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Logic/Formal Methods-Based

Al, Computational Cognitive Science, & Computer Science ...
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Two starting papers:

Bringsjord, S.“Logic-Based/Declarative Computational Cognitive
Modeling” in R. Sun, ed., The Cambridge Handbook of Computational
Psychology (Cambridge, UK: Cambridge University Press), 127—-169.

Preprint: http://kryten.mm.rpi.edu/sb_lccm_ab-toc_031607/.pdf
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Decidedly not Bayesian, no use of probability. And wholly astatistical.
Uncertainty handled by strength-factor based reasoning.
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Abstract The original proof of the four-color theorem by Appel and Haken
sparked a controversy when Tymoczko used it to argue that the justification pro-
vided by unsurveyable proofs carried out by computers cannot be a priori. It also
created a lingering impression to the effect that such proofs depend heavily for their
soundness on large amounts of computation-intensive custom-built software. Contra
Tymoczko, we argue that the justification provided by certain computerized
mathematical proofs is not fundamentally different from that provided by survey-
able proofs, and can be sensibly regarded as a priori. We also show that the
aforementioned impression 1s mistaken because it fails to distinguish between proof
search (the context of discovery) and proof checking (the context of justification).
By using mechanized proof assistants capable of producing certificates that can be
independently checked, it is possible to carry out complex proofs without the need
to trust arbitrary custom-written code. We only need to trust one fixed, small, and
simple piece of software: the proof checker. This is not only possible in principle,
but 1s 1n fact becoming a viable methodology for performing complicated mathe-
matical reasoning. This is evinced by a new proof of the four-color theorem that
appeared in 2005, and which was developed and checked in its entirety by a
mechanical proof system.
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Must have machine-checked proofs, by verified proof checker.
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Avoid Limitations of
Elementary Logic-Based R&D

Betting the farm on one or two logical systems
(e.g., FOL, propositional calculus)—or for that
matter on a particular theory within a logical
system (e.g. Game Theory, probability calculus).
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Avoid Limitations of
Elementary Logic-Based R&D

Betting the farm on one or two logical systems
(e.g., FOL, propositional calculus)—or for that
matter on a particular theory within a logical
system (e.g. Game Theory, probability calculus).

VErsus

We know humans operate in ways that range
across an infinite number of logical systems, so we
need a formal theory, and a corresponding set of
processes, that captures the meta-coordination of
myriad logical systems.
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. . ’ @ Bacl'_(g"?“"d Simon seemed to be
Inspired by Piaget’s oet starting to face up to the
five-stage view. l daunting reality shortly

” before his death.
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Relevant General VWarning:
Your Formalism Dictates VWhat is Possible
to Model and Simulate
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Relevant General VWarning:
Your Formalism Dictates VWhat is Possible
to Model and Simulate

® Well-learned within formal logic, where e.g. we have long known,
courtesy of many theorems, that for a fixed target T to be modeled,

some logics will allow representation of key features in T, and some,
no matter what, won't.

Wednesday, October 21, 2009



Relevant General VWarning:
Your Formalism Dictates VWhat is Possible
to Model and Simulate

® Well-learned within formal logic, where e.g. we have long known,
courtesy of many theorems, that for a fixed target T to be modeled,

some logics will allow representation of key features in T, and some,
no matter what, won't.

® And this is true across the board—so if T is the deception of
adversaries of the US, and therefore they (at the very least) believe
that by performing certain actions the US will come to believe that
her adversaries have certain beliefs, a formalism without provision for

the representation and mechanization of iterated beliefs is
inadequate.
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® Well-learned within formal logic, where e.g. we have long known,
courtesy of many theorems, that for a fixed target T to be modeled,
some logics will allow representation of key features in T, and some,
no matter what, won't.

® And this is true across the board—so if T is the deception of
adversaries of the US, and therefore they (at the very least) believe
that by performing certain actions the US will come to believe that
her adversaries have certain beliefs, a formalism without provision for
the representation and mechanization of iterated beliefs is
inadequate.

® Modeling and simulation applied to asymmetrical/irregular conflict/
warfare, without provision in the formalism for iterated beliefs
(including of a religious nature), argumentation, goals, fears,
extensive knowledge, etc. is a very dangerous thing if deployed to
the exclusion of more expressive techniques.
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On Paradoxes ...




Typically ...

a contradiction is deduced from a fixed set of premises.
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a contradiction is deduced from a fixed set of premises.

E.g., the Barber (= Russell’s) Paradox ...

Fron "32VY(Ery & —Eyy)

Wednesday, October 21, 2009



Typically ...

a contradiction is deduced from a fixed set of premises.

E.g., the Barber (= Russell’s) Paradox ...

Fron "32VY(Ery & —Eyy)

(At least in reasoning-and-decision-making, handling
paradoxes sometimes taken as requirement. E.g., Pollock
analysis and surmounting of Paradox of the Preface w/ Oscar.)
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But sometimes ...

a contradiction is deduced from
n distinct arguments, each with a
different fixed set of premises.

E.g., Newcomb’s Paradox, and ...
the Chain Store Paradox.

Wednesday, October 21, 2009



So:

- ¢ O+ =

where
d U P’

true or at least very plausible.
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The Chain Store Paradox ...
(Selten 1978)
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One Stage; Two Players

t0 tl t2 t3 t4 t5
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(o5
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\ /
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Two Stage; Three Players

@ Enter > ~ Acquiesce
NGEING
Stay Out Stay Out
4 Fight Acquiesce
Enter
E2 > CS Fight

Stay Out Fight l Acquiesce @ \Enier
L3 o]
| 7 Stay Out

’ ; 5 Flghtl &Cq”iesce

0

| 0
0
0

—_ N €

NN B

O NN <

N ONDN
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Generating the “Paradox”

O 0 o' o0
where

b U P’

true or at least very plausible.
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Generating the “Paradox”

“Theorem”’: If rational, all Ei must enter, and
CS acquiesce every time they do.

Selten’s “Proof”’: Set n = 20. If E20 chooses
‘Enter; and CS ‘fight, then CS gets 0. If, on the
other hand, CS chooses ‘Aquiesce, CS gets 2.
Ergo by game-theoretic rationality CS must
choose ‘Acquiesce] Game theorists typically
assume that player rationality is Common
Knowledge, so E20 knows that CS is rational
and will acquiesce. Hence E20 enters because

he receives 2 (rather than |). “QED”

\

O 0 o' o0
where

b U P’

true or at least very plausible.
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Generating the “Paradox”

“Theorem”’: If rational, all Ei must enter, and
CS acquiesce every time they do.

