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Approach: Logic
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An lllogical View Refuted

The illogical view in question is one that is
unfortunately now often espoused: viz., that
since robots can be engineered to perform
ethically on par with average humans (e.g.,
human soldiers), there’s nothing unwise
about engineering and deploying such robots.
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An lllogical View Refuted

The illogical view in question is one that is
unfortunately now often espoused: viz., that
since robots can be engineered to perform
ethically on par with average humans (e.g.,
human soldiers), there’s nothing unwise
about engineering and deploying such robots.

Let’s call this view simply R.
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An lllogical View Refuted

If R is sound, then robots in warfare as ethically correct
as human soliders are good enough to be deployed (or
max-aimed for engineering-wise).

If robots in warfare as ... deployed (or max-aimed for
engineering-wise), then robodrivers that drive as well as
human drivers are good enough to be deployed (or max-
aimed for engineering-wise).

Robodrivers that drive as well as human drivers are not
good enough to be deployed (or max-aimed for
engineering-wise).

Therefore (by modus tollens and hypothetical syllogism), R
is not sound.
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Bringsjord, S.“Logic-Based/Declarative Computational Cognitive
Modeling” in R. Sun, ed., The Cambridge Handbook of Computational
Psychology (Cambridge, UK: Cambridge University Press), 127—-169.
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The Problem
(barbarically put) ...




Our Future

Autonomous lethal robots on the battlefield.
Autonomous “lethal” robots in our hospitals.
Autonomous lethal robots in law enforcement.
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Our Problem

If these robots behave immorally, we are killed, or worse.
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Problem, More Specifically
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Problem, More Specifically

® How can we ensure that the robots in question
always behave in an ethically correct manner?

® How can we know ahead of time, via rationales
expressed in clear English (and/or other natural
languages), that they will so behave!?

® How can we know in advance that their
behavior will be constrained specifically by the
ethics affirmed by ethically correct human
overseers?

Monday, June 8, 2009



Bill Joy:

“We can’t.’
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Bill Joy:

“We can’t.’

But:

Bringsjord, S. (2008) “The Future Can Heed Us” Al & Society 22.4: 539-550.
http://kryten.mm.rpi.edu/Bringsjord EthRobots_searchable.pdf
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Bill Joy:

“We can’t.’

But:

Bringsjord, S. (2008) “The Future Can Heed Us” Al & Society 22.4: 539-550.
http://kryten.mm.rpi.edu/Bringsjord EthRobots_searchable.pdf

SB: “We can.’
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The “Solution” ...
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Regulate the behavior of robots with a
specific, fixed ethical code rendered in
computational logic, so that all actions

they perform are provably ethically
permissible relative to this code.
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A deontic logic
Jormalizes a moral
cade, allowing
ethicists to render
theories and dilemmas
in declarative form for
analysis, It affers a
way for human
OVEPSEErs to constrain
robot belhavior in
eikically sensitive
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Toward a General
Logicist Methodology
for Engineering

Ethica
Robots

Correct

Selmer Bringsjord, Konstantine Arkoudas, and Paul Bello,

Rensselaer Polytechnic Institute

sintelligent machines assume an increasingly prominent role in our lives, there

seemslittle doubt they will eventually be called on to make important, ethically

charged decisions. For example, we expect hospitals to deploy robots that can adminis-

ler medicalions, carry out Lests, perform surgery, and so on, supported by software agents,

ar softhols, that will manage related data. (Our dis-
cussion of ethical robols extends to all artificial
agenls, embodied ornol.) Consider also that robots
are already finding their way to the baitlefie]d, where
many of their polential actions could inflict hamm that
is ethically impenmissible.

Hew can we ensure that such mbots will always
behave in an ethically comect manner? How can we
knonw ahead of time, via rationales expressed in clear
natural languages, that their behavior will be con-
sirained specifically by the ethical codkes affirmed by
human overseers? Pessimists have claimed that the
answer o these questions is: “Wecan't!” For exam-
ple, Sun Micmsystems” cofounder and former chief
scientist, Bill Toy, published a highly influential argu-
ment for this answer.! Inevitably, according to the
pessimists, AL will produce robots that have tremen-
dows power and behave immorally. These predictions
certainly have some traction, particulardy among a
puhlic that pays good money 10 see such dark films
as Stanley Kubrick s 2000 and his joint ventune with
Stephen Spiclherg, Af.

Nometheless, we'ne optimists: we think formal logic
affers a way to preclude doomsday scenarios of mali-
cionts robols king over the world . Faced withthe chal-
lenge of engineering ethically comect robals, we pro-
pose a logic-hasad approach {see the related sidebar).
We've successfully implemented and demonstrated
{his approach 2 We present it here in a general methed-

1541-167206520.00 © 2006 |EEE
Pttt by the [EEE Compurter Soctey

ology to answer the ethical questions that arize in
entrusting robots with more and more of our wel fane.

Deentic logics:
Formalizing ethical codes

Our answer o the questions of how to ensume eth-
ically comect robot behavior is, in brief, 1o insist that
robois only perform actions that can be proved eth-
ically permissible in a human-selected deaniic logic.
Acdeontic logic formalizes an ethical code—that is,
acollection of ethical mules and principles. Isme Asi-
mey introduced a simple (bat subtle) ethical code in
his Famous Three Laws of Robotics:®

1. Acrohot may not lamm a human being, or, thoogh
inacticm, allow a human being 1o come o harm.

2 A robot must obey the orders given to it by
human beings, except where snch orders wiould
comflict with the First Law.

3. Arobot must protect ils own existence, as long
as such protection does not conflict with the
First or Second Law.

Human beings often view ethical theores, princi-
ples, and codes informally, but intelligent machines
require a greater degree of precision. At present, and for
the foreseeable future, machines can't work directly
with natral language, so we can’t simply Feed Asi-
me's three laws to a mbot and instct it behave in

IEEE INTELLIGENT SYSTEMS
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2.

“Solution” Steps

Human overseers select ethical code (including
perhaps “rules of engagement”).

Selection is formalized in a deontic logic (or
some logical system), revolving around what is
permissible, forbidden, obligatory (etc).

3. The deontic logic/system is mechanized.

4.

Every action that is to be performed must be
provably ethically permissible relative to this

mechanization (with all proofs expressible in

smooth English).
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Simple Hospital Example...
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Context

® The year is 2020.

® Health care is delivered in large part by
interoperating teams of robots and softbots.

® Hospital ICU.
® Robot R/ caring for Hy; R; for H,.
® H, on life support.

® H; stable, but in desperate need of expensive pan
med.
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More Context

® [wo actions performable by the robotic duo
of Rl and R2, both of which are rather
unsavory, ethically speaking:

® term

® delay
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Encapsulation

J — OR, term

O — ©pg,delay
J* — JNJ* — Spg,delay
O — ONO* — O, term

(Agr, term N Ag,—delay) — (—!)

CF (+!)
where C' = O~
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Additional Need




Additional Need

® An human-machine interactive reasoning system is
required.

® Examples of such systems include Athena, and Slate.

® Human consultation and assistance must be provided at
key junctures, because human will be perpetually smarter
and oversight will occasionally be needed.
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Additional Need

® An human-machine interactive reasoning system is
required.

® Examples of such systems include Athena, and Slate.

® Human consultation and assistance must be provided at
key junctures, because human will be perpetually smarter
and oversight will occasionally be needed.
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Www.cogsci.rpi.edu/slate
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. \ Slate was designed and developed by
e ) Seimer Bringsjord
< Andrew Shilliday
‘ Joshua Taylor
- 7/;’7 > with valuabie suggestions from
“ o, Wa ay
) ficka

Slate i the property of Rensselaer Polytechnc Institute (RPY) and the Rensselaer Artifical
. 1y
e ",wu‘. d Re g (RAIR) Lab. When officially released, sponsors and general
nNracic n unrestncted hcense L™

Copyright (¢) 2003-2006 Rensselaer Polytechnic Institute. All rights reserved
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This “solution” won’t work. We will be killed.
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Three Fatal Problems ...
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Three Fatal Problems

Need logical system that includes not only deontic
operators, but also epistemic operators (for believes,
knows), and a full calculus for time, change, goals, and
plans.

