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MD:  Hypercomputation is nothing but a myth.
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The real myth is that Davis’ argument(s) is/are sound.
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Hypercomputation qua field is a success if one or more of the following possibilities hold.

Thursday, June 9, 2011



1. POSSIBILITY 1 or η1:  The Church-Turing is false; and it follows that 
there exist effective computations for functions that aren’t Turing-
computable.
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1. POSSIBILITY 1 or η1:  The Church-Turing is false; and it follows that 
there exist effective computations for functions that aren’t Turing-
computable.

2. POSSIBILITY 2 or η2:  There are  hypercomputational physical 
phenomena that may or may not be harnessable.  In this case, the 
functions representing the dynamics of such phenomena are of course 
Turing-uncomputable.

3. POSSIBILITY 3 or η3:  There are hypercomputational cognitive 
phenomena that may or may not be harnessable.  In this case, the 
functions representing the dynamics of such phenomena are of course 
Turing-uncomputable.

Hypercomputation qua field is a success if one or more of the following possibilities hold.
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φ ≡ Hypercomputation is true.
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φ ≡ η ≡ η1 ∨ η2 ∨ η3

Davis tries to establish ¬η but fails.

φ ≡ Hypercomputation is true.
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φ ≡ η ≡ η1 ∨ η2 ∨ η3

Davis tries to establish ¬η but fails.

We don’t establish η, but rather defend η against Davis.

φ ≡ Hypercomputation is true.
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One-Slide Encapsulation of the Situation ...
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TT:  A numerical (total) function is effectively computable by some 
algorithmic routine if and only if (= iff) it is computable by a Turing machine.
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TT, CT, CTT

TT:  A numerical (total) function is effectively computable by some 
algorithmic routine if and only if (= iff) it is computable by a Turing machine.

CT:  A numerical (total) function is effectively computable by some 
algorithmic routine if and only if (= iff) it is µ-recursive.

CTT:  The effectively computable total numerical functions are the µ-
recursive/Turing computable functions.

And, for a function f to be effectively computable, is for a human agent/
computor/calculator/... to follow an algorithm in order to compute ... f.
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! CTT

!" CTT

∀a∀A(C(a,A) ↔ δ)

∀f∀a∀A(Eff (f) ↔ C(a,A))

Yes?

No. But in the stipulative 
manner it can be done:

...

And hypercomputation?
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Attack on η1

η1:  The Church-Turing is false; and it follows 
that there exist effective computations for 
functions that aren't Turing-computable.
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Attack on η1

Davis:

During the 1930s, as a result of the work of a number of logicians, it 
became possible to explain with full precision what it means to say for 
some given problem that an algorithm exists providing a solution to 
that problem. Moreover it then became feasible to prove for certain 
problems no such algorithm exists, that it is impossible to specify an 
algorithm that provides a solution to those problems.
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Attack on η1

Davis:

During the 1930s, as a result of the work of a number of logicians, it 
became possible to explain with full precision what it means to say for 
some given problem that an algorithm exists providing a solution to 
that problem. Moreover it then became feasible to prove for certain 
problems no such algorithm exists, that it is impossible to specify an 
algorithm that provides a solution to those problems.

Circular reasoning by assuming the CTT.
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And:

• A false premise: 
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And:

• A false premise: 

• To explain something with “full precision” one 
presumably has a fully formal scheme at one’s 
disposal; but because CTT (and all variants) has at 
its heart informal notions (e.g., effective 
computation) that have yet to be suitably 
formalized, “full precision” has not been obtain.
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Attack on η2

η2:  There are  hypercomputational physical 
phenomena that may or may not be harnessable.  In 
this case, the functions representing the dynamics of 
such phenomena are of course Turing-uncomputable.

