it could well be the case that,
in fact, b has come to believe that something has happened between t and t′ that
terminated f , and therefore no longer believes that f holds. But if a believes
that there have been no such events, then it is reasonable for a to assume that
b will not believe that f has been clipped.

In addition to the usual introduction and elimination rules for first-order
predicate logic with equality, we will make use of the following inference rules:

[R1]
C(S(a, P )⇒K(a, P ))

[R2]
C(K(a, P )⇒B(a, P ))

C(P ) [R3]
K(a1,K(a2,K(a3, P )))

K(a, P ) [R4]
P

[R1] says that it is common knowledge that visual perception is a justified source
of knowledge. In other words, it is commonly known that if I see that P , I
know P .2 [R2] says that it is commonly known that knowledge requires belief,
while [R3] captures an essential property of common knowledge. Usually com-
mon knowledge of a proposition P is taken to mean that everybody knows that
P , everybody knows that everybody knows that P , and so on ad infinitum. This
is captured by recursive rules that allow us to “unfold” the common-knowledge
operator arbitrarily many times. However, this viewpoint is quite problematic for
finite knowers of limited cognitive capacity. After three or four levels of nesting,
iterated knowledge claims become unintelligible. Because in the present setting
we are concerned with cognitive plausibility, we refrain from characterizing com-
mon knowledge in the customary strong form, imposing instead limit of three
levels of iteration, as indicated in [R3].3 [R4] is a veracity rule for knowledge.

The following rules can now be readily derived:
2 We ignore here the issue of perceptual illusions.
3 Although there is not enough space here for a full discussion, we point out that

third-order epistemic and doxastic states (as opposed to n-order for n > 3) are often
held to be at a level of iteration sufficient for general accounts of human thinking,
e.g., see Dennett (1978). This is not to say that fairly realistic scenarios involving
iteration of 4 or even 5 levels cannot be devised, but in the present paper we have
used 3 for the purpose of modeling the false-belief task.
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C(P ) [DR1]
K(a1,K(a2, P ))

C(P ) [DR2]
K(a, P )

C(P ) [DR3]
P

S(a, P ) [DR4]
K(a, P )

K(a, P ) [DR5]
B(a, P )

We next have the following three rules:
[R5]

C(K(a, P1⇒P2)⇒K(a, P1)⇒K(a, P2))

[R6]
C(B(a, P1⇒P2)⇒B(a, P1)⇒B(a, P2))

[R7]
C(C(P1⇒P2)⇒C(P1)⇒C(P2))

From these we can easily derive the so-called Kripke (“K”) rules for knowl-
edge, belief, and common knowledge:

K(a, P1⇒P2) K(a, P1) [DR6]
K(a, P2)

We likewise have derived rules [DR7] and [DR8] for belief and common knowl-
edge, respectively (omitted here). We also assume that a few straightforward
tautologies are common knowledge, and the self-explanatory [R11]:

[R8]
C((∀ x . P )⇒P [x 7→ t])

[R9]
C([P1⇔P2]⇒¬P2⇒¬P1)

[R10]
C([P1 ∧ · · · ∧ Pn⇒P ]⇒ [P1⇒ · · · ⇒Pn⇒P ])

B(a, P1) B(a, P2) [R11]
B(a, P1 ∧ P2)

Note that usually it is postulated that every tautology is common knowledge.
If we took that as a principle, the presentation of the system could be somewhat
simplified. However, such a principle (and other “logical omniscience” principles
like it) is wildly implausible, as has often been pointed out. Since we do not
accept such unrestricted principles, we only posit certain specific tautologies
that are intuitively deemed as obvious. While this is not a general solution, it
nevertheless averts the cognitive implausibility of the unrestricted rules, and also
serves to isolate the logical knowledge that we need to attribute to agents for a
specific reasoning problem.