Need to solve program verification problem.

Need to take account of the brute fact that ethical
reasoning ranges over many different kinds of logical
systems, and involves integrative meta-reasoning of
these systems. In short, ethical reasoning, like
reasoning in the formal sciences, goes to to Piaget’s
“Stage 5.
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|. Need logical system that includes not only deontic
operators, but also epistemic operators (for believes,
knows), and a full calculus for time, change, goals, and
plans.

2. Need to solve program verification problem.

Need to take account of the brute fact that ethical
reasoning ranges over many different kinds of logical
systems, and involves integrative meta-reasoning of

Submitted
Abstract

for

these systems. In short, ethical reasoning, like
Workshop

reasoning in the formal sciences, goes to to Piaget’s
“Stage 5.
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Solving Problem |I:

Work to done, but not worried,
since we already have a good start
on the formal calculi.
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Solving Problem |I:

Work to done, but not worried,
since we already have a good start
on the formal calculi.

For example, ...
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Metareasoning for multi-agent epistemic logics

Konstantine Arkoudas and Sehner Bringsjord

RPI
[arkouk, brings}2mpi . edu

Abstract, We present an encoding of a sequent ealeulus for a mlti-
agant epistemir loghe in Athena, an interartive thestem proving svstem
r... " hm use Athena ns o metalingags
t logic an a8 object bmguage
Thi Tl oes theorem proving in the muli-agent. kgl 1 vera
First, it lets us marshal the hizhly efficint theoram provers fior ¢
sical rst-ordar logic that are integraced with Athena for the purpcss
of deing proofs in the mult-agent logic, Seeond, unlike meeek ot ic
emhectdings of modal logics into class -oniler logic, our proofs are

e tive episternic logic proofs. Thind, beeause we
¢ propesitions and agents, we get much of the
ner logie sven thongh we sire i
e 1o use Athena’s versatile taiies for
ate by developing 3
e versian of the wise men problem

tactic for slving the gen

1 Introduction

Multi-agent. modal logics are widely used in Computer Seience aud AL Multi
agent epistemic Iogics, in particular, have found applications m fields ranging
from Al domains such ms mboties, pla nd motivation mualysis i
ral language [13]); 10 negotiation and game theory in econcmics; to distributed
systeme analysis and protocol authentieation in computer seurity [16,31]. The
reason is simple—inteligent agents must be able o reason sbont knowle I
is therefore mportant 1o have efficient means for perfarming machine reasoning
in such logies. While the validity problem for most propositional modal logics is
of intractable thearetical complexity!, several approaches have beew investigated
n rocent years tht heve resulted n systoms that appear to work well in prac-
tioe. These approaches include tablau-bassd provers, SAT-hased algrithms,
and transl 15 b0 Finst-s ie coupld with the use of resolution-based an-
tomated theorem provers ( o repre WCT [24],
{saTC [14], TA [25], LW [23], and MSPASS |1

Translation- based approaches (such os that of MSPASS) have the advantage
of kveraging the tremendous implementation propress that hes oceurred over

atative systems ore

the validity problem for muliisgent propositional episiemic logic is
nplets [15]; acding 5 comman knovledes: operator makas the problam
-complete [21]

Proved-Sound Algorithm for Generating
Proof-Theoretic Solution to WMP,,

http://kryten.mm.rpi.edu/arkoudas.bringsjord.clima.crc.pdf

All human-
authored
proofs
machine-
certified.

Metareasoning for multi-agent apistamic

K] [T
IHKalP=Q)| = [KalP)=Ka(]] IMFRa(P)=P
4EP i
] Fro
O IR
I'H|CIP =)= [C(F) =C{Q])] IMEOP) = CIR A (F)

Fig. 2. Inferenee rulas for the spistamic oparators,

is 7 P Intuitively, this is a judgment stating that P follows from 7 We will
write P, 17 (or I, P) as an abbreviation for 0 { P} The sequent calenlus that
we will nse consists of a collection of inferemee rules for deriving judgments of
the form 7 F P, Figure 1| shows the mierenes rukes that deal with the standard
propositional connectives. This part is standard (eg., it is very ghnilar to the
sequent ealeulns of Ebbinghaus et al. [15]]. In addition, we have some rules
pertaining to K, and ', shown m Figore 2.

Rule [K| = the sequent formulation of the well-known Kripke eriom stating
that the knowledge operator distributes over conditionals, Rule |Cg| is the eor-
responding principle for the commen knowledge operator, Rule [T i= the “truth
axiom’”: an agent cannot know false propositions. Rule O] is an intmoduction
ruke for commen knowledge: if a propesition P follows from the empty set of
hypetheses, ie, if it i= a tautology, then it is commonly known, This is the
common-knowledge versiom of the “omniscience axiom” for single-agent lkinowl-
edge which says that " F Ko (P) can ke derived from @ F P, We do not need to
postulate that axiom in our farmulation, sinee it fBllbwe from [C-F] and [C-F).
The latter says that if it & commen knowledge that P them any [every] agent
knews P, while [ R] says chat if it i= eommon knowledge that P then it 1= common
knewledge that {any) agent o kunows it. |[R] i= a reiteration role that allows us to
eapture the recursive behavior of ©, which i= usually expressed via the so-called
“induetion axicm™

C{P=E[P)|=|P=C(P)

where E i= the shared-knowledge operator. Sinee we do not need B for our
purpazses | we omit its formalizacion and “unfald” © via rale |1)] instead.

We state a few lemmas that will come handy late
Lemma 1 (Cuat). If N FP and i P FF thern D0 F By

Proot: Assume 1 F P oand 15, P F Fa Then, by [=-0], we get 15 F P = P,
Further, by dilution, we have Iy U1y P = P and i Uiy F P Henee, by
[=-E], we ohtain iy Ui F Py a

The proofs of the remaining lemmas are equally simple exercizes:

Metareasoning for multi-agent epistemic logics T
iy A Ran Ryt B Y [Heflea], m-F
iy A Rz s Ra) F Ry |Heflea], A-E, A-Es
Ry A By s Ryl B Ry | Heflead, #-

By A Bz Ral b Kal-~0Q) = Ka(P) 2. [K] =-E
fy A Re b Ra} b0 = Kal P 1, Lammma 2
Ry A Re A Ra} bR s P) = -0 Lemma 3
By A Ha A Ral -G
Ry n Bz b RalbFQ

d

iat the above proaf 1= not entively low-level bacanse most steps eombine
more inference rule applications in the mtenest of brevity,

a 7. Consider any agent o and propositions P}, Define By and Ky
semma &, et Ho P ), and e 5 C{R) for i 1,2,3. Then
Sa} k0.