Selten’s “Proof”’: Set n = 20. If E20 chooses
‘Enter; and CS ‘fight, then CS gets 0. If, on the
other hand, CS chooses ‘Aquiesce, CS gets 2.
Ergo by game-theoretic rationality CS must
choose ‘Acquiesce] Game theorists typically
assume that player rationality is Common
Knowledge, so E20 knows that CS is rational

and will acquiesce. Hence E20 enters because
he receives 2 (rather than |). “QED”

\

O - o

where

b U P’

“Theorem”: A rational CS will fight time
after time, which will cause a string of entrants
to stay out—after which CS can acquiesce.
Selten’s “Proof”’: A story: If the first several
entrants are fought, others would change their
beliefs, and change from ‘Enter’ to ‘Stay Out.” (If

only 7 of the first 17 entrants stay out, CS is
very well off: 35.) “QED”

o'+ g

true or at least very plausible.
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The Socio-Cognitive Calculus...
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A Precursor: VWMP, ...
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Metareasoning for multi-agent epistemic logics

Konstantine Arkoudas and Selmer Bringsjord

RFI
arkouk,brings}@rpi.edu
g8 erp:

Abstract. Wa ]Jn:w:\ul an eneoding of a saquent caleulus for a mlti-

i i i AL : interartiva |I|c\m:~ Prowving system
a metalanguage
language.

azon about the molti-agent logie an
thecrem proving in the multi-agent logic in
First, it lets u= marshal the highly aficient theorem provers §
zical first-order logic that are integratad with Athana for the purpose
of doing proafs in the multi-agent logic. Second, unlike model-thecretic
ambacidin modal logics into ela; ardar logie, our proofs are
diraetly eonvartible into native epistemic logic ifs. Third, becanse we
are abla to quantify over propositions 'md \'mll'. we gat much of the
manerality and power of highar-onder logie aven though we ara in a ficst-
ardar satting. Finally, wa ara abla to usa Athena’s versatile tartics for
proof autcmation in tha multi-agent. Ie W illustrate by developing a
tactic for solving the genermalizad version of the wiss men problem.

1 Introduction

Multi-agent modal logics are widely used in Computer Science and AL Multi-
agent epistemic logics, in particular, have found applications m fiel
from Al domains such as moboties, planning, and motivation analysi
ral language [13]; to negotiation and game thecry in econcmics; ta
systems analysis and protocol anthentication in computer seeurity |
I n is simple—intelligent agents must be able to reason about kn
1= therefore important to have efficient means for performimg machine reasoning
‘m such logics. While the validity pml:lc‘m for mast propositional modal logics i=
of intractable theoretieal complexity!, several approaches have been investigated
m recent years that have resulted in systems that appear to work well in prac-
tiee, These approaches include tableau-haszed provers, SAT-based algorithms,
and translations to first-order logic conpled with the use of resolution-based an-
tomated theorem provers [Ps). Some representative systems are FaC'T' [24],
KsatC [14], TA [25], LWE and MSPASS [a7]

Translatiom-based approaches (such as that of \I":I’\":":' have the advantage
of keveraging the tremendous implementation progress that has cceurnec

= ranging
in natu-

over

&, the validity problam for muolti-agent propesitional epistamic logic is
plete [18]; adding a commmon knowledge operator makes the problam
mpleta [21].

Proved-Sound Algorithm for Generating
Proof-Theoretic Solution to WMP,

http://kryten.mm.rpi.edu/arkoudas.bringsjord.clima.crc.pdf

W/ formal
proofs that
can be
machine-
certified.

Metareasoning for multi-agent epistemic logics A
K] [T
'FKalP=Q) =[KalP)=Kal(]] IN'FKalP)l=P
BEFP o [C-E]
I'HCR) I' (P = KalP)
[0k | |
I'F|CP =8 = [CiF) =C(q]] IMFOP = CIK o F)

Fig. 2. Inference rulas for the apistamic oparators,

= 7 P Intuitively, this is a judgment stating that P follows from . We will
write P17 {or 17, P] as an abhreviation for 170 { P} The sequent calealus cthat
wi will use comsists of a collection of inference rules for deriving judgments of
the form " F P. Figure 1 shows the mferencs rules that deal with che standard
propositional connectives. This part 1= standard (eg., it is very smmilar to the
sequent caleulus of Ebbinghans et al. [15]). In addition, we have some rules
pertaining to K, and ', shown m Figure 2.

Rule [K| 1= the sequent formulation of the well-known Kripke ariom stating
that the knowledge operator distributes over conditionals, Rule [Ty | is the cor-
responding principle for the common knowledge operator. Rule [T i= the “truth
axiom™: an agemt eannct know false propositions. Rule O] is an introduetion
ruke for eommeon knowledge: if & propesition P follows from the empey set of
hypotheses, ie., il it is a tautology, then it is commonly known. This is the
common-knowledge version of the “omnizcience axiom” for single-agent knowl-
edge which saye that 7 F Ke(P) can b2 decived from @ F P We do not need to
postulate that axicm in our farmulation, sinee it Bllows from [C-1] and [O-£].
The latter says that if it & common knowledge that P then any (every] agent
knows P, whila | F] says that if it is common knowladge thae P then it 1= common
knowledge that [any] agent @ knows it. [R] is a reiteraticn rule that allows us to
capture the recursive l:- havior of €, which 1= usnally expressad via the so-called
“induetion axiom”

O P=E{P)=|P=C{P)]
where £ i= the shared-knowledge opsrator. Since we do not need B for our
purpnses, we omit its ermahzation and “unfold™ C via rule [H] instead.
We state a few lemimas that will come handy later:

Lemma 1 (Cut). FOFP and I, B F R then my Ui F B

Proofs Assume 0 F P oand I, B F B Then, by [=-1], we get 15 F P = B
Further, by dilution, we have I, Ui B = P and I 05 F P Hence, by
[=-E], we obtain Iy Ui Py a

The proofs of the remaining lemmas are equally simple exercises:

Metareasoning for moulei-agent spistarmic logics ¥
ERRL R Y N Y [Reflea], n-Ey
Ty e n fal - R [Refled, A-EY, h-Ea
ETRL T e [Heflead, n-Ey
YA R Rl Kal-~@) = KalP) 2 [K], =-E
Tt Ren RalE Q= KalF) 4, 4, Lammma 2
Pyh Ren Ral Kol P =8 5. Lemma &
ETR (A N N e T G 1. =-FE
LR T Y 7. [+E|

N

at the above proofl i not entirely low-level because most steps eombine
nore inference rule applications in the mterest of brevity.