Thursday, June 9, 2011



Attacking Physical 
Hypercomputation

Thursday, June 9, 2011



Attacking Physical 
Hypercomputation

• Finiteness Assumptions

Thursday, June 9, 2011



Attacking Physical 
Hypercomputation

• Finiteness Assumptions

• Uncomputable Weights and Weights

Thursday, June 9, 2011



Attacking Physical 
Hypercomputation

• Finiteness Assumptions

• Uncomputable Weights and Weights

• Abstractness and Approximations

Thursday, June 9, 2011



Attacking Physical 
Hypercomputation

• Finiteness Assumptions

• Uncomputable Weights and Weights

• Abstractness and Approximations

• Necessity of Non-computable Real Numbers 
in Physical Theory

Thursday, June 9, 2011



Attacking Physical 
Hypercomputation

• Finiteness Assumptions

• Uncomputable Weights and Weights

• Abstractness and Approximations

• Necessity of Non-computable Real Numbers 
in Physical Theory

• Science-based Arguments

Thursday, June 9, 2011



Finiteness Assumptions

Thursday, June 9, 2011



Finiteness Assumptions
• All hypercomputation models exploit infinite 

resources in some manner.

Thursday, June 9, 2011



Finiteness Assumptions
• All hypercomputation models exploit infinite 

resources in some manner.

• Let η’2 : There exists (in the mathematical universe) 
machines that can exploit infinite resources and such 
machines can be harnessed by people. 

Thursday, June 9, 2011



Finiteness Assumptions
• All hypercomputation models exploit infinite 

resources in some manner.

• Let η’2 : There exists (in the mathematical universe) 
machines that can exploit infinite resources and such 
machines can be harnessed by people. 

• We can say that η2 → η’2 

Thursday, June 9, 2011



Finiteness Assumptions
• All hypercomputation models exploit infinite 

resources in some manner.

• Let η’2 : There exists (in the mathematical universe) 
machines that can exploit infinite resources and such 
machines can be harnessed by people. 

• We can say that η2 → η’2 

• Davis simply asserts ¬η’2 

Thursday, June 9, 2011



Finiteness Assumptions
• All hypercomputation models exploit infinite 

resources in some manner.

• Let η’2 : There exists (in the mathematical universe) 
machines that can exploit infinite resources and such 
machines can be harnessed by people. 

• We can say that η2 → η’2 

• Davis simply asserts ¬η’2 

• “But it is worth noting that unlike the abstract algorithm that countenances no 
limitation on the size of the numbers being added, a machine implementing this 
algorithm, being a finite physical object, is constrained to accept only numbers 
smaller than some definite amount. (Davis 2004, 198)”
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• Davis claims that Turing-uncomputable inputs 
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Uncomputable Weights 
and Weights

• Davis claims that Turing-uncomputable inputs 
are necessary to produce Turing 
uncomputable outputs in all 
hypercomputational models.

• “When the claims are viewed critically, it is seen that they 
amount to little more than the obvious comment that if non-
computable inputs are permitted, then non-computable outputs 
are attainable.”
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Uncomputable Weights 
and Weights

• Davis discusses only Siegelmann’s Analog 
Neural Network Model.

• Furthermore, Siegelmann’s models provide 
a model of computation in which one can 
use and exploit real numbers. This feature is 
already beyond the capability of Turing 
machines. 
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Uncomputable Weights 
and Weights

• There are other models which do not 
require Turing-uncomputable inputs to 
produce Turing-uncomputable outputs.  

• Can be categorized as:

• Infinite time Turing machines 

• Super-task machines 

• Physical oracles
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fully, Turing computation is now another 
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• This rather absurd attack goes as follows

1. Even Turing machines are abstract models 
that can’t be implemented fully.

2. Therefore, no other more powerful 
model can be implemented fully. 

Abstractness and 
Approximations

• Going by the same argument:

• Since Turing computers can’t be realized 
fully, Turing computation is now another 
“myth.”

• The problem is that Davis fails to recognize 
that a lot of the hypercomputational 
models are abstract models that no one 
hopes to build in the near future.
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Necessity of Non-
computable Reals

• Another point in Davis’ argument is that almost all 
hypercomputation models require Physics to give them a 
Turing-uncomputable real number.

• This is false.  Quite a large number of hypercomputation 
models don’t require non-computable reals and roughly fall 
into the following categories

• Infinite time Turing Machines

• Zeus Machines

• Kieu-type Quantum Computation
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Science-based Arguments: A Meta 
Analysis of Davis and friends

The Main Case Science of Sciences Part 1: Chain Store Paradox Part 2: Turing-level Actors Part 3:MDL

Computational Learning Theory

CLT-based Model of Science

σ ∈ SEQ

i o

Mi, i ∈ NS

L

such that Mi accepts L

T = u0, u1,#,#,#, u2 M3

(r.e.)