Let J#, = =) = P and consider the bllowing derivation:

[eafler
P : [Rafler
81,82, Sz} F 5 [Fefler
IFH{PV ) =(-Q=F] Lermma da
JSabE O P Y Q)= (-0 = P} 1, [C-1)
Sap P RI=C0-0=F) 5 II.".L.-I [=-E]
N = P 6,2, |=-E]
F ﬂQ::—.”j::f‘[J\'ni'Q:.”}j |!i'|
5. a} b O Ka (-0 =P 8 T, [=-E]
MaKalQ=Pafa} bQ Letmma 6
TF (R A K~ = P) A Ra) =0 10, |=-1|
- ([ 4 Ko ~Q = P A Hy) =) 11, JC-1)
g ) 12, |l." .t.| [=-E]

1,3, 0, Lemma &, |A-T)
51, 82, S} HO(Q) 13, 1, [=-E]
a

all w = 1, it turns out that the last—{w 4 1)* —wise man knows he is
The caze of two wise men is simple. The reasoning runs essentially by
iction. T'he seecnd wise man reasons as follows:

spese | were not marked. Then wy would have seem this, and knowing
t at least one of us is marked, he would have inferred that he was
marksd one. But wy has expressed ignorance; therefore, | must be

kel

o now the rase of 0 = 3 wise men @, wy, . Alter @) amounees chat
rmat know that he is marked, we and we both infer that at least one of
marked. For if neither wy nor wy were marked, w0 would have seen this
uld have concluded—and stated—that he was the marked one, since he
hat at least one of the thres is marked. At chis point the pumle reduees
wo-men case: hoth wg and wy know that at least one of them i= marked,
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In SL, w/ real-time comm using socio-cognitive calculus.
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In SL, w/ real-time comm using socio-cognitive calculus.
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Hugin Rasmuson: Hello Edd, Micah, today we're going to perform an experiment.
" -
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Toward Mechanizing Folk Psychology:
A Formal Analysis of False-Belief Tasks

Konstantine Arkoudas & Selmer Bringsjord

Abstract. Predicting and explaming the behavier of other agents
in terms of mental states 1s indispensable for everyday life. We be-
lieve it will be equally important for artificial agents. We present
an inferemce system for representing and reascning about mental
states, and use it to provide a formal analysis of the false-belief
task. The system allows for the representation of information about
events, causation, and perceptual, doxastic, and epistemic states (vi-
sion, belief, and knowledge), incorporating ideas from the event cal-
culus and nmlti-agent epistemic logic. Reasonmg i1s performed via
cognitively plausible inference mules, and a degree of antomation is
achieved by general-purpose inference methods, akan to the demons
of blackboard-based mmlti-agent systems. The system has been im-
plemented and 1s available for experimentaticn.

1 Imntroduction

Predicting and explaining the behavier of other people is indispens-
able for everyday life. The ability to ascribe mental states to others
and to reason about such mental states is pervasive and mvaluable.
All social transactions —from engaging in commerce and negohating
to making jokes and empathizing with other people’s pain or joy—
require at least a mdimentary grasp of common-sense psychology
(CSP). Artificial agents without an ability of this sort would essen-
tially suffer from autism, and would be severely handicapped in their
interactions with humans. This could present problems not only for
artificial agents trying to interpret human behawvier, but alse fer arti-
ficial agents trying to interpret the behavior of one another When a
system exhibits a complex but rational behavior and detailed kmowl-
edge of its internal structure is not available, the best strategy for
predicting and explaining its actions mizht be to analyze its behav-
1or In intentional terms, 1.e., in terms of mental states such as beliefs
and desires (rezardless of whether the system acrually has genuine
mental states). Mentalistic models are hkely to be particularly apt for
agents trving to manipulate the behavior of other agents.

Any computational treatment of CSP will have to mtegrate action
and cognition. Agents nmst be able to reason about the canses and
effects of vanous events, whether they are intentional events brought
about their own agency or non-intentional physical events. More im-
portantly, they must be able to reason about what others believe or
know about such events. To that end, cur system combines ideas
drawn from the event calculus and from mmlt-azent epistemic logics.
It is based on multi-sorted first-order logic extended with subsorting,
epistemic operators for perception, belief, and knowledze, and mech-
anisms for reasoning about causation and action. Using subsorting,
we formally model agent actions as types of events, which enables
us to use the resources of the event calculus to represent and rea-
son about agent actions. The usual axioms of the event calculus are

encoded as commeon kmowledge, suggesting that people have an un-
derstandmg of the basic folk laws of cansality (innate or acquired),
and are indeed aware that others have such an understanding.

It is important to be clear on what we hope to accomplish with the
present work. In general, any logical system or methodology capa-
ble of representing and reascming about intentional netions such as
kmowledge can have at least three different uses. First, it can serve as
a tool for the specification and analysis of rational epistemic agents.
Second, in tandem with some appropriate reasoning mechanism, 1t
can serve as a kmowledge representation framework, i.e., it can be
used by artificial agents to represent their own “mental states” —and
those of other agents—and to deliberate and act in accordance with
those states and their environment. Finally, 1t can be used to provide
formal medels of certain interesting phenomena. A chief intended
contnbution of our present work 1s of the third sort, namely, as a for-
mal model of false-belief attributions, and m particular as a descrip-
tion of the competence of an agent capable of passing a false-belief
task It addresses questions such as the following: What sort of prin-
ciples is 1t plausible to assume that an azent has to deploy n order to
be able to succeed on a false-belief task? What 15 the depth and com-
plexity of the required reasoning? Can such reasoning be automated,
and if so, how? These questions have not been taken up 1n detail m
the relevant discussions in cogmtive sclence and the philosophy of
mind, which have been couched in overly abstract and rather vague
terms. Formal computational models such as the one we present here
can help to ground such discussions, to clanfy conceptual 1ssues, and
to begin to answer important questions in a concrete setting.

Although the import of such a model 15 pnmanly scientific, there
can be mteresting engineering implications. For instance, if the for-
malism 15 sufficiently expressive and versatile, and the posited com-
putational mechanisms can be antomated with reasenable efficiency,
then the system can make potential contributions to the first two areas
mentioned above. We believe that our system has such potential for
two reascns. First, the combination of epistemic constructs such as
commen knowledge and the conceptual resources of the event cal-
culus for dealing with causation appears to afford great expressive
power, as demonstrated by our formalization. A key technical insight
behind this combination is the modelling of azent actions as events
via subsorting. Second, procedural abstraction mechanisms appear to
hold significant promise for antomation; we discuss this issue later in
more detail.

The remainder of this paper 1s stuctured as follows. The next sec-
tion grves the formal defimtion of our system. Section 3 represents
the false-belief task n our system, and section 4 presents a model of
the reasoning that 1s required to succeed m such a task, camed out
in a modular fashion by collaberating methods. Section 5 discusses
some related work and concludes.
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2 A calculus for representing and reasoning about
mental states

The syntactic and semantic problems that arise when one tries to use
classical logic to represent and reason about mtentional notions are
well-known. Syntactically, modelling belief or knowledge relation-
ally 15 problematic because one believes or knows arbitranly com-
plex propositions, whereas the arguments of relation symbols are
terms built from constants, vanables, and function symbols. (The
objects of belief could be encoded by strings, but such representa-
tions are too low-level for engineering purposes.) Semantically, the
main issue is the referential opacity (or intensionality) that must be
exibited by any operators for belief, desire, knowledge, etc. In m-
tensional contexts one cannot freely substitute one coreferential term
for another. Breadly speaking, there are two ways of addressing these
issues. One 15 to use a modal logie, with bult-in syntactic operators
for intentional notions. The other 1s to stick with classical logic but
distinguish between an object-language and a meta-language, repre-
senting intenticnal discourse at the object level. Each approach has
its own advantages and drawbacks. Sticking with classical legic has
the important advantage of efficiency, in that automated deduction
systems for classical logic, such as resclution provers—which have
made impressive strides over the last decade —can be used for rea-
soming. One disadvantage of this approach is that when the object
language 15 first-order (includes quantification), then notions such as
substitutions and alphabetic equivalence must be explicitly encoded.
Depending on the facilities provided by the meta-language, this does
not need to be overly enerous, but it does require extra effort.