1 7. Consider any agent a and propositions P&, Define Ry and s
emema &, et Hy Py, and et 5 ClRyY for i 1,2,3. Then
Sa} b CE]).

Let J#, = =) = P and ronsider the fallowing derivation:

Ha, 83} F 5 [Feflenr]

.89, 53} - 5y [ R fRemr]

'\ S, s F S [Refier]

(P =(~0=F) Lamma da

81,8, S5} FO(P V] = (-0 = P)) 1, -0

. 82, 53} FO(PV Q)= O~ = P) 3 ||.”,-,- | [=-E]

S3} k(=6 = F) B, 2, |=-E]
. &2, S} O = P) = O[R a0 = F)) | |
1,81, Sa} - C(Kal(-Q = P)) 5, 7, |=+-E]
MR- =Pl R} Q) I.|:~||1||1.1 G
jfh M-.n-—-r_g:P-uh-:q 10, |=-1|
' Sa} F O &K [~ = P10 Ry) =) 11, -1
¥ .-‘Ha} FOCR A K- = Pys fe) = C00) 12, If .l. | [=-E |
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all m = 1, it turns out that the last—(w + 11" —wise man knows he 18
The eaze of two wise men is simple. The reascning rims essentially by
icticn. The seecnd wiss man reasons as followe:

pose | were not marked, Then w, would have seen chis, and knowing
keast cne of us is marked, he would have inferred that he was
marked one. But wy has expressed ignorance; therefore, | must b=

Teed.

r now the ease of o = 3 wise men wy, wq, wy. After w; anmounces that
nat know that he is marked, we and ws both infer that at least cne of
marked. For if neither wy nor wy were marked, w; would have ssen this
ald have concluded—and stated—that he was the marked one, since he
hat at least one of the three is marked. At this point the puzle reduces
wo-men case: both wg and wy know that at least one of them is marked,
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Abstract. Wa ]Jn:w:\ul an eneoding of a saquent caleulus for a mlti-

i i i AL : interartiva |I|c\m:~ Prowving system
a metalanguage
language.

azon about the molti-agent logie an
thecrem proving in the multi-agent logic in
First, it lets u= marshal the highly aficient theorem provers §
zical first-order logic that are integratad with Athana for the purpose
of doing proafs in the multi-agent logic. Second, unlike model-thecretic
ambacidin modal logics into ela; ardar logie, our proofs are
diraetly eonvartible into native epistemic logic ifs. Third, becanse we
are abla to quantify over propositions 'md \'mll'. we gat much of the
manerality and power of highar-onder logie aven though we ara in a ficst-
ardar satting. Finally, wa ara abla to usa Athena’s versatile tartics for
proof autcmation in tha multi-agent. Ie W illustrate by developing a
tactic for solving the genermalizad version of the wiss men problem.

1 Introduction

Multi-agent modal logics are widely used in Computer Science and AL Multi-
agent epistemic logics, in particular, have found applications m fiel
from Al domains such as moboties, planning, and motivation analysi
ral language [13]; to negotiation and game thecry in econcmics; ta
systems analysis and protocol anthentication in computer seeurity |
I n is simple—intelligent agents must be able to reason about kn
1= therefore important to have efficient means for performimg machine reasoning
‘m such logics. While the validity pml:lc‘m for mast propositional modal logics i=
of intractable theoretieal complexity!, several approaches have been investigated
m recent years that have resulted in systems that appear to work well in prac-
tiee, These approaches include tableau-haszed provers, SAT-based algorithms,
and translations to first-order logic conpled with the use of resolution-based an-
tomated theorem provers [Ps). Some representative systems are FaC'T' [24],
KsatC [14], TA [25], LWE and MSPASS [a7]

Translatiom-based approaches (such as that of \I":I’\":":' have the advantage
of keveraging the tremendous implementation progress that has cceurnec

= ranging
in natu-

over

&, the validity problam for muolti-agent propesitional epistamic logic is
plete [18]; adding a commmon knowledge operator makes the problam
mpleta [21].
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Fig. 2. Inference rulas for the apistamic oparators,

= 7 P Intuitively, this is a judgment stating that P follows from . We will
write P17 {or 17, P] as an abhreviation for 170 { P} The sequent calealus cthat
wi will use comsists of a collection of inference rules for deriving judgments of
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O P=E{P)=|P=C{P)]
where £ i= the shared-knowledge opsrator. Since we do not need B for our
purpnses, we omit its ermahzation and “unfold™ C via rule [H] instead.
We state a few lemimas that will come handy later:

Lemma 1 (Cut). FOFP and I, B F R then my Ui F B

Proofs Assume 0 F P oand I, B F B Then, by [=-1], we get 15 F P = B
Further, by dilution, we have I, Ui B = P and I 05 F P Hence, by
[=-E], we obtain Iy Ui Py a

The proofs of the remaining lemmas are equally simple exercises:
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Tt Ren RalE Q= KalF) 4, 4, Lammma 2
Pyh Ren Ral Kol P =8 5. Lemma &
ETR (A N N e T G 1. =-FE
LR T Y 7. [+E|

N

at the above proofl i not entirely low-level because most steps eombine
nore inference rule applications in the mterest of brevity.

1 7. Consider any agent a and propositions P&, Define Ry and s
emema &, et Hy Py, and et 5 ClRyY for i 1,2,3. Then
Sa} b CE]).
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.89, 53} - 5y [ R fRemr]

'\ S, s F S [Refier]

(P =(~0=F) Lamma da
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“Life and Death” Wise Man Test (3)

Wednesday, October 21, 2009



Using Socio-Cognitive Calculus to
Engineer Cognitively Robust
Synthetic Characters and Model/
Simulate False-Belief Tests ...




In SL, w/ real-time comm using socio-cognitive calculus.
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In SL, w/ real-time comm using socio-cognitive calculus.

Fle Edit View World Tools Help & #¥ Hamnida 244,92, 110 (PG) - NCI South 1:23 PMPDT &

Hugin Rasmuson: Hello Edd, Micah, today we're going to perform an experiment.
|
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“The present account of the false belief transition is incomplete in
important ways. After all, our agent had only to choose the best of
two known models. This begs an understanding of the dynamics of
rational revision near threshold and when the space of possible
models is far larger. Further, a single formal model ought ultimately
to be applicable to many false belief tasks, and to reasoning about
mental states more generally. Several components seem necessary
to extend a particular theory of mind into such a framework
theory: a richer representation for the propositional content and
attitudes in these tasks, extension of the implicit quantifier over
trials to one over situations and people, and a broader view of the
probability distributions relating mental state variables. Each of
these is an important direction for future research.”