The following rules are now readily derived:4

K(a, ∀ x . P ) [DR9]
K(a, P [x 7→ t])

B(a, ∀ x . P ) [DR10]
B(a, P [x 7→ t])

C(∀ x . P ) [DR11]
C(P [x 7→ t])

B(a1,K(a2, P )) [DR12]
B(a1,B(a2, P ))

K(a1,K(a2, P1⇒P2)) K(a1,K(a2, P1)) [DR13]
K(a1,K(a2, P2))

B(a1,B(a2, P1⇒P2)) B(a1,B(a2, P1)) [DR14]
B(a1,B(a2, P2))

K(a1,K(a2, P1⇔P2)) K(a1,K(a2,¬P2)) [DR15]
K(a1,K(a2,¬P1))

B(a1,B(a2, P1⇔P2)) B(a1,B(a2,¬P2)) [DR16]
B(a1,B(a2,¬P1))

K(a1,K(a2, [P1 ∧ · · · ∧ Pn]⇒P ))

K(a1,K(a2, P1)) · · · K(a1,K(a2, Pn)) [DR17]
K(a1,K(a2, P ))

B(a1,B(a2, [P1 ∧ · · · ∧ Pn]⇒P ))
B(a1,B(a2, P1)) · · · B(a1,B(a2, Pn)) [DR18]

B(a1,B(a2, P ))

B(a, P1 ∧ P2 ∧ P3⇒P4)
B(a, P1) B(a, P2) B(a, P3) [DR19]

B(a, P4)

The system presented in this section has been implemented in the form of
a denotational proof language similar to the Athena system [2], but with the
operators for belief, knowledge, etc., directly available as propositional construc-
tors. Note that this system is altogether different from its encoding in Athena
described in section 5.
4 Derivation proofs are omitted, but can be obtained (along with the computer imple-

mentation of the system) by contacting the authors.



Propositional attitudes and causation 7

3 Encoding the false-belief task

False-belief scenarios can be regarded as the drosophila of computational theories
of mind. Experiments with false beliefs were first carried out by Wimmer and
Perner [12]. In a typical scenario, a child (we will call her Alice) is presented
with a story in which a character (we will call him Bob) places an object (say,
a cookie) in a certain location l1, say in a particular kitchen cabinet. Then Bob
leaves, and during his absence someone else (say, Charlie) removes the object
from its original location l1 and puts it in a different location l2 (say, a kitchen
drawer). Alice is then asked to predict where Bob will look for the object when he
gets back, the right answer, of course, being the original location—the cabinet.
In this section we show how to formalize this scenario in our calculus. In the
next section we will present a formal explanation as to how Alice can come to
acquire the correct belief about Bob’s false belief.

We introduce the sort Location and the following function symbols specifi-
cally for reasoning about the false-belief task:

places : Object× Location→ ActionType

moves : Object× Location× Location→ ActionType

located : Object× Location→ Fluent

Intuitively, action(a, places(o, l)) signifies a’s action of placing object o in
location l, while action(a,moves(o, l1, l2)) is a’s action of moving object o from
location l1 to location l2. It is common knowledge that placing o in l initiates
the fluent located(o, l):

[D1] C(∀ a, t, o, l . initiates(action(a, places(o, l)), located(o, l), t))

It is likewise known that if an object o is located at l1 at a time t, then the act
of moving o from l1 to l2 results in o being located at l2:

[D2] C(∀ a, t, o, l1, l2 . holds(located(o, l1), t)⇒ initiates(action(a,moves(o, l1, l2)), located(o, l2), t))

If, in addition, the new location is different from the old one, the move
terminates the fluent located(o, l1):

[D3] C(∀ a, t, o, l1, l2 . holds(located(o, l1), t) ∧ l1 6= l2⇒
terminates(action(a,moves(o, l1, l2)), located(o, l1), t))

The following axiom captures the constraint that an object cannot be in more
than one place at one time; this is also common knowledge:

[D4] C(∀ o, t, l1, l2 . holds(located(o, l1), t) ∧ holds(located(o, l2), t)⇒ l1 = l2)

We introduce three time moments that are central to the narrative of the
false-belief task: beginning , departure, and return. The first signifies the time
point when Bob places the cookie in the cabinet, while departure and return
mark the points when he leaves and comes back, respectively. We assume that
it’s common knowledge that these three time points are linearly ordered in the
obvious manner:

[D5] C(beginning < departure < return).
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We also introduce two distinct locations, cabinet and drawer :

[D6] C(cabinet 6= drawer).