The modal-logic approach has the advantage of selving the syntac-
tic and semantics problems directly, without the need to distinguish
an object-language and a meta-language. That is the approach we
have taken in this work. The mam drawback of this approach 15 the
difficulty of automating reasoming, since standard theorem-proving
techniques from classical logic cannot be directly employed. We have
tried to overcome this limitation here by explonng the automation
potential of methods, or denved inference rles (called factics in the
terminology of HOL [7]). Ancther drawback is the issue of seman-
tics. The standard semantics of modal logics are given in terms of
Krnpke structures involving possible worlds. Such semantics are very
elegant and well-understood mathematically. They are also guite n-
tuitive for logics dealing with necessity or time. However, they are
remarkably unintmtive for doxastic and epistemic logics. Not only
do they fail to shed any hight on the nature of belief or kmowledge,
but they also have a number of widely known counter-intuitive con-
sequences that are unacceptable for resource-bounded agents, such
as logical omniscience (deductive closure of knowledge, knowledge
of all tantologies, etc.) and the fized-point characterization of com-
mon knowledge. These issues are significant for us, given that we are
interested in telling a plausible story for how actual agents in the real
world can succeed on false-belief tasks. There have been munercus
attempts to rectify these issues [8, 4, 9, 10], but each has faced seni-
ons problems of its own, and cutside of Knipke structures there is no
widely accepted standard at present.

Accordingly, we have not provided a possible-world semantics for
owr system Note that an additicnal potential complication here is
that the semantics of the event calculus are given in terms of cir-
cumscription, a second-order logic schema, and it is not obvicus
how to accommodate that feature m the setting of possible worlds.
Due to these issues, and due to space restrictions, our presentation
here is entirely proof-theoretic. The meanings of the various syntac-
tic constructs—such as the knowledge operator—can be viewed as

determined by their nferential roles, as specified by the varous in-
ference rules. (This can itself be regarded as a form of semantics; it is
called “conceptual-role semantics” or “functional semantics” in the
philesophy of mind; “natural semantics™ in computer science; and
“procedural semantics” In cognitive science.)

The following is the formal specification of our system, describing
the varions serts of our universe (S), the signatures of certain built-in
functicn symbols (f), and the abstract syntax of terms (¢) and propo-
sitions (7). The symbol C denotes subsorting:

& = 0Object | Agent | ActionType | Action C Event
| Moment | Boolean | Fluent
acrien : Agent » BoctionType — Action
initiglly : Fluent — Boolean

holds : Fluent » Moment — Boolean
happens : Event x Moment — Boolean

f = clipped : Moment = Fluent x Moment — Boolean
iminares : Event « Fluent = Moment — Soolsan
terminates @ Event ® Fluent « Moment — Boolean
prior : Moment x Moment — Boolean

t = x:&|e:&| flty, ..., tn)

F = t:Boolean |- FP|FPAQ|FPVQ|F=Q | Pesaq|

Yr:S.FP|3x: 5. F|&a, FP)| Ka, F) | Bla, F) | C{F)

Propositions of the form S(a, P), B(a. P). and K(a, P) should be
understood as saying that agent a sees that P is the case, believes that
P, and knows that F, respectively. Propositions of the form C(P)
assert that P is commeonly known Sort annotations will generally
be cmuitted, as they are easily deducible from the context. We write
Plr +— t] for the proposition obtained from F by replacing every
free occurrence of x by ¢, assuming that £ 15 of a sort compatible
with the sort of the free ocomrences in question, and taking care to
rename P as necessary to avold vanable capture. We use the infix
notation t; < fg instead of prier(ty, 2.

We express the following standard azioms of the event calculus as
commen knowledze:

[41] C{v f.t. mmmally( f) & —clipped(0, f,t) = holds(f,t))
[Az] Ci¥ e, f,t1.t2 . happens (e, t1) A minatesie, f,t1) A
ty < tg A-clppedity, fota) = holds(f. ta))

[Aa] C(¥ty, fota . clipped(ty, f.t2) =
[Fe.t. happensie. t) Aty < t <tz A terminates(e, f,¢)])

suggestimg that people have a (possibly mnate) understandmg of ba-
sic causality principles, and are indeed aware that everybedy has
such an understanding. In addition te [Ai]—[Aa], we pestulate a
few more axioms pertaining to what people know or believe about
causality. First, agents know the events that they intentionally bring
about themselves—that is part of what “action” means. In fact, this
15 commeon knowledge. The following axiom expresses this:

[44] C(¥a,d.t.happens(action(a.d). ) =
K(a, happens (action(a, d).t)))

The next axiom states that it 15 common knowledge that if an agent
a believes that a certain fiuent f holds at ¢ and he does not believe
that f has been clipped between ¢ and ¢', then he will also believe
that f helds at¢':

[As]  C(¥a.ft,t" . Bia, holds(f,t)) AB(a.t = t) A
—B(a,clipped(t, f.t')) = Bia, holds( f,£)))
The final axiom states that if a believes that b believes that f holds
at {1 and a believes that nothing has happened between ¢; and {2 to

change b's mind, then a will believe that b will not think that f has
been clipped between ¢; and £5:
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2 A calculus for representing and reasoning about
mental states

The syntactic and semantic problems that arise when one tries to use
classical logic to represent and reason about mtentional notions are
well-known. Syntactically, modelling belief or knowledge relation-
ally 15 problematic because one believes or knows arbitranly com-
plex propositions, whereas the arguments of relation symbols are
terms built from constants, vanables, and function symbols. (The
objects of belief could be encoded by strings, but such representa-
tions are too low-level for engineering purposes.) Semantically, the
main issue is the referential opacity (or intensionality) that must be
exibited by any operators for belief, desire, knowledge, etc. In m-
tensional contexts one cannot freely substitute one coreferential term
for another. Breadly speaking, there are two ways of addressing these
issues. One 15 to use a modal logie, with bult-in syntactic operators
for intentional notions. The other 1s to stick with classical logic but
distinguish between an object-language and a meta-language, repre-
senting intenticnal discourse at the object level. Each approach has
its own advantages and drawbacks. Sticking with classical legic has
the important advantage of efficiency, in that automated deduction
systems for classical logic, such as resclution provers—which have
made impressive strides over the last decade —can be used for rea-
soming. One disadvantage of this approach is that when the object
language 15 first-order (includes quantification), then notions such as
substitutions and alphabetic equivalence must be explicitly encoded.
Depending on the facilities provided by the meta-language, this does
not need to be overly enerous, but it does require extra effort.

The modal-logic approach has the advantage of selving the syntac-
tic and semantics problems directly, without the need to distinguish
an object-language and a meta-language. That is the approach we
have taken in this work. The mam drawback of this approach 15 the
difficulty of automating reasoming, since standard theorem-proving
techniques from classical logic cannot be directly employed. We have
tried to overcome this limitation here by explonng the automation
potential of methods, or denved inference rles (called factics in the
terminology of HOL [7]). Ancther drawback is the issue of seman-
tics. The standard semantics of modal logics are given in terms of
Krnpke structures involving possible worlds. Such semantics are very
elegant and well-understood mathematically. They are also guite n-
tuitive for logics dealing with necessity or time. However, they are
remarkably unintmtive for doxastic and epistemic logics. Not only
do they fail to shed any hight on the nature of belief or kmowledge,
but they also have a number of widely known counter-intuitive con-
sequences that are unacceptable for resource-bounded agents, such
as logical omniscience (deductive closure of knowledge, knowledge
of all tantologies, etc.) and the fized-point characterization of com-
mon knowledge. These issues are significant for us, given that we are
interested in telling a plausible story for how actual agents in the real
world can succeed on false-belief tasks. There have been munercus
attempts to rectify these issues [8, 4, 9, 10], but each has faced seni-
ons problems of its own, and cutside of Knipke structures there is no
widely accepted standard at present.