“Intuitive Theories of Mind: A Rational Approach to False Belief”
Goodman et al.
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Done.

“The present account of the false belief transition is incomplete in
important ways. After all, our agent had only to choose the best of
two known models. This begs an understanding of the dynamics of
rational revision near threshold and when the space of possible
models is far larger. Further, a single formal model ought ultimately
to be applicable to many false belief tasks, and to reasoning about
mental states more generally. Several components seem necessary
to extend a particular theory of mind into such a framework
theory: a richer representation for the propositional content and DOne.
attitudes in these tasks, extension of the implicit quantifier over
trials to one over situations and people, and a broader view of the
probability distributions relating mental state variables. Each of
these is an important direction for future research.”

“Intuitive Theories of Mind: A Rational Approach to False Belief”
Goodman et al.
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Toward Mechanizing Folk Psychology:
A Formal Analysis of False-Belief Tasks

Konstantine Arkoudas & Selmer Bringsjord

Abstract. Predicting and explaining the behavier of other azents
in terms of mental states 1s indispensable for everyday life. We be-
lieve it will be equally important for artificial agents. We present
an inference system for representing and reasoning about mental
states, and use it to provide a formal amalysis of the false-belief
task. The system allows for the representation of information about
events, cansation, and perceptual, doxastic, and epistemic states (vi-
sion, belief, and knowledge), mcorporating 1deas from the event cal-
culus and multi-agent epistemic logic. Reasoning is performed via
cogmitively plausible mference mles, and a degree of antomation is
achieved by general-purpose inference methods, akan to the demons
of blackbeard-based multi-agent systems. The system has been 1m-
plemented and is available for experimentation.

1 Imiroduoction

Predicting and explaining the behavicr of other people 1s indispens-
able for everyday life. The ability to ascibe mental states to others
and to reason about such mental states is pervasive and invaluable.
All social ransactions —from engaging in commerce and negotiating
to making jokes and empathizing with other people’s pain or joy—
require at least a mdimentary grasp of commeon-sense psychology
(C5P). Artificial agents without an ability of this sort would essen-
tially suffer from autism, and would be severely handicapped in their
interactions with unans. This could present problems not only for
artificial agents trying to interpret human behavior, but also for arti-
ficial agents trying to interpret the behavior of one another When a
system exhibits a complex but rational behavior and detailed knowl-
edge of its mtemal structure 1s not available, the best smategy for
predicting and explaining its actions might be to analyze its behav-
lor in intentional terms. ie., in terms of mental states such as beliefs
and desires (regardless of whether the system qefually has genuine
mental states). Mentalistic models are hikely to be particularly apt for
agents trying to manipulate the behavior of other azents.

Any computational treatment of CSP will have to integrate action
and cognition. Agents mmst be able to reason about the causes and
effects of various events, whether they are intentional events brought
about their own agency or non-intentional physical events. More 1m-
portantly, they must be able to reason about what ethers believe or
know about such events. To that end, our system combines ideas
drawn from the event caleulus and from multi-agent epistemic logics.
It is based on multi-sorted first-order logic extended with subsorting,
epistemic operators for perception, belief, and knowledge, and mech-
anisms for reasoning about causation and action. Using subsorting,
we formally model agent actions as types of events, which enables
us to use the resources of the event calculus to represent and rea-
son about agent actions. The usual axioms of the event calenlus are

encoded as common kmeowledgze, suggesting that people have an un-
derstanding of the basic folk laws of cansality {innate or acquired),
and are indeed aware that others have such an understanding.

It 15 important to be clear on what we hope to accomplish with the
present work. In genmeral, any logical system or methodology capa-
ble of representing and reasoning about intentional notions such as
knowledge can have at least three different uses. First, it can serve as
a tool for the specification and analysis of rational epistemic agents.
Second, in tandem with some appropriate reasoning mechamsm, it
can serve as a knmowledge representation framework, ie., it can be
used &y artificial agents to represent their own “mental states™ —and
those of other agents—and to deliberate and act in accordance with
those states and their environment. Finally, it can be used to provide
formal medels of certain interesting phenomena. A chief intended
contnbution of cur present work 15 of the third sort, namely, as a for-
mal model of false-belief attnbutions, and m particular as a descrip-
tion of the competence of an agent capable of passing a false-belief
task. It addresses questions such as the following: What sort of prin-
ciples is it plausible to assume that an agent has to deploy n order to
be able to suceeed on a false-belief task? What is the depth and com-
plexity of the required reasoning? Can such reasomng be antomated,
and if so, how? These questions have not been taken up in detal m
the relevant discussions in cognitive science and the philosophy of
mind, which have been couched in overly abstract and rather vague
terms. Formal computational models such as the one we present here
can help to ground such discussions, to clanfy conceptual 1ssues, and
to begin to answer important questions in a concrete setting.

Although the import of such a model is prmarily scientific, there
can be mteresting engineering implications. For instance, if the for-
malism 15 sufficiently expressive and versatile, and the posited com-
putational mechanisms can be automated with reascnable efficiency,
then the system can make potential contrbutions to the first two areas
mentioned above. We believe that our system has such potential for
two reasons. First, the combination of epistemic constructs such as
commen knowledze and the conceptual resources of the event cal-
culus for dealing with cansation appears to afford great expressive
power, as demonstrated by our formalization. A key technical msight
belund this combination is the modelling of agent actions as events
via subsorting. Second, procedural abstraction mechanisms appear to
hold sipnificant promise for autemation; we discuss this 1ssue later in
more detail.