Finally, we introduce a domain Cookie as a subsort of Object, and declare a
single element of it, cookie. It is a given premise that, in the beginning, Alice
sees Bob place the cookie in the cabinet:

[D7] S(Alice, happens(action(Bob, places(cookie, cabinet)), beginning)).

4 Modeling the reasoning underlying false-belief tasks,
and automating it via abstraction

At this point we have enough representational and reasoning machinery in place
to infer the correct conclusion from a couple of obvious premises. However, a
monolithic derivation of the conclusion from the premises would be unsatisfac-
tory, as it would not give us a story about how such reasoning can be dynamically
put together. Agents must be able to reason about the behavior of other agents
efficiently. It is not at all obvious how efficiency can be achieved in the absence
of mechanisms for abstraction, modularity, and reusability.

We can begin to address both issues by pursuing further the idea of derived
inference rules, and by borrowing a page from classic work in cognitive science
and production systems. Suppose that we had a mechanism which enabled the
derivation of not only schematic inference rules, such as the ones that we pre-
sented in section 2, but derived inference rules allowing for arbitrary computation
and search. We could then formulate generic inference rules, capable of being
applied to an unbounded (potentially infinite) number of arbitrarily complex
concrete situations.

Our system has a notion of method that allows for that type of abstraction
and encapsulation. Methods are derived inference rules, not just of the schematic
kind, but incorporating arbitrary computation and search. They are thus more
general than the simple if-then rules of production systems, and more akin to the
knowledge sources (or “demons”) of blackboard systems [10]. They can be viewed
as encapsulating specialized expertise in deriving certain types of conclusions
from certain given information. They can be parameterized over any variables,
e.g., arbitrary agents or time points.

A key role in our system is played by an associative data structure (shared
by all methods) known as the assumption base, which is an efficiently indexed
collection of propositions that represent the collective knowledge state at any
given moment, including perceptual knowledge. The assumption base is capable
of serving as a communication buffer for the various methods. Finally, the control
executive is itself a method, which directs the reasoning process incrementally
by invoking various methods triggered by the contents of the assumption base.

We describe below three general-purpose methods for reasoning in the calcu-
lus we have presented. With these methods, the reasoning for the false-belief task
can be performed in a handful of lines—essentially with one invocation of each
of these methods. We stress that these methods are not ad hoc or hardwired
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to false-belief tasks. They are generic, and can be reused in any context that
requires reasoning about other minds and satisfies the relevant preconditions.
In particular, the methods do not contain or require any information specific to
false-belief tasks.

– Method 1: This method, which we call M1, shows that when an agent a1 sees
an agent a2 perform some action-type α at some time point t, a1 knows that
a2 knows that a2 has carried out α at t. M1 is parameterized over a1, a2, α,
and t:
1. The starting premise is that a1 sees a2 perform α at t:

S(a1, happens(action(a2, α), t)) (1)

2. Therefore, a1 knows that the corresponding event has occurred at t:

K(a1, happens(action(a2, α), t)) (2)

This follows from the preceding premise and [DR4].
3. From [A4] and [DR2] we obtain:

K(a1, ∀ a, α, t . happens(action(a, α), t)⇒K(a, happens(action(a, α), t))) (3)

4. From (3) and [DR9] we get:

K(a1, happens(action(a2, α), t)⇒K(a2, happens(action(a2, α), t))) (4)

5. From (4), (2), and [DR6] we get:

K(a1,K(a2, happens(action(a2, α), t))) (5)

– Method 2: The second method, M2, shows that when (1) it is common knowl-
edge that a certain event e initiates a fluent f ; (2) an agent a1 knows that
an agent a2 knows that e has happened at a time t1; (3) it is commonly
known that t1 < t2; and (4) a1 knows that a2 knows that nothing happens
between t1 and t2 to terminate the fluent f ; then a1 knows that a2 knows
that f holds at t2. M2 is parameterized over a1, a2, e, f , t1, and t2:
1. The starting premises are the following:
• P1: C(∀ t . initiates(e, f, t));

• P2: K(a1,K(a2, happens(e, t1))); P3 : C(t1 < t2).