Bringsjord, Eberbach, Naveen, Yang Might the Rigorous Modeling of Economic Phenomena Require Hypercomputation?
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SoS
• A language L is a set of finite strings from a 

finite alphabet Σ.

• Nature represented by some language Lt.

• The scientist is presented strings one by one 
from Lt by Nature.

• The scientist has to correctly identify Lt by 
output i such in some programming system v, 
Wi

v = Lt.  Wi
v denotes the halting set of the v-

program i.
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SoS

• A particular infinite sequence of strings given by 
nature is called a text.

• The scientist is said to identify a language L if he/
she can produce the correct hypothesis after a 
finite number of mistakes for all texts of L.

• The scientist is said to identify a class of languages 
L if he/she can identify all languages in  L.
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Identifying machines in 
nature

• The formalism can be used to identify 
machines in nature.

• We are given a black box machine and the 
set of numbers the machine halts on.

• Our goal is to identify the language the 
machine halts on.
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Identifying machines in 
nature

• Allow the possibility of the language K

• K={i | i ∉ Wiv}, the non-recursive set of 
indices of all machines which do not halt on 
their own index.

• Assume a black-box machine H.

• Assume that for all the numbers n that the 
machine H has halted on, it has been proved 
that n∈K.
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Identifying machines in 
nature

• Any rational scientist in this situation will 
admit the possibility Lt = K.
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Identifying machines in 
nature

• Any rational scientist in this situation will 
admit the possibility Lt = K.

• The set of hypotheses for a rational 
scientist is then Lhyp+K =Lhyp + K where 
Lhyp= {Kfin | Kfin is finite and Kfin ⊂K }
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Two Lemmata
• SoS1: Let FIN be the collection of all finite languages; and let 

L be an infinite class of languages. Then L+FIN is not 
identifiable by any scientist.

• SoS2:  A scientist is said to be self-monitoring if it can signal 
its own convergence, the point in the text when the 
scientist produces its final conjecture. 

• No self-monitoring scientist identifies FIN. 

• Since the SoS formalism lacks any notion of declarative 
statements, we take the notion of the self-monitoring 
signal to be a declaration of the statement that the 
scientist knows that the final conjecture has been 
produced.
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Therefore,

• By SoS1, No scientist can identify Lhyp+K

• Even if a scientist a prior rejects the 
possibility of K (like Davis), by SoS2 the 
scientist cannot be self-monitoring.

Any one, including Davis, who claims that Lhyp 
is the case, are stating the absurd when they 
also claim that all the dynamics behind H are 
known and finalized.
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Our universe and H

• Is represented by some element of Lhyp+K

• H represents harnessable hypercomputation. 
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Attack on η3

η3: There are hypercomputational cognitive 
phenomena that may or may not be harnessable.  In 
this case, the functions representing the dynamics of 
such phenomena are of course Turing-uncomputable.
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Our response:

• Parallels that of the SoS argument.

• Replace H with a cognitive agent C
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Perpetual Machines

• Perpetual machines are outright prohibited 
by existing laws of physics.

• Nothing in the existing laws prohibit 
hypercomputation.

• A bit more precisely: 

• Ψhyper = Hypercomputer computers exist

• Ψperp  = Perpetual motion machines exist
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Perpetual Machines

• Let Γ represent an axiomatization of all 
existing laws of physics

• Then we have at least

In most analyses in CLT, no computational limits are placed on the learner F. Only information-
theoretic properties of F are considered. So the scientist F can well be hypercomputational.

Due to the dual nature of CLT/SoS, all of the argument from §3.5 carries over to this section.
The only difference is that H is now a cognitive process instead of a physical process. H could
be humans computing values in K̄; or, with appropriate reductions and translations, humans
computing values of the busy-beaver function.8

5 On Digressions

In this section we look at a couple of digressions in the paper and show that the claims in them do
not hold.

5.1 Comparisons with Perpetual Motion Machines

Davis starts the paper with an unhelpful comparison of hypercomputation research with the search
for a perpetual motion machine. This comparison falls flat.