The remainder of this paper 15 structured as follows. The next sec-
tiom gives the formal definition of our system. Section 3 represents
the false-belief task i our system, and section 4 presents a model of
the reasoming that 1s required to succeed m such a task, camed out
mn a modular fashion by collaborating methods. Section 5 discusses
some related work and cencludes.
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2 A calculus for representing and reasoning about
mental states

The syntactic and semantic problems that anise when one tries to use
classical logic to represent and reason about intentional notions are
well-known. Syntactically, modelling belief or knowledge relation-
ally is problematic because cne believes or knows arbitranly com-
plex propositicns, whereas the arguments of relatien symbols are
terms bwlt from constants, vanables, and function syvmbels. (The
objects of belief could be encoded by strings, but such representa-
tions are too low-level for engineenng purposes.) Semantically, the
main issue 15 the referential opacity (or intensicnality) that must be
exhibited by any operators for belief, desire, knowledge, etc. In -
tensional contexts one cannct freely substitute one coreferential term
for another. Broadly speaking, there are two ways of addressing these
1ssues. One 15 to use a modal logic, with bult-in syntactic operators
for imtentional notions. The other 1s to stick with classical logic but
distingmish between an object-language and a meta-language, repre-
senting intentional discourse at the object level. Each approach has
its own advantages and drawbacks. Sticking with classical logic has
the mmportant advantage of efficiency, in that automated deduction
systems for classical logic, such as resclution provers—which have
made impressive strides over the last decade —can be used for rea-
soning. One disadvantage of this approach is that when the object
langnage 15 first-order (includes gquantification), then netions such as
substitutions and alphabetic equivalence mmst be explicitly encoded.
Depending on the facilities provided by the meta-language, this does
not need to be overly cnerous, but it does require extra effort.

The modal-logic approach has the advantage of solving the syntac-
tic and semantics problems directly, without the need to distinguish
an object-language and a meta-language. That is the approach we
have taken in this work. The main drawback of this approach is the
difficulty of automating reasoning, since standard theorem-proving
technigues from classical logic cannot be directly employed. We have
tried to overcome this limitation here by explorng the automation
potential of methods, or derived inference miles (called factics in the
terminology of HOL [7]). Another drawback is the issue of seman-
tics. The standard semantics of modal logics are given in terms of
EKnpke structures involving possible worlds. Such semantics are very
elegant and well-understood mathematically. They are also quite -
tuitive for logics dealing with necessity or ime. However, they are
remarkably wmintitive for dexastic and epistemic logics. Not only
do they fail to shed any light on the nature of belief or kmowledgze,
but they also have a number of widely Imown counter-intnitive con-
sequences that are unacceptable for resource-bounded agents, such
as logical ommiscience (deductive closure of knowledge, knowledgze
of all tautologies, etc) and the fized-point characterization of com-
meon knowledge. These 1ssues are significant for us, given that we are
interested in telling a plausible story for how actual agents in the real
world can succeed on false-belief tasks. There have been numerous
attempts to rectify these issues [8, 4, 9, 10], but each has faced sen-
ous preblems of its own, and cutside of Kripke souetures there is no
widely accepted standard at present.

Accordingly, we have not provided a possible-werld semantics for
our system. Nete that an addificnal potential complication here is
that the semantics of the event calemlus are given in terms of cir-
cumscription, a second-order logic schema, and it 1s net obvious
how to accommodate that featmre i the setting of possible worlds.
Due to these issues, and due to space restrictions, our presentation
here 15 entirely proof-theoretic. The meanings of the varous syntac-
tic constructs —such as the knowledge operator—can be viewed as

determined by their inferential reles, as specified by the various in-
ference rules. (This can itself be regarded as a form of semantics; it is
called “concepmal-role semantics” or “functional semantics™ in the
philesophy of mind; “natural semantics™ in computer science; and
“procedural semantics” in cognitive science.)

The following is the formal specification of our system, describing
the various sorts of our universe (<), the signatures of certain built-n
function symbols ( f), and the abstract syntax of terms (t) and propo-
sitions (F). The symbol C denotes subsorting:

& == object| Agent | ActionType | Action C Event
| Moment | Boolean | Fluent
actien © Agent = ARctionType — Rction

initially : Fluent — Boolean
holds : Fluent ® Moment — Boolean

happens : Event x Moment — Boolean

f = chipped : Moment « Fluent « Moment — Boolean
imifates : Event » Fluent x Moment — Boolean
termimares 1 Event ® Fluent x Moment — Boolean
prior : Moment x Moment — Boolean

t = xT:&|e:S| fltr,.... tr)

F = t:Boolean |-F|PAQ| PV | F=20Q | FPesdq|

Fex: 5. FP|3x:5.F|&a, FP)| Kla, P |Bla, F} | C{F)

Propositions of the form Sia, P), Bie. P), and Kiz, P} should be
understood as saying that agent a sees that P is the case, believes that
P, and knows that P, respectively. Propositions of the form C(P)
assert that P 1s commenly known Sort annotations will generally
be cmutted, as they are easily deducible from the context. We write
Flx +— t] for the proposition obtained from P by replacing every
free occwrence of x by . asswung that £ 15 of a sort compatble
with the sort of the free ccowrrences in question, and taking care to
rename P as necessary to aveold vanable capture. We use the infix
notation £, < - instead of priorit,, tz).

We express the following standard amioms of the event caleulus as
commen knowledge:

[41] C{¥ f.t . imimially f) » —clipped (0, f,t) = holds( f. t))
[4z] Ci¥ e, fof1. itz . happens (e t1) A initiates(e, f,81) A
£y <t A—clippedity, f,ta) = holds(f.ta))
[Aa] Civty, fotg . clippedity, f.ta) =
[Fet. happensie t) AL < ¢ <tz Aterminatesie, f,i)])

suggesting that people have a (pessibly imnate) understanding of ba-
sic cansality principles, and are indeed aware that everybedy has
such an understanding. In addition to [A4;]—[Aa], we posmlate a
few more axioms pertaiming to what people know or believe about
caunsality. First, agents know the events that they intentionally bring
about themselves —that is part of what “action” means. In fact, this
1s commeon knowledze. The following axiom expresses this:

[44] C(¥a,d,t. happensiaction(a.d).t) =
Kia, haprensiaction(a, d), 1))

The next axicm states that it 15 comumon knewledge that if an agent
a believes that a certain fluent f holds at ¢ and he does not believe
that f has been clipped between ¢ and ', then he will also believe
that f helds at ¢

[45] C(¥a,ft, ¢t . Bie, holds(f, t)) ~Bia.t < ) A
—B(a.clippedit, f.¢")) = Bla, holds{ £,£1))
The final axiom states that if a believes that b believes that f holds
at f; and a believes that nothing has happened between £; and £2 to

change b's mind, then o will believe that b will not thank that f has
been clipped between ¢, and #5:
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holds : Fluent ® Moment — Boolean
o= happens : Event x Moment — Boolean

T chipped : Moment « Fluent « Moment — Boolean
imifiares : Event = Fluent = Moment — Boolean
termnares : Event » Fluent = Moment — Boolean
prior : Moment x Moment — Boolean

t u= x:&|e:&F| flty, ..., tr)
F = ¢t:Boolean |-F|PAQ|FVvQ | F=20Q | FPesd|
Fex: 5. FP|3x:5.F|&a, FP)| Kla, P |Bla, F} | C{F)

Propositions of the form Sia, P), Bie. P), and Kiz, P} should be
understood as saying that agent a sees that P is the case, believes that
P, and knows that P, respectively. Propositions of the form C(P)
assert that P 1s commenly known Sort annotations will generally
be cmutted, as they are easily deducible from the context. We write
Flx +— t] for the proposition obtained from P by replacing every
free occwrence of x by . asswung that £ 15 of a sort compatble
with the sort of the free ccowrrences in question, and taking care to
rename P as necessary to aveold vanable capture. We use the infix
notation £, < - instead of priorit,, tz).