• P4:
K(a1,K(a2,¬∃ e, t . happens(e, t) ∧
t1 < t < t2 ∧ terminates(e, f, t))).

2. From P1, [DR11], and [DR1], we get:

K(a1,K(a2, initiates(e, f, t1))) (6)

3. From P3 and [DR1] we get:

K(a1,K(a2, t1 < t2)) (7)

4. From [A3], [DR11], and [DR1] we get:

K(a1,K(a2, clipped(t1, f, t2)⇔∃ e, t . happens(e, t) ∧
t1 < t < t2 ∧ terminates(e, f, t))) (8)
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5. From (8), P4, and [DR15] we conclude that a1 knows that a2 knows that
f has not been clipped between t1 and t2:

K(a1,K(a2,¬clipped(t1, f, t2))) (9)

6. From [A2], [DR11], and [DR1] we get:
K(a1,K(a2, [happens(e, t1) ∧ initiates(e, f, t1) ∧

t1 < t2 ∧ ¬clipped(t1, f, t2)]⇒ holds(f, t2))) (10)

7. From (10), premise P2, (6), (7), (9), and [DR17] we get:

K(a1,K(a2, holds(f, t2))) (11)

– Method 3: The last method,M3, shows that when (1) it is common knowledge
that t1 is prior to t2; (2) an agent a1 knows that an agent a2 knows that a
fluent f holds at t1; and (3) a1 believes that nothing happened between t1
and t2 that would cause a2 to believe that f no longer holds; then a1 believes
that a2 believes that f holds at t2:
1. The starting premises are:
• P1 : C(t1 < t2);P2 : K(a1,K(a2, holds(f, t1)));

P3 : B(a1,¬∃e, t . B(a2, happens(e, t)) ∧B(a2, t1 < t < t2) ∧B(a2, terminates(e, f, t))).
2. From premise P2, [DR5], and [DR12], we get:

B(a1,B(a2, holds(f, t1))) (12)

3. From [A6], [DR3], and universal specialization we get:
[B(a1,B(a2, holds(f, t1))) ∧B(a1,¬∃ e, t . B(a2, happens(e, t)) ∧B(a2, t1 < t < t2) ∧

B(a2, terminates(e, f, t)))]⇒B(a1,¬B(a2, clipped(t1, f, t2))) (13)

4. By P3, (13), (12), conjunction introduction, and modus ponens, we get:
B(a1,¬B(a2, clipped(t1, f, t2))) (14)

5. From [A5], [DR11], and [DR2] we get:
K(a1, [B(a2, holds(f, t1)) ∧B(a2, t1 < t2) ∧ ¬B(a2, clipped(t1, f, t2))]⇒B(a2, f))(15)

6. From (15) and [DR5] we get:
B(a1, [B(a2, holds(f, t1)) ∧B(a2, t1 < t2) ∧

¬B(a2, clipped(t1, f, t2))]⇒B(a2, holds(f, t2)) (16)

7. From P1, [DR1], [DR5], and [DR12] we get:
B(a1,B(a2, t1 < t2)) (17)

8. From (16), (12), (17), (14), and [DR19] we get:
B(a1,B(a2, holds(f, t2))) (18)

The correct conclusion for the false-belief task, produced by our implementation
in a fraction of a second, is now obtained in the following manner:
1. MethodM1 fires, invoked with Alice, Bob, the action type places(cookie, cabinet),

and time point beginning .
2. Axiom [D1] is repeatedly instantiated (via [DR11]) with Bob, cookie, and

cabinet .
3. Method M2 fires, invoked with Alice, Bob, the action that Bob has placed

the cookie in the cabinet, the fluent that the cookie is located in the cabinet,
and the two time points beginning and departure.