Accordingly, we have not provided a possible-world semantics for
owr system Note that an additicnal potential complication here is
that the semantics of the event calculus are given in terms of cir-
cumscription, a second-order logic schema, and it is not obvicus
how to accommodate that feature m the setting of possible worlds.
Due to these issues, and due to space restrictions, our presentation
here is entirely proof-theoretic. The meanings of the various syntac-
tic constructs—such as the knowledge operator—can be viewed as

determined by their nferential roles, as specified by the varous in-
ference rules. (This can itself be regarded as a form of semantics; it is
called “conceptual-role semantics” or “functional semantics” in the
philesophy of mind; “natural semantics™ in computer science; and
“procedural semantics” In cognitive science.)

The following is the formal specification of our system, describing
the varions serts of our universe (S), the signatures of certain built-in
functicn symbols (f), and the abstract syntax of terms (¢) and propo-
sitions (7). The symbol C denotes subsorting:

& = 0Object | Agent | ActionType | Action C Event
| Moment | Boolean | Fluent

acrien : Agent » BoctionType — Action

initiglly : Fluent — Boolean

holds : Fluent » Moment — Boolean
Fou= happens : Event x Moment — Boolean

: clipped : Moment = Fluent x Moment — Boolean

iminares : Event « Fluent = Moment — Soolsan
terminates @ Event ® Fluent « Moment — Boolean
prior : Moment x Moment — Boolean

t o= x:&S|eo:&)| flty, ..., tn)
F o= t:Boolean |-F|FPAQ|FPVvQ|F=Q|PesqQ|
Yr:S.FP|3x: 5. F|&a, FP)| Ka, F) | Bla, F) | C{F)

Propositions of the form S(a, P), B(a. P). and K(a, P) should be
understood as saying that agent a sees that P is the case, believes that
P, and knows that F, respectively. Propositions of the form C(P)
assert that P is commeonly known Sort annotations will generally
be cmuitted, as they are easily deducible from the context. We write
Plr +— t] for the proposition obtained from F by replacing every
free occurrence of x by ¢, assuming that £ 15 of a sort compatible
with the sort of the free ocomrences in question, and taking care to
rename P as necessary to avold vanable capture. We use the infix
notation t; < fg instead of prier(ty, 2.

We express the following standard azioms of the event calculus as

[41] C{v f.t. mmmally( f) & —clipped(0, f,t) = holds(f,t))
[Az] Ci¥ e, f,t1.t2 . happens (e, t1) A minatesie, f,t1) A
ty < tg A-clppedity, fota) = holds(f. ta))

[Aa] C(¥ty, fota . clipped(ty, f.t2) =
[Fe.t. happensie. t) Aty < t <tz A terminates(e, f,¢)])

sic causality principles, and are indeed aware that everybedy has
such an understanding. In addition te [Ai]—[Aa], we pestulate a
few more axioms pertaining to what people know or believe about
causality. First, agents know the events that they intentionally bring
about themselves—that is part of what “action” means. In fact, this
15 commeon knowledge. The following axiom expresses this:

[44] C(¥a,d.t.happens(action(a.d). ) =
K(a, happens (action(a, d).t)))

The next axiom states that it 15 common knowledge that if an agent
a believes that a certain fiuent f holds at ¢ and he does not believe
that f has been clipped between ¢ and ¢', then he will also believe
that f helds at¢':

[As]  C(¥a.ft,t" . Bia, holds(f,t)) AB(a.t = t) A
—B(a,clipped(t, f.t')) = Bia, holds( f,£)))
The final axiom states that if a believes that b believes that f holds
at {1 and a believes that nothing has happened between ¢; and {2 to

change b's mind, then a will believe that b will not think that f has
been clipped between ¢; and £5:
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formalize this scenario m our calculus. In the next section we will
present a formal explanation as to how Alice can come to acquire the
correct belief about Bob’s false belief.

We mtroduce the sort Location and the fellowing function svm-
bols specifically for reasoning about the false-belief task:

places : Object ¥ Location— ActionType
moves : Object ® Location » Location — ActionType
Ipcated : Object x Location— Fluent

Intuitively, action(a, places(o, [)) signifies a’s action of placing
object o in location [, while

action(a, moves(o, Iy, {a))

is a's action of moving object o from location Iy to location ls.
It 15 common knowle at placing o in [ imtiates the fiuent
located(o, I):

[D1] Ci¥ a.t,o.l . initiates(action (e, places(o, 1)), located(o 1), £))

It 15 hkewise kmown that if an object o 15 located at {1 at a tume £,
then the act of moving o from 4 to Iz results in o being located at [3:

[Dz] C{¥a.t,oly,lz . holdsilocated(o, l1),t) =
iminares(actionia, movesio, Iy, Iz )), located (o, Iz), t))

If, in addition, the new location 15 different from the old one, the
move terminates the fluent located(o, I1 ):

[Da]  C(¥ a.t, ol .la . holds(located(o, 1 ), 8) Ay # Iz =
ferminates (action|a, movesio, iy la)), located(o . I1),¢))

The following axiem captures the constraint that an cbject cannot
be in more than one place at one time; this is also commeon kmowl-

edge:
[D4] C(¥ o,t, 11,1z . holds(located(o, 11 ), £) A
holds(located (o, I2), £) = 1) = I3)

We introduce three time moments that are central to the narra-
tive of the false-belief task: beginning, departure, and return. The
first signifies the time point when Bob places the cookie in the cabi-
net, while departure and refurn mark the points when he leaves and
comes back, respectively. We assume that it's common knowledge
that these three time points are linearly ordered in the obvicus man-
ner:

[Dg] Cibegimming < depariure = renurn).
We also introduce two distinet locations, cabinet and drawer:

[De] C(cabiner # drawer).

Fmally, we introduce a domain Cookie as a subsort of 0bject,
and declare a single element of it, cookie. It 15 a given premise that,
in the beginning, Alice sees Bob place the cookie m the cabinet:

[D7] S(Alice, happens(action(Bob, places(cookie, cabinet) ), beginmng)).

4 Modeling the reasoning underlying false-belief
tasks, and automating it via abstraction

At this pomt we have enough representational and reasoning machin-
ery in place to infer the comrect conclusion from a couple of obvious
premises. However, a monolithic derivation of the conclusion from
the premuses would be unsatisfactory, as it would not give us a story
about how such reasoning can be dynamically put together. Agents
must be able to reason about the behavior of other agents efficiently.
It is not at all obvious how efficiency can be achieved in the absence
of mechanisms for abstraction, modularity, and reusability.

We can begmn to address both issues by pursming further the idea of
derived inference niles, and by borrowing a page from classic work
in cognitive science and production systems. Suppese that we had a
mechanism which enabled the denvation of not enly schematic in-
ference mules, such as the ones that we presented in section 2, but de-
nved inference rules allowing for arbitrary computation and search.
We could then formmulate gemeric inference rules, capable of being
applied to an unbounded (potentially infinite) mumber of arbitrarily
complex concrete situations.