We express the following standard amioms of the event caleulus as

[41] C{¥ f.t . imimially f) » —clipped (0, f,t) = holds( f. t))
[Az] Ci¥ e, fof1. itz . happens (e t1) A initiates(e, f,81) A
£y < tg A—chippedity, fota) = holds{ f.t2))

[Ag] Cﬁ-"fi,_f, ta . f.r!:p_ﬂ‘fﬂl;ti,f, !22_] =
[Fet. happensie t) AL < ¢ <tz Aterminatesie, f,i)])

sic cansality principles, and are indeed aware that everybedy has
such an understanding. In addition to [A4;]—[Aa], we posmlate a
few more axioms pertaiming to what people know or believe about
caunsality. First, agents know the events that they intentionally bring
about themselves —that is part of what “action” means. In fact, this
1s commeon knowledze. The following axiom expresses this:

[44] C(¥a,d,t. happensiaction(a.d).t) =
Kia, haprensiaction(a, d), 1))

The next axicm states that it 15 comumon knewledge that if an agent
a believes that a certain fluent f holds at ¢ and he does not believe
that f has been clipped between ¢ and ', then he will also believe
that f helds at ¢

[45] C(¥a,ft, ¢t . Bie, holds(f, t)) ~Bia.t < ) A
—B(a.clippedit, f.¢")) = Bla, holds{ £,£1))
The final axiom states that if a believes that b believes that f holds
at f; and a believes that nothing has happened between £; and £2 to

change b's mind, then o will believe that b will not thank that f has
been clipped between ¢, and #5:

Full generality
wrt time and
change: includes
event calculus —
yet fast.
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formalize this scenario m our caleulus. In the next section we will
present a formal explanation as to how Alice can come to acquire the
correct belief about Bob's false belief.

We introduce the sort Location and the following function sym-
bols specifically for reasoning about the false-behief task:

places : Object x Location— ActionType
moves 1 Object ® Location ¥ Location — ActionType
located : Object = Location— Fluent

Intuitively, action|a, places(o,[)) signifies a’s action of placing
object o in lecation [, while

action{ a, moves(o, {y, [3])

is a’s action of moving ohject o from location !4 to location la.
It 15 commeon knowle at placing o in [ imtiates the fluent

located|o, I):
[L4] C¥ a.t, 0,l . imniares (action|a, places(o, [)), locatzd{o [), 1)

It 15 hikewise kmown that if an cbject o 15 located at {3 at a tume £,
then the act of moving o from {3 to l» results in o being located at [z

[D=] Ci¥a.t, ol lz. holds(locatedio, 1), t) =
iminaies(action(a, movesio, Iy, Ia)), located (o, {2 ), £))

If, in addition, the new location 15 different from the old one, the
move terminates the fivent located(o, 1 )

[Da]  C¥ a.t,oly .l . holds{located{o, Iy ). 8) M I 2 1o =
terminates (action (o, moves(o, [y, l2)), lecared{o, [1),£))

The following aziom captures the constraint that an cbject caimot
be in mere than one place at cne time; this is also commen kmow]-

edge:
[4] C(¥ o,t,d1, 02 . holdsilocated (o, [1).8) A
holds(located (o, l2), t) = [} = [a)

We introduce three time moments that are central to the namra-
tive of the false-belief task: beginning, departure, and refurn. The
first sigmifies the time pomt when Bob places the coolae m the cabi-
net, while depariure and refursn mark the points when he leaves and
comes back, respectively. We assume that 1t’s common kmeowledze
that these three time points are linearly ordered in the obvious man-
ner:

[Ds] C(beginming < departure < remrn).
We also introduce two distinet locations, cabinet and dravwer:

[D&] Cicabinet # drawer).

Fmally, we mtroduce a domain Cockie as a subsort of object,
and declare a single element of it, cookic. It 1s a given premise that,
in the beginning, Alice sees Bob place the cookie in the cabinet:

[D7] SiAlice, happens(action(Bob, places(cookie, cabinet) ), beginnmg)).

4 Modeling the reasoning underlying false-belief
tasks, and auntomating it via absiraction

At this point we have enough representational and reasening machin-
ery in place to infer the comrect conclusion from a couple of obvious
premises. However, a monolithic denvation of the conclusion from
the premises would be unsatisfactory, as it would not give us a story
about how such reasoning can be dynamically put together. Agents
must be able to reason about the behawvior of other agents efficiently.
It is not at all obvicus how efficiency can be achieved in the absence
of mechanisms for abstraction, medulanty, and rensabality.

We can begin to address both issues by pursuing further the idea of
derived inference miles, and by bommowing a page from classic work
In cognitive science and production systems. Suppose that we had a
mechanism which enabled the denvation of not only schematic in-
ference mles, such as the ones that we presented in section 2, but de-
nved inference miles allowing for arbitrary computation and search.
We could then formmulate gemeric inferemce mles, capable of being
applied to an unbounded (potentially infinite) number of arbitranly
complex concrete sitnations.