4. Method M3 fires, invoked with Alice, Bob, the fluent that the cookie is
located in the cabinet, and the two time points departure and return.
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5 Embedding the calculus in first-order logic

Despite their significantly greater expressivity and modeling power, systems com-
bining modal operators and quantification are often met with resistance from AI
researchers on the grounds that reasoning in them is hopelessly inefficient. As we
mentioned in the introduction, one of our chief aims is to provide an expressive
formal framework for the rigorous modeling and analysis of interesting cognitive
phenomena involving the propositional attitudes, so for our purposes the lack
of automation is not a vitiating factor. Nevertheless, the problem is obviously
of crucial importance, particularly insofar as such a framework is to be used by
artificial agents in order to interpret, predict, or influence the behavior of other
agents. We have already suggested one avenue for achieving a certain degree of
automation, namely, the introduction of specialized reasoning methods. When a
sufficiently large number of such methods are available concurrently, as demons
running on a highly parallel architecture, it is plausible that reasoning of the
kind that is required for the false-belief task can be carried out efficiently. In
this section we sketch out an alternative approach to automating reasoning in
our framework.

It is worth emphasizing from the outset that theoretically efficient reason-
ing does not seem possible even for propositional logic (on the assumption that
P 6= NP). In practice, however, there are reasoning systems that perform fairly
well even in the case of first-order logic. In particular, resolution-based auto-
mated theorem provers (ATPs) such as Vampire [20] and Spass [22] have made
significant progress over the last decade, and it is not unreasonable to hope that
ATP technology will continue to improve. In fact, first-order logic has long been
an attractive option for AI researchers working on propositional-attitude sys-
tems, because the language of first-order logic is “the lingua franca of knowledge
representation,” and because “there is good theorem-proving technology for this
language” [14, p. 2]. Accordingly, several researchers have tried to formalize in-
tensional logics in first-order logic by taking a so-called “syntactic” approach,
whereby an intensional propositional operator (such as knowledge or belief) be-
comes a first-order predicate symbol that takes as an argument a term denoting
a proposition. However, naive syntactic formalizations of first-order intensional
logics in classical first-order logic using devices for quotation and unquotation
are prone to inconsistency, as was shown by R. Montague [13], R. Thomason
[19], and others. While J. des Rivières and H. J. Levesque [9] have shown how
to avoid such inconsistency by essentially restricting the range over which sen-
tence variables range in the various intensional axiom schemas (a result that was
later somewhat extended [14]), the exercise, when carried out in unsorted first-
order logic, is still delicate and faces certain difficulties. These difficulties can
be avoided by deploying a sort discipline to impose a sharp separation between
object language and metalanguage, thus precluding the type of self-reference
that is familiar from the liar paradox and which ultimately leads to the afore-
mentioned inconstistency results. (This kind of separation between object- and
meta-language, of course, was pioneered by Tarski precisely in order to avert the
type of self-reference responsible for the truth paradoxes.)
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Γ ` P Γ `Q [∧-I]
Γ ` P ∧Q

Γ ` P ∧Q [∧-E1]
Γ ` P

Γ ` P ∧Q [∧-E2]
Γ `Q

Γ ` P [∨-I1]
Γ ` P ∨Q

Γ `Q [∨-I2]
Γ ` P ∨Q

Γ ` P1 ∨ P2 Γ, P1 `Q Γ,P2 `Q [∨-E]
Γ `Q

Γ,P `Q [⇒-I]
Γ ` P ⇒Q

Γ ` P ⇒Q Γ ` P [⇒-E]
Γ `Q

Γ ` ¬¬P [¬-E]
Γ ` P

Γ, P ` ⊥ [¬-I]
Γ ` ¬P

Γ ` P [∀-I]
Γ ` ∀ x . P

provided that x 6∈ FV (Γ )

Γ ` ∀ x . P [∀-E]
Γ ` P [x 7→ t]

[R1]
Γ `C(S(a, P )⇒K(a, P ))

Γ `K(a, P ) [R4]
Γ ` P

Fig. 2. Sample inference rules for a sequent-based version of the system of section 2.