First, Davis does not seem to know that while perpetual motion machines are outright excluded
by existing laws of physics (Rao 2004), nothing in the existing laws prohibit the existence or con-
struction and harnessing of a hypercomputer (Stannett 2005). The following semi-formal argument
makes this weakness in the comparison more explicit. Let ψperp represent some formalization of the
statement “Perpetual machines exist.” in some propositional modal logic and let ψhyper represent
the statement “Hypercomputers exist.” Let Γ represent an axiomatization of all existing physical
laws. Then it is the case that

Γ ! ¬ψperp

Γ ! "ψhyper

Also, via Stannett’s analysis in (Stannett 2005) we can even claim that

Γ ! ψhyper

The second issue with Davis’s comparison is that while the laws of physics are empirical, and
correspondingly can be justified only inductively, a possible proof/disproof of a finite hypercomputer
will be deductive, following from the axioms of set theory.

5.2 Other Theories

Davis mentions the richness of the field of the study of Turing degrees and complexity theory.
There is no denying such richness; indeed, this richness is one of the reasons we teach the material
in question. When talking about “oracles,” Turing imagined a black box with no internal structure
whatsoever. Davis follows the same approach in the textbook one of us has long used to teach
theoretical computer science: (Davis et al. 1994). This approach (and we specifically follow the
straightforward quantifier-based one, since our students come with a background in formal logic)
is fine if one is concerned exclusively with for example a bare-bones hierarchy. But one of the
pursuits of hypercomputation research is to study the internal structure of abstract devices which
can hypercompute. This is a rich field of study that comes with its own set of theorems for a
particular machine, and serves quite a different purpose than the study of Turing degrees, which
steadfastly leaves aside the details of any possible mechanism.9

8See (Bringsjord et al. 2006) for another cognitive argument based on the the busy-beaver function.
9For an overview of the theoretical power of various machines, see Ord’s (2006) overview.

7
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Theoretical Richness

• Turing computation theory => Complexity 
theory & Turing degrees

• Hypercomputation => Mathematical 
models of hypercomputers, ``concretizes” 
Turing degrees

• Hypercomputation could possibly be 
useful in formal learning theory 

Consideration of non-computable scientists thereby 
facilitates the analysis of proofs, making it clearer which 
assumptions carry the burden. (Jain et al. “Systems that 
Learn ”1999, 35)
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Objection 1

• “You write that ‘A rather large number of physical 
and mathematical models of hypercomputation 
have been put forward so far.’  Well yes, but none 
of them, when actually physically implemented, 
can do anything that a Turing machine couldn’t so 
far.  If yes, show me the function.  The burden of 
proof is of course on your side!”

Thursday, June 9, 2011



Our response

Thursday, June 9, 2011



Our response

• Just a recapitulation of Davis’ argument 
against η2

Thursday, June 9, 2011



Our response

• Just a recapitulation of Davis’ argument 
against η2

• Even if a physical hypercomputer is 
impossible in the actual world, the 
hypercomputation field survives via the 
abstract mathematical and cognitive 
domains (η1 and η3)
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Objection 2

• “You tell us that ‘Davis ignores numerous other 
models of hypercomputation.’   Yes, but because 
they all boil down to infinite resources in some 
form, infinite time, or some other wacky stuff.”
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Our response: Flaw 1
• The objection is a blanket statement that all 

hypercomputation models require infinitary 
processing.

• Unwarranted statement without a proof.

• From the CTT experience, difficult to 
prove such statements

• Only a mythical belief exists in that all 
hypercomputation require infinite 
resources.
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Our response: Flaw 2

• Almost all formal sciences deal with infinite 
structures and processes.

• Our critic will then label infinitary logics as 
wacky.

• Infinitary logics are essential for formal 
mathematics.

• E.g. characterizing abelian group 
properties.
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Our response: Flaw 3

• “You tell us that ‘Davis ignores numerous other 
models of hypercomputation.’ Yes, but because 
they all boil down to infinite resources in some 
form, infinite time, or some other wacky stuff.”

So even Turing machines are “wacky” as they 
require an infinite tape!
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Objection 3

• “Do the authors really believe that the 
accelerating TM is a model worth mentioning as 
a physically plausible hypercomputer?!”
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Our response
• Yes. We believe it is physically plausible. 

• This has little to do with flaws in Davis’ reasoning.

• Support for our belief: 

• Xia’s result that, under certain conditions, a body can be accelerated 
to infinite time. 

• Even if we are wrong that the model is physically possible:

• We are sure that it’s logically possible that it’s physically 
possible.

• The above proposition is enough for our defense against Davis’ 
stand.
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