Onr system has a notion of method that allows for that type of
abstraction and encapsulation. Metheds are denved inference rules,
not just of the schematic kind, but mcorporating arbitrary computa-
tion and search. They are thus more general than the simple if-then
mules of preduction systems, and more akin to the knowledge sources
{or “demons™) of blackboard systems [3]. They can be viewed as
encapsulating specialized expertise in deriving certain types of con-
clusions from certain given information. They can be parameterized
over any vanables, e g., arbitrary agents or time points. In our system,
the role of the blackbeoard 1s played by an associative data structure
(shared by all methods) kmown as the asswmption base, which 1s an
efficiently indexed collection of propositions that represent the col-
lective knowledge state at any given moment, including perceptual
Imowledge. The assumption base 1s capable of serving as a comnm-
mication buffer for the vanious metheds. Finally, the control executive
15 itself a methed, which directs the reasoning process incrementally

mveking various methods trigzered by the contents of the ass

We describe below three general-purpose methods for reasoning
in the calculus we have presented. With these methods, the reason-
g for the false-belief task can be perfonmed in a handful of lines —
essentially with one invocation of each of these methods. We stress
that these methods are not ad hec or hardwired to false-belief tasks.
They are generic, and can be reused in any context that requires rea-
soning about other minds and satisfies the relevant preconditions. In

particular, the metheds do not contain or requare any information spe-
cific to false-belief tasks.

o Method I This method, which we call Ay . shows that when an
agent a; sees an agent az perform some action-type o at some
time point £, 4, knows that a; knows that as has camed out o at
t. My is parameterized over aq, az, o, and &

S(ay, happensiacioniaz, o), )] (1)

2. Therefore, a; kmows that the corresponding event has occurrad
at

Kia1, happensiacion{az, o). t)) )

This follows from the preceding premuse and [DR,].
3. From [A4] and [DR;] we obtain:

Kigy.¥ a, ot . happensiactionia, a), £) =
Kia,happensiactionia, o), £]]) 3)

4. From (3) and [DRo] we get:
Kiai, happens{acionjaz, o). &) =

Kias, happensiactionaz, ), t])) 4
5. From (4), (2), and [DRg] we get:
K{ay, K(az, happens{action(az, a),t))) (5)

& Method 2: The second method, Mz, shows that when (1) it is com-
mon knowledge that a certain event e initiates a fluent f; (2) an
agent a, kmews that an agent ap kmows that £ has happened at a

Proof methods
for efficiency.
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formalize this scenario m our calculus. In the next section we will
present a formal explanation as to how Alice can come to acquire the
correct belief about Bob's false belief.

We infroduce the sort Location and the following function sym-
bols specifically for reasoning about the false-behief task:

places : Object = Location — ActionType
moves : Object ® Location ® Location — ActionType
located : Object x Location— Fluent

Intuitively, action|a,places(o,[)) signifies a’s action of placing
object o in lecation [, while

action| a, moves(o, {y, [2))

15 a's action of moving object o from location {1 to location [z
It 15 common knowledge that placing o in [ imtiates the fluent

located| o, [):
[D4] C¥ a.t, 0l . imiiares (action|a, placesio, 1)), locarzd(a, [),£))

It is hikewise known that if an object o is located at {1 at a tume ¢,
then the act of moving o from {4 to lz results in o being located at [z

[D=] C(¥a.t,0li,lz. holds(locatedio, [1).¢) =
imiates{action|a, moves(o, Iy, Iz)), Iocated (o, I3 ), ¢))
If, in addition, the new location 1s different from the old one, the
move terminates the fluent located(o, I ):

[Da]  C¥ a.t, ol . holds{located{e, ) ) ) M I 2 1 =
ferminares (action (a, moves(o, [, la)), lecated(o, 11),£))

The following aziom captures the constraint that an object cannot
be in more than one place at one time; this is alse commen kmowl-
edge:

[D4] C(v o,t,d1,l2 . holds(located (o, [1). 1) A
holds(located (o, [2), #) = [} = I3)

We introduce three time moments that are central to the namra-
tive of the false-belief task: beginning, depariture, and refurn. The
first signifies the time point when Bob places the coolie in the cabi-
net, while departure and refurn mark the points when he leaves and
comes back, respectively. We assume that 1t's common knowledge
that these three time points are linearly ordered in the obvicus man-
ner:

[Ds] CT(beginming < departure < remrn).

We also introduce two distinct locations, cabinet and drawer:

[Ds] C{cabinet £ drawer).

Fmally, we introduce a domain coockie as a subsort of ocbject,
and declare a single element of it, cookic. It 1s a given premise that,
in the begimning, Alice sees Bob place the cookie in the cabinet:

[D7] SiAlice, happens(action(Bob, places(cookie, cabiner) ), beginnmg)).

4 Modeling the reasoning underlying false-belief
tasks, and auntomating it via abstraction

At this pomt we have enough representational and reasening machin-
ery in place to fer the comrect conclusion from a couple of obvious
premises. However, 2 monolithic denvation of the conelusion from
the premises would be unsatisfactory, as it would not give us a story
about how such reasoning can be dynammcally put together. Agents
must be able to reason about the behavior of other agents efficiently.
It is not at all obvious how efficiency can be achieved in the absence
of mechamisms for abstraction, medulanty, and rensabality.

We can begin to address both issues by pursuing further the idea of
derived inference mles, and by borrowing a page from classic work
In cogmtive sclence and production systems. Suppose that we had a
mechanism which enabled the denvation of not only schematic in-
ference mles, such as the ones that we presented in section 2, but de-
nved inference mles allowing for arbitrary computation and search.
We could then formmlate gemeric inferemce mles, capable of being
applied to an unbounded (potentially infinite) number of arbitranly
complex concrete situations.

Onr system has a netion of method that allows for that type of
abstraction and encapsulabien. Methods are denved inference rules,
not Just of the schematic kind, but mcorporating arbitrary computa-
tion and search. They are thus more general than the simple if-then
rules of preduction systems, and more akin to the knowledze sources
(or “demons™) of blackboard systems [3]. They can be viewed as
encapsulating specialized expertise in denving certain types of con-
clusions from certain given informatien. They can be parameterized
over any varables, e.g., arbitrary agents or time points. In our system,
the role of the blackbeard 15 played by an associative data structure
(shared by all methods) kmown as the asswmption base, which 1s an
efficiently mdexed collection of propositions that represent the col-
lective knowledge state at any given moment, including perceptual
kmowledge. The assumption base is capable of serving as a comnm-
nication buffer for the various methods. Finally, the control executive
15 itself a method, which directs the reasoning process incrementally

We describe below three general-purpose methods for reasoning
in the calculus we have presented. With these methods, the reason-
mg for the false-belief task can be performed in a handful of lines —
essentially with one invocation of each of these methods. We stress
that these methods are not ad hoc or hardwired to false-belief tasks.