In the remainder of this section we will pursue this kind of syntactic route.
Due to the explicit separation between object- and meta-language, our effort
will have to be a bit more involved than the usual syntactic approaches—we
will encode the entire proof system for our original intensional system. Never-
theless, we will stay entirely within classical first-order logic, which means that
the various powerful ATPs mentioned above will be available for reasoning in
the encoded system. This suggests a two-tiered use of our framework. For pur-
poses of modeling and analysis, we can use the original implementation, which
is properly intensional in that the various modal operators are directly applied
to sentences. For purposes of automated reasoning, we can resort to the encoded
system in multi-sorted first-order logic and help ourselves to available ATPs.
Translating a specific problem description to the encoded system can be per-
formed automatically. The encoding given below is carried out in Athena [2], an
interactive theorem-proving system for multi-sorted first-order-logic that comes
integrated with both Vampire and Spass. A brief presentation of Athena’s syntax
and semantics can be found elsewhere [4, ch. 2].

To facilitate the task, we will encode a sequent-calculus presentation of our
system, rather than a natural-deduction version of it, since derivation in sequent
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calculi is easier to formalize. The transcription of the inference rules of section 2
in sequent form is straightforward. Sample sequent rules are shown in figure 2.
The substitution operation P [x 7→ t] is partial, defined only when variable cap-
ture does not occur, in which case P [x 7→ t] denotes the proposition obtained
from P by replacing every free occurrence of variable x by the term t. We start
by introducing appropriate syntactic domains for variables, terms, and propo-
sitions. Athena provides the built-in domain Ide (for “identifiers”) as a generic
variable category, precisely in order to facilitate the representation of formal
systems. Typical identifiers are strings prefixed by ’, e.g., ’x and ’foo:

>(exists ?x (= ?x ’foo))

Proposition: (exists ?x:Ide

(= ?x ’foo))

Thus, assuming a domain Symbol for function symbols such as action and
clipped , we can readily encode terms as follows:

(datatype Term

(Var Ide)

(App Symbol (List-Of Term)))

This simply says that a term is either a variable (an application of the constructor
Var to an identifier), or else a function application of a function symbol to a list
of terms. Thus, the term happens(e,t), where e and t are variables, is represented
by the following:

(App happens (Cons (Var ’e) (Cons (Var ’t) Nil))),

where Cons and Nil are the two constructors of the polymorphic datatype con-
structor List-Of. A substitution operation is declared as follows:

(declare sub (-> (Ide Term Term) Term))

The intended meaning is that (sub ?x ?t ?s) is the term obtained from ?s by
replacing every occurrence of ?x by ?t. It is convenient to have a version that
can operate on an entire list of terms:

(declare subLst (-> (Ide Term (List-Of Term)) (List-Of Term)))

The two functions are defined by the following four universally quantified iden-
tities:

(define sub-axiom-1

(forall ?x ?t

(= (sub ?x ?t (Var ?x)) ?t)))

(define sub-axiom-2

(forall ?x ?t ?f ?terms

(= (sub ?x ?t (App ?f ?terms))

(App ?f (subLst ?x ?t ?terms)))))
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(define subLst-axiom-1

(forall ?x ?t

(= (subLst ?x ?t Nil) Nil)))

(define subLst-axiom-2

(forall ?x ?t ?s ?rest

(= (subLst ?x ?t (Cons ?s ?rest))

(Cons (sub ?x ?t ?s)

(subLst ?x ?t ?rest)))))

(assert sub-axiom-1 sub-axiom-2 subLst-axiom-1 subLst-axiom-2)

Sorts are introduced as elements of a datatype:

(datatype Sort

ObjectSort

AgentSort

...