Our system has a notion of method that allows for that type of
abstraction and encapsulation. Methods are denved inference rules,
not just of the schematic kind, but incorporating arbitrary computa-
tion and search. They are thus more general than the simple if-then
rules of production systems, and more akm to the knowledge sources
(or “demons”) of blackboard systems [5]. They can be viewed as
encapsulating specialized expertise in deriving certain types of con-
clusions from certain given information. They can be parameterized
over any variables, e_g., arbitrary agents or time points. In our system,
the role of the blackboard 15 played by an associative data structure
(shared by all methods) known as the assumption base, which is an
efficiently indexed collection of propositions that represent the col-
lective knowledge state at any given moment, mcludmg perceptual
knowledze. The assumption base is capable of serving as a commu-
mication buffer for the various methods. Finally, the control executive
15 1tse].f a met]:ﬂi which d.u'ects the reasomn@, process incrementally

We descnl:le below three general-purpose methods for reasoning
in the caleulus we have presented. With these methods, the reason-
ing fer the false-belief task can be performed in a handful of lines—
essentially with one invocation of each of these methods. We stress
that these methods are not ad hoc or hardwired to false-belief tasks.
They are generic, and can be reused in any context that requires rea-
soning about other minds and satisfies the relevant preconditions. In

particular, the methods do not contain or require any information spe-
cific to false-belief tasks.

o Method 1. This method, which we call Ay, shows that when an
agent ai sees an agent a: perform some action-type o at some
time peint f, a, knows that ap knows that as has camed out o at
t. My is parameterized over ai, az, o, and &

S{ay, happensiaction(ag . a), t)) (1)

2. Therefore, a, knows that the corresponding event has occwred
at t:

K{a1, happens(achion(az. o). t)) (2)

This fellows from the preceding premise and [DR,].
3. From [4,] and [DR;] we obtain:
Kiay, ¥V a, 0.t . happensiaction|a, a), t) =
Kia, happens(action(a, o), t))) 3
4. From (3) and [DRs] we get:
Kia1, happensiaction(az, o), ) =

Kiag, happens (action(az, o), t))) )
5. From (4), (2), and [DRg] we get:
Kiay, K{aq, happens(action{asz, a).t))) 3

Method 2- The second method, Mz, shows that when (1) it is com-
mon knowledge that a certain event e initiates a fluent f; (2) an
agent a, knows that an agent a; kmows that £ has happened at a

Proof methods
for efficiency.

Monday, June 8, 2009



formalize this scenario m our calculus. In the next section we will
present a formal explanation as to how Alice can come to acquire the
cormrect belief about Bob's false belief.

‘We mftroduce the sort Location and the following function sym-
bols specifically for reasoning about the false-belief task:

places : Object x Location— ActionType
moves @ Object x Location x Lecation — ActionType
located : Object x Location— Fluent

Intwmitively, action(a, places(o, [)) sigmfies a’s action of placing

object o n location I, while
action( a, moves(o, [y, lz))

1s a’s action of moving object o from location 1 to location [
It is common knowledge that placing o in [ initiates the fiuent
located| o, [):

[DM] C(% a.t, 0.l . initiates (action(a, placesio, [)), located(o, I}, £))
It 1s likewise kmown that if an object o is located at {4 at a time ¢,
then the act of moving o from [ to I2 results in o being located at Iz

[D2] Ci¥a.t, 0.l lz. holds(located(o, I1).t) =
imitaiesiachion(a, moves(o, Iy, Ia)), located(o, Iz ), t))

If, in addition, the new location 1s different from the old one, the

move terminates the fluent located(o, I ):

[D3]  C(¥ a.t ol la . holds(located(o, by ) t) A1y # b =
terminares (action(a, movesio, Iy, I2)), located(o I1),t))

The following axiom captures the constraint that an object cannot
be in more than one place at one time; this is also commen knowl-

edge:
[24] C(¥ o,t, 11,02 . holds(locatedio, I1).t) A
holdsilocatedio, lg), t) = = la)

We introduce three time moments that are central to the narra-
tive of the false-belief task: beginning, departure, and return. The
first signifies the time point when Bob places the cookie in the cabi-
net, while departure and refurn mark the points when he leaves and
comes back, respectively. We assume that it’s common kmowledge
that these three time points are linearly ordered in the obvious man-
ner:

[Ds] Cibegmming < departure < return).
We also introduce two distinet locations, cabinet and drawer:

[De] C(cabinet # drawer).

Fmally, we introduce a demain Cockie as a subsort of Object,
and declare a single element of 1t, cookic. It 1s a given prenuse that,
in the beginning, Alice sees Bob place the cookie m the cabinet:

[D7] S(Alice, happens(action(Bob, places(cookie, cabinet) ), beginnmg)).

4 Modeling the reasoning underlying false-belief
tasks, and automating it via abstraction

At this point we have enough representational and reasening machin-
ery in place to infer the cormrect conclusion from a couple of obvious
premises. However, a monolithic denvation of the conclusion from
the premises would be unsatisfactory, as it would not give us a story
about how such reasoning can be dynamically put together. Agents
must be able to reason about the behavior of other agents efficiently.
It is not at all obvious how efficiency can be achieved in the absence
of mechanisms for abstraction, medularity, and reusability.

We can begn to address both 1ssues by purswing further the idea of
derived inference mles, and by borrowing a page from classic work
in cognitive science and production systems. Suppose that we had a
mechanism which enabled the denvation of not only schematic in-
ference rules, such as the ones that we presented in section 2, but de-
nved inference rules allowing for arbitrary computation and search.
We could then formulate generic mference rules, capable of being
applied to an unbounded (potentially infinite) number of arbitranly
complex concrete situations.

Our system has a notion of methed that allows for that type of
abstraction and encapsulation. Methods are denved inference rules,
not just of the schematic kind, but incorporating arbitrary computa-
tion and search. They are thus more zeneral than the simple if-then
rules of production systems, and more akin to the knowledge sources
(or “demons”) of blackboard systems [5]. They can be viewed as
encapsulating specialized expertise in deriving certain types of con-
clusions from certain given information. They can be parameterized
over any vanables, e g., arbitrary agents or time points. In our system,
the role of the blackboard 15 played by an associative data structure
(shared by all methods) kmown as the assumption base, which is an
efficiently indexed collection of propositions that represent the col-
lective knowledze state at any given moment, including perceptual
knowledge. The assumption base is capable of serving as a commu-
nication buffer for the various methods. Finally, the contrel executive
15 itself a method, which directs the reasoning process incrementally
by nvoking various methods trizgered by the contents of the assump-

on Dase.

We describe below three general-purpose methods for reasoning
in the calculus we have presented. With these methods, the reason-
ing for the false-belief task can be perfonmed in a handful of lines—
essentially with one invocation of each of these methods. We stress
that these methods are not ad hoc or hardwired to false-belief tasks.
They are genenic, and can be reused in any context that requires rea-
soning about other minds and satisfies the relevant preconditions. In

particular, the methods do not contain or require any information spe-
cific to false-belief tasks.

* Method I: This methed, which we call A, shows that when an
agent ai sees an agent az perform seme acticn-type a at some
time peint ¢, a, knows that a; knows that a; has camed out « at
t. My 1s parameterized over ai, az, a, and &

S(aq, happensiaction(ag, o), t)) (1)

2. Therefore, ay knows that the comresponding event has occurred
at i:
Kiai, happensiaction{az, a ), t)) (2)

This follows from the preceding premuse and [DR,].
3. From [A4] and [DR,] we obtain:
K(ay.¥ e, a,t. happens{actionia, o), t) =
Kia,appens(action(a, o), t))) 3
4. From (3) and [DRs] we get:

Kia1, happensiaction(az, o), t) =

K(az, happens(action(aq, o), t))) ()
5. From (4}, (2), and [DRg] we get:
Kiay, Kiag. happens(action(az, e ). t))) (3)

Method 2- The second method, Mz, shows that when (1) it 15 com-
mon knowledge that a certain event e initiates a fluent f; (2) an
agent a, kmows that an agent oo kmows that e has happened at a

Proof methods
for efficiency.
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Solving Problem 2:
Program Verification ...
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Believing the
Completeness of FOL

(Bx[YP,.(PC(P) ~ ¢ = T (9))




Program Verification Solution

B Bs By

[BX [?é?(ﬁ)ﬁ@]—{Bx PC*(P') ~ wﬂ—|—fo Y] ]
B3

(Bx[YP.6.(PC*(P) ~ ¢ = T(9))

Monday, June 8, 2009



Program Verification Solution

B, B> By
[BX [?é?(ﬁ)ﬁ@]—{Bx PC*(P') ~ 1] Bx[¢] ]
B3

(Bx[YP.6.(PC*(P) ~ ¢ = T(9))