They are generic, and can be reused in any context that requires rea-
soning about other minds and satisfies the relevant preconditions. In

particular, the metheds do not contain o requare any information spe-
cific to false-belief tasks.

o Method 1. This method, which we call Ady, shows that when an
agent a; sees an agent a: perform some achion-type o at some
time point £, 4y knows that az knows that as has camed out o at
t. My is parameterized over aq, az, o, and &

5(aq, happensiacion(az o), )] (1}

2. Therefore, a, kmows that the corresponding event has occurrad
at €
Kia1, happensiacnoniaz, a ). t)) ()

This follows from the preceding premise and [DR4].
3. From [A4] and [DR;] we obtain:

Kiey.Ya, ot . happens(action(a, a), £) =
Kia,happens{actionia, o), £))) (3)

4. From (3) and [DRa] we get-

Kiay, happens{actionaz, o). &) =

Kiaq, happensiactioniaa, o), £1)) (4
5. From (4), (2), and [DRg] we get:
Kiay, Kiag, happens(action(ag, o). t))) (53

o Method 2: The second method, Az, shows that when (1) 1t 15 com-
mon knowledge that a certain event e initiates a fluent f; (2) an
agent ay kmows that an agent a; knows that € has happened at a

Proof methods
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Using Socio-Cognitive Calculus to
Model Deception ...
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Results and Resolving the
Paradox ...




Stage |

- ¢ O+ =

where
d U P’

true or at least very plausible.
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Stage |

Encoding of game-theoretic
principles, plus epistemic facts
beyond the reach of game theory
represented—but no other real-
world belief, knowledge, goals.
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Stage |

Encoding of game-theoretic
principles, plus epistemic facts
beyond the reach of game theory
represented—but no other real-
world belief, knowledge, goals.

P+ ¢ O+ ¢

certified!
where

o U P’

true or at least very plausible.
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Theorem 2: Agent e; knows that if he stays out at ¢; he will receive a payoft
of one at .

Proof: We begin by noting a tautology that is assumed to be common knowl-

edge (rule R’):

Cl(6= (VA0) = (6= 0)

Recall from the Athena-based proof of Theorem 1 that the following conditional
(which we can label °(1)”) holds.

(if (if (StaysOut el t1) (and (Payoff el omne t2) (Payoff cs five t2)))
(if (StaysOut el t1) (Payoff el omne t2)))

[nstantiating, we can infer from R’ that C ranges over this conditional. But

DRQ 18

C(o)
K(a. o)

so we can infer that e; knows (1). In light of DRg,

K(a,0 = 1), K(a, )
K(a‘- r(")*

we can deduce from the fact that e; knows the antecedent of (1) holds, that e;
knows

(if (StaysOut el t1) (Payoff el one t2)))

QED
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Stage ||

Encoding of game-theoretic principles,
plus epistemic facts beyond the reach of
game theory represented—but no other
real-world belief, knowledge, goals.
Inductive proof in the forward direction.

- ¢ O+ =

certified!
where

o U P’

true or at least very plausible.
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Stage ||

If we include, formally, entrants who see
at each step what goes on, and adjust
their beliefs accordingly,and a CS that
knows that outside entrants are
observing and believing accordingly,
deterrence makes sense at any given
stage in the game.

O+ ¢ O+ b
certified!

Encoding of game-theoretic principles,
plus epistemic facts beyond the reach of
game theory represented—but no other
real-world belief, knowledge, goals.
Inductive proof in the forward direction.

where
d U P’

true or at least very plausible.
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Stage ||

If we include, formally, entrants who see
at each step what goes on, and adjust
their beliefs accordingly,and a CS that
knows that outside entrants are
observing and believing accordingly,
deterrence makes sense at any given
stage in the game.

O+ ¢ O+ =

certified! certifiable!
where

o U P’

Encoding of game-theoretic principles,
plus epistemic facts beyond the reach of
game theory represented—but no other
real-world belief, knowledge, goals.
Inductive proof in the forward direction.

true or at least very plausible.
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One Stage; “Three” Players

t0 tl t2 t3 t4 t5

Enter
(e
i
Stay O v 2
Q tay Dut Fight 2

— U1
o O e




Game theory can be improved, and a proof
produced—but the proof’s premises fail to
include those that are in fact operative in the
world of real,“cognitively robust” agents, and
such agents are the ones that populate markets
(in the economic and defense-relevant sense).

(Note: While Game Theory in connection with epistemic operators has been
discussed, GT, formally speaking, includes no formal language powerful enough to
include such operators, in conjunction with full computational machinery for time
and change (e.g., the event calculus, which is includes in the socio-cognitive calculus).)
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Stage Il
The Nuclear “Club”
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The Reality: Iran et al. Watching
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P )
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FUtU I'é (desired)




F UtU I'é (desired)

® Refine the (publicly available) vl of implemented
socio-cognitive calculus.
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F UtU I'é (desired)

® Refine the (publicly available) vl of implemented
socio-cognitive calculus.

® Expand the formal family of unprecedentedly
expressive socio-cognitive logics for particular defense
needs (theory and corresponding implementation).
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F UtU I'é (desired)

® Refine the (publicly available) vl of implemented
socio-cognitive calculus.

® Expand the formal family of unprecedentedly
expressive socio-cognitive logics for particular defense
needs (theory and corresponding implementation).

® Using this family, model and simulate additional, larger
scenarios, including asymmetrical/irregular conflict/
warfare in which agents as formalized are cognitively

robust.
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F UtU I'é (desired)

® Refine the (publicly available) vl of implemented
socio-cognitive calculus.

® Expand the formal family of unprecedentedly
expressive socio-cognitive logics for particular defense
needs (theory and corresponding implementation).

® Using this family, model and simulate additional, larger
scenarios, including asymmetrical/irregular conflict/
warfare in which agents as formalized are cognitively
robust.

® Refine methods; invent parallel algorithms; use
supercomputing.
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Parallelization/Supercomputing;
Computational Logic, and the Arithmetic Hierarchy

(fIf : N — N}

(Information Processing)

automatic programming

115 Vuvuv[3kH (n, k,u,v) < 3&"H(m, k', u,v)]
21 o Y —
Turing Limit

EIkH(n, k, Uz, U) includes all functions studied in

complexity theory

H(n,k,u,v)
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Heretofore, Modeling Not Based on
“Cognitively Robust” Agents

A is a cognitively robust agent just in case A is an
agent some of whose non-trivial actions are a
function of what A knows, believes, intends, ...
regarding not only the inanimate portion of its
environment, but also regarding other agents,
and in particular regarding what other agents
believe, know, intend, ...
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A cognitive network would presumably be a dynamic network in which the nodes
correspond to cognitively robust agents, simulated or real. Whereas in a social
network nodes can represent “individuals” in the complete absence of the structures
and processes at the heart of cognition (reasoning, learning, deciding, planning,
knowing, believing, hoping, fearing, intending, perceiving), in a cognitive network such
things are be made formal, and computational, via an advanced, implemented logic.

Cognitive Network Social Network

cognitive
structures and . no
processes made internal structure
explicit

SO AS
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