FluentSort)

We introduce a sort function from Symbol to sort signatures:

(declare symbol-sort (-> (Symbol) (Pair-Of (List-Of Sort) Sort)))

and a function term-has-sort and predicate prop-well-sorted for performing
sort (type) checking on terms and propositions, respectively. We omit the details
here, which are not complicated.5 Given a domain of Agents, propositions are
defined as follows:

(domain Agent)

(datatype Prop

(atom Term)

(neg Prop)

(conj Prop Prop)

(disj Prop Prop)

(cond Prop Prop)

(all Ide Prop)

(some Ide Prop)

(common Prop)

(sees Agent Prop)

(believes Agent Prop)

(knows Agent Prop))

This directly mirrors the structure of the proposition grammar shown in figure 1
(except that there are no explicit sort annotations for quantified variables). The
formalization of matters involving free variables is standard; we present a small
sample:

5 Note, however, that sort checking here needs to be done with respect to a sort
context, i.e., a mapping from symbols to sorts, since variables are not explicitly
annotated with their sorts.
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(declare occurs (-> (Ide Term) Boolean))

(declare occursLst (-> (Ide (List-Of Term)) Boolean))

(define occurs-axiom-1

(forall ?x ?y

(iff (occurs ?x (Var ?y))

(= ?x ?y))))

(define occurs-axiom-2

(forall ?x ?f ?terms

(iff (occurs ?x (App ?f ?terms))

(occursLst ?x ?terms))))

(define occursLst-axiom-1

(forall ?x

(not (occursLst ?x Nil))))

(define occursLst-axiom-2

(forall ?x ?t ?rest

(iff (occursLst ?x (Cons ?t ?rest))

(or (occurs ?x ?t)

(occursLst ?x ?rest)))))

(declare occursFree (-> (Ide Prop) Boolean))

(declare occursFreeLst (-> (Ide (List-Of Prop)) Boolean))

(define occursFree-atom-axiom

(forall ?x ?t

(iff (occursFree ?x (atom ?t))

(occurs ?x ?t))))

(define occursFree-conj-axiom

(forall ?x ?p ?q

(iff (occursFree ?x (conj ?p ?q))

(or (occursFree ?x ?p)

(occursFree ?x ?q)))))

(define occursFree-all-axiom

(forall ?x ?y ?p

(iff (occursFree ?x (all ?y ?p))

(and (occursFree ?x ?p)

(not (= ?x ?y))))))

A sequent is formalized as pair of a list of propositions (the context) and a single
proposition (the conclusion):

(declare sequent (-> ((List-Of Prop) Prop) Boolean))



16 Konstantine Arkoudas and Selmer Bringsjord

Finally, the inference rules of the system (figure 2) are captured by straightfor-
ward axioms. We demonstrate with conjunction introduction, universal general-
ization, and the truth requirement on knowledge:

(define conj-intro

(forall ?Gamma ?p ?q

(if (and (sequent ?Gamma ?p)

(sequent ?Gamma ?q))

(sequent ?Gamma (conj ?p ?q)))))

(define ugen

(forall ?Gamma ?x ?p

(if (and (sequent ?Gamma ?p)

(not (occursFreeLst ?x ?Gamma)))

(sequent ?Gamma (all ?x ?p)))))

(define R4-sequent

(forall ?Gamma ?a ?p

(if (sequent ?Gamma (knows ?a ?p))

(sequent ?Gamma ?p))))

Now let p be any proposition in the original intensional system, and let p̂ be the
Athena term of sort Prop denoting its translation into the first-order theory T
we have specified here. (The translation is trivial, requiring no more than linear
time in the size of p.) Then, to derive a proposition p from a set of propositions
{p1, . . . , pn} in the original system, it suffices to derive the sequent

[p̂1, . . . , p̂n] ` p̂ (19)

from the theory T (where T contains all the definitions we have given above,
and axioms such as conj-intro and ugen, describing the behaviors of the in-
ference rules of the intensional system). Since (19) is a first-order formula and
the theory T is also a set of first-order formulas, the latter problem is amenable
to classical first-order techniques and ATP systems. Moreover, special-purpose
proof methods can be programmed in Athena to further aid the automation of
reasoning in this system.