Program verification is solved b/c there is only one
short program in silicon to be conventionally hardware-
verified, and all other software is proof-theoretical.
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Abstract. We describe Slate, a logic-based. robust interactive rea-
soning system that allow s human “pilots” to harness an ensemble of
intelligent agents in order to construct, test, and express various sorts
of natural argumentation. Slate empowers students and profession-
alsin the business of producing argumentation, e.g., mathematicians,
logicians. intelligence analysts, designers and producers of standard-
ized reasoning tests. We demonstrate Slate in several examples, de-
scribe some distinctive features of the system (e.g., rading and gen-
erating natural language. immunizing human reasoners from “log-
ical illusions”), present Slate's theoretical underpinnings, and note
upcoming re fine ments,

1 INTRODUCTION

Slate is a robust interactive reasoning system. It allows the human
“pilot” to harness an ensemble of intelligent agents in order to con-
struct. test, and express natural argumentation of various sorts. Slate
is deslgned to empower students and professionals in the business
of producing argumentation, e.g., mathematicians, logicians, intel-
ligence analysts, designers and producers of standardized reasoning
tests, and so on. While other ways of pursuing Al may well be prefer-
able in certain contexts, faced with the challenge of having to engi-
neer a system like Slate, a logic-based approach [9, 10 18,31, 13]
seemed to us ideal, and perhaps the power of Slate even at this point
(version 3) confirms the efficacy of this approach. In addition, there
is of course a longstanding symbiosis between argumentation and

1 Renssalaar Polytechnic Institute (RPT), USA. email: {salmer, tayloj, shilla,
clarkms, arkouk } @rpi.edu

logic revealed in contemporary essay s on argumentation [48]. In this
paper, we summarize Slate through several examples, describe some
distinctive features of the system (e.g.. its capacity to read and gener-
ate matural language, and to provide human reasoners with apparent
immunity from so-called “logical illusions"), sy a bit about Slate’s
theoretical underpinnings, and note upcoming refinements,

2 A SIMPLE EXAMPLE

We begin by following a fictitious user, Ulric, as he uses Slae to
solve a short logic puzzle, the Dreadsbury Mansion Mystery [.‘-4]

Someonz who lives in Dreadsbury Mansion killed Aunt Agatha.
Agatha, the butler, and Charles live in Dreadsbury Mansion, and are
the only people who live therzin A killer always haes his victim, and

is mever richer than his victim. Charles hates no one that Aunt Agatha

hates. Agatha hates everyone except the butler. The butler hates every-

ong not richer than Aunt Agatha The batler hates everyone Agatha
hates. No one hates everyone. Agatha is not the butler. Who killed

Agatha?

Information can enter Slate in a number of formats, ¢.g., as for-
mulae in many-sorted logic (MSL), or as sentences in a logically-
controlled English (§4.2]. Information can also be imported from
external repositories such as databases or the Semantic Web (§3.5).
Ulric examines the Dreadsbury Mansion Mystery facts displayed in
Slate "s workspace (Figure [T).

a0 Slate
D) e = @& (R B (&) (%6 (5 )= (L= %

Charles hates no) fAagathe hates e butler reEies) fa killar alueys nates his
one thal Aunt EVE OIS EWETDNE wictim 2nd 1§ never rcher
galha hates. 2=vept the butler ) (Boatha hatee ) \enan fis wictim:

Agatha, tha bublar, and Charles
lie in Draadsburg Mansion,
and are the only peopls who
live tharein.

Figure 1. The Dreadsbary Mansion Mystery facts epresened in Slate.

A fan of murder my steries, he considers whether conventional wis-
dom might hold true, ie.. that the butler did it. Ulric adds the hypo-
thetical to Slate’s workspace and asks Slate to check whether the
hypothesis is consistent with the other propositions. Slate quickly re-
ports an inconsistency (Figure [2).

* This pwzzke is of a type typically usad to challenge humans (e.g., stu-
dents m introductory logic courszs) and machines (2.g., automated theorzm
provers).
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a Godelian logic puzzle that approximates GI and demonstrates the
power of Slate within demanding logico-mathematical domains like
those in which Godel worked.

A Precursor Gidelian Puzzle. Suppose a machine M operates
on expressions: finite, non-empty sequences of the four glyphs ~,
*, P, and M. These four glyphs have intuitive meanings -~ stands
for "not,” + for ‘to be” or “is,” P for ‘provable.” and M for *mirror
of,” where the mirror of an expression ¢ is the expression ¢ +¢. A
sentence is an expression of a particular form, also with an intuitive
meaning, specifically,

;{x { means that ¢ is provable and is rue if and only if ¢ is provable by

PM ¢ means that the mirror of ¢ is provable, and is true if and only if

the mirror of ¢ is provable by M.

~ P means that ¢ is not provable, and is true if and only if  is not

provabile by .

~ PM « ¢ means that the mirror of ¢ is not provable, and is troe if and

only if the mirror of ¢ is not provable by .

M is such that it only proves true sentences and never false sen-
tences (ie., the machine is sound). Prove that M cannot prove all
true sentences—there is a true sentence which cannot be proved by
M (ie., the machine is incomplere).

Formalization of the Gadelian Puzzle. 'We formalize the above
puzzle as alogical language consisting of the constants: ~, %, P, M
the (unary) predicates: glyph. expression, sentence. provable, and
trug; and the functions: cat (concatenation), and mimor. For conve-
nience, we describe as glyphs, expressions, sentences, provable, and
true any terms on which glyph, expression, sentence, provable, and
true holds, respectively, and denote the application of cat o two
terms ¢ and W as the concatenation of ¢ and ., or by ¢y, and the
application of mirror to a term ¢ as the mirror of §. The interpretation
of this vocabulary is subject to the following twelve axioms:

L. The constants ~, = P, and M are each distines.
. The constants ~, =, F. and M are the only ghphs

2
3. The concatenation of two terms is an expression if and enly if both terms
are themselves expressions.

=

. Concartenation is associative.

5. The term § is an expression if and only if § is a ghyph or is the concatena-
tien of two expressions.

6. The mirror of an expression § is defined as the concatenation af §, = and

Biie, dupl

T. If bis an evpression, then P, PM «fy ~ Path, and ~ PM « i are sen-
tences

8 If b is an expression then the sentence Pw is true if and only if ¢ is
provable

9. If b is an expression, then the sentence PM «§ is true if and only if the
mirror of i is provable.

10, [f is an expression. then the sentence ~ Pwi is true if and only if b is nor
provable

L1, If is cin expression, then the sentence ~+ PM w b is true if and onlv if the
mirror of § is not provable

12, Every sentence (b that is provable is also true.

The given axioms (propositions 1-12) are represented visually in
the Slate workspace in Figure[10), each consisting of the first-order
formula derived from the English descriptions above. Moreover, a
new intermediate hypothesis is introduced toward the desired goal,
wviz.. that there 1s a true sentence that cannot be proved by M :

13, ~PM is an expression

ann Slate
0ol @ &S EHE &6 &en lEE #

900000000000
OPMH an empression

Figure 10.  Propositions 1-12 and hypothesis 13 in the Slate workspace.

‘We indicate that by pothesis 13 is a logical consequence of propo-
sitions 2, 3 and 5 by drawing a deduoctive inference from each of
these propositions to hypothesis 13 (Figure [TT). Slate is then able to
confirm or refute the added inference. Slate does indeed confirm that
hypothesis 13 follows from the indicated propositions, by produc-
ing as evidence a formal proof which is added to the workspace as a
witness. Wilnesses are objects in Slate that support or weaken infer-
ences, The double-plus symbol indicates that the witness confirms
the argument, an ability reserved only for formal proofs. If the in-
ference had been invalid, Slate might have produced a countermodel
demonstrating the inference’s invalidity.

ann Slate
Ol Wl (@ &S E ¢ = e lE- &

@ $000000000

Figure 11. Proof of {2,3,5} - 13 in the workspace and verified by Slate.

Having proved ~ PM is an expression, it follows from 13 and 7 that:

14 ~ PMu« ~ PM is a semtence.
If we suppose that ~ PMx ~ PM is not true then by 11 the mivor
af ~ PM is provable and thus by 6 ~ PM+« ~ PM s provable. But
then, according to 13 and 14, ~ PM% ~ PM is rue—which is in
contradiction with our supposition that ~ PM+ ~ PM s nor irue.
And so it must be the case that ~ PMx ~ PM is rrue. In other words,
as shown in Figure [12] the hypothesis that

15, ~ PMw« ~ PM istrae
follows from axioms 6 and 11 and hypotheses 12 and 13, Since ~
PM s~ PM is true, it follows from 6 and 11 that

16, ~ PM« ~ PM is nor provable

and consequently, that there is a true sentence which cannor be
proved (Figure [13).

5.3 Informal Reasoning

‘When using Slate, the reasoner is able to construct arguments that
more closely resemble the uncertain and informal nature of every-
day, natural inference. Moreover, the user benefits from the system’s
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1. INTRODUCTION

This is an extended abstract, not a polished paper; an
appreach to, rather than the results of, sustained research and
development in the area of roboethics is described herein.
Encapsulated, the approach is to engineer ethically correct
robots by giving them the capacity to reason over, rather
than merely in, logical systems (where logical systems are
used to formalize such things as ethical codes of conduct for
warfighting robots). This is to be accomplished by taking
seriously Plaget’s position that sophisticated human thinking
exceeds even abstract processes camied out in a logical
system, and by exploiting category theory to render in rig-
orous form, suitable for mechanization, structure-preserving
mappings that Bringsjord, an avowed Piagetian, sees to be
central In rigorous and rational human ethical decision-
making.

We assume our readers to be at least somewhat familiar
with elementary classical logic and category theory. Intro-
ductory coverage of the former subject can be found in [1],
[Z]E such coverage of the latter, offered from a suitably
computational perspective, is provided in [3]. Additional
references are of course provided in the course of this
document.

II. PIAGET'S VIEW OF THINKING

Many people, including many outside psychology and
cognitive sclence, know that Plaget seminally — and by
Bringsjord’s lights, correctly — articulated and defended
the view that mature human reasoning and decision-making
consists In processes operating for the most part on formulas
in the language of classical extensional logic (e.g.. see [J])El

'Online. elegant, ecomomical coverage can  be found  at
htp:/plato.stanford edufentries/logic-classical’

“Many readers will know thar Piaget’s position long ago came under
direct attack, by such thinkers as Wason and Johnson-Laird [5], [6]. In fact,
unfortunately, for the most part people believe that this attack succeeded.
Bringsjord doesn’t agree in the least, but this isn’t the place to visit the
debate in question. Interested readers can consult [7], [8]

Ralph Wojtowicz
Metron Inc.
1818 Library Street
Suite 600
Reston VA 20190 USA

You may yourself have this knowledge. You may also know
that Piaget posited a sequence of cognitive stages through
which humans, to varying degrees, pass. How many stages
are there, according to Plaget? The received answer is:
four; and in the fourth and final one. formal aperations,
neurobiologically normal humans can reason accurately and
quickly over formulas expressed in the logical system known
as first-order logic (L[)

Fig. 1. Piaget's famous “rigged” rotating board to test for the development
of Stage-3-or-better reasoning in childen. The board, A, is divided into
sectors of different colors and equal surfaces: opposite sectors match in
color. B is a rotating disk with a metal rod spanning its diameter — but the
catch is that the star cards have magnets buried under them (inside wax), so
the alignment afier spinning is invariably as shown here, no matter how the
shapes are repositioned in the sectors (with matching shapes directly across
from each other). This phenomenon is what subjects struggle to explain,
Details can be found in [4]

Judging by the cognition taken by Piaget to be stage-
three or stage-four (e.g., see Figure which shows one

Various other symbals are used, .g.. the more informative Lo
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Fig. 2. This figure shows two proofs, one expressed in £y, the other in Lpe.
The first-arder proof produces the conclusion that what causes the metal rod
to invariably stop at the stars is that there are hidden magnets. The basic
structure of this proof is proof by cases. Of the four disjuncts enrtained
as the possible source of the rod-star regularity. the right one is deduced
when the others are eliminated. The functor « is shown here 1o indicate that
the basic structure can be preserved in a proof couched exclusively in the
propesitional calculus.

see when deployed in warfare and counter-terrorism, where
post-stage-four reasoning and decision-making is necessary
for successfully handling these situations. The work here is
connected to NSF-sponsored efforts on our part to extend
CMU’s Tekkotsu [20], [21] framework so that it includes
operators that are central to our logicist approach to robatics,
and specifically to roboethics — for example, operators for
belief (B), knowledge (K), and obligation () of standard

deontic logic). The idea is that these operators would link
to their counterparts in bona fide calculi for automated and
semi-automated machine reasoning. One such calculus has
already been designed and implemented: the socio-cognitive
caleudus; see [22]. This calculus includes the full event
calculus.

Given that our initial experiments will make use of simple
hand-eye robots recently acquired by the RAIR Lab from the
Tekkotsu group at CMU, Figure 3] which shows one of these
robots, sums up the situation (in connection with the magnet
challenge). If sufficiently intricate manipulation cannot be
achieved with the simple hand-eye robots, we will use the
more powerful PERI, shown in Figure [}

@
2
o
&
g
=)
E]
3
o
o
2
5

Fig. 4. The RAIR Lab’s PERT
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[. INTRODUCTION

This is an extended abstract, not a polished paper; an
approach to, rather than the results of, sustained research and
development in the area of roboethics is described herein.
Encapsulated, the approach is to engineer ethically correct
robots by giving them the capacity to reason over, rather
than merely in, logical systems (where logical systems are
used to formalize such things as ethical codes of conduct for
warfighting robots). This is to be accomplished by taking
seriously Piaget's position that sophisticated human thinking
exceeds even abstract processes carried out iz a logical
system, and by exploiting category theory to render in rig-
orous form, suitable for mechanization, structure-preserving
mappings that Bringsjord, an avowed Plagetian, sees to be
central in rigorous and rational human ethical decision-
making.

We assume our readers to be at least somewhat familiar
with elementary classical logic and category theory. Intro-
ductory coverage of the former subject can be found in [1].
[ljﬂ such coverage of the latter, offered from a suitably
computational perspective, is provided in [3]. Additional
references are of course provided in the course of this
document.

II. PIAGET’'S VIEW OF THINKING
Many people. including many outside psychology and

cognitive science, know that Piaget seminally — and by
Bringsjord’s lights, correctly — articulated and defended

the view that mature human reasoning and decision-making
consists in processes operating for the most part on formulas
in the language of classical extensional logic (e.g., see [-'])E

10nline, elegant, economical coverage can be found at
http://plato.stan ford.edu/entries/l ogic-classical’
lany readers will know that Piaget's position long ago came under
direct attack, by such thinkers as Wason and Johnson-Laird [3], [6]. In fact,
unfortunately, for the most part people believe that this attack succeeded
Bringsjord doesn’t agree in the least, but this isn’t the place lo visit the
debate in question. Inerested readers can consult [7], [8].

Ralph Wojtowicz
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1818 Library Street
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Reston VA 20190 USA

You may yourself have this knowledge. You may also know
that Piaget posited a sequence of cognitive stages through
which humans, to varying degrees, pass. How many stages
are there, according to Piaget? The received answer is:
four; and in the fourth and final one, formal operations,
neurobiologically normal humans can reason accurately and
quickly over formulas expressed in the