6 Related work and conclusions

We have presented a formal system for representing and reasoning about certain
important mental states, and used it to provide a formal analysis of false-belief
tasks. Such tasks have been extensively discussed, particularly in the debate
between theory-theory and simulation [7], but there are few rigorous models
to be found. The only computational treatments of which we are aware are by
Bello, Bignoli, and Cassimatis [5]; and by Watt [21]. Neither is based on a formal
inference system. Goodman et al. [12] present a rational analysis of false belief
reasoning based on causal Bayesian models.

Technically, our system is a multi-sorted multi-modal first-order logic. There
is a growing recognition of the importance of quantification in epistemic contexts.
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Propositional multi-modal logics are just not sufficiently expressive. For instance,
they cannot capture the difference between de dicto and de re knowledge. The
versatility of first-order logic is necessary, alongside constructs such as common
knowledge.

Our approach has been thoroughly proof-theoretic; we have not given a
model-theoretic semantics for our logic. Coming up with an appropriate for-
mal semantics for propositional attitudes is exceedingly difficult, and should not
hold back experimentation with and implementation of various proof systems.
The usual possible-world semantics [11] are mathematically elegant and well-
understood, and they can be a useful tool in certain situations (e.g., in security
protocol analysis). But they are notoriously implausible from a cognitive view-
point. (Indeed, knowledge, belief, desire, intention, provability, etc., all receive
the exact same formal analysis in possible-world semantics.) In an apt assess-
ment of the situation, Anderson [1] wrote that epistemic logic “has been a pretty
bleak affair.” Fagin et al. [11] describe various attempts to deal with some of
the problems arising in a possible-worlds setting, none of which has been widely
accepted as satisfactory.

At any rate, even in the standard Kripke framework, the question of how
to combine quantification with epistemic constructs (particularly with common
knowledge) is a difficult open problem: there have been no complete recursive
axiomatizations, and indeed such logics are not even recursively enumerable [24].
Some decidable fragments have been investigated, such as the space of monodic
formulas [18], but such restrictions limit expressivity, which in our view is a more
important consideration. Indeed, we see no reason to insist on a computationally
tractable—or even decidable—formalism, or on a complete logic, at the expense
of expressivity. First-order logic is undecidable, but it is routinely used for the
analysis and verification of a wide variety of extensional systems, by deploying
interactive theorem-proving systems. Higher-order logic is both undecidable and
incomplete, but it too is used widely for similar purposes. Things need not
be different when it comes to the representation, analysis, and verification of
rational agents. Our concern here has been to design and implement a fairly
expressive logic that can be readily used for such purposes; and to gain experience
with constructing machine-checkable proofs in that logic, and particularly with
writing powerful proof tactics in it.

LORA [25] is a multi-sorted language that extends first-order branching-time
temporal logic with modal constructs for beliefs, desires, and intentions (drawing
on the seminal work of Cohen and Levesque [6], and particularly on the BDI
paradigm that followed it [16]), as well as a dynamic logic for representing and
reasoning about actions. It does not have any constructs for perception or for
common knowledge, and does not allow for the representation of events that are
not actions. Its semantics for the propositional attitudes are standard Kripke
semantics, with the possible worlds being themselves branching time structures.
We are not aware of any implementations of LORA.

CASL (Cognitive Agents Specification Language) [17] is another system which
combines an action theory, defined in terms of the situation calculus, with modal
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operators for belief, desire, and intention. Like LORA, CASL does not have any
constructs for perception or for group knowledge (shared, distributed, or com-
mon). Also like LORA, the semantics of all intensional operators in CASL are
given in terms of standard possible worlds. They are, in fact, explicitly defined in
the higher-order logic PVS [15] by quantifying over states. Insofar as both LORA
and CASL base their treatment of intensional operators on Kripke structures,
they inherit all the conceptual difficulties associated with them. An advantage
of CASL from our viewpoint is that it is implemented and allows for mechanized
proofs, given in PVS. However, PVS is not readily programmable, and the use
of sequents complicates the formulation of tactics. The natural deduction style
of our framework is much more conducive to that task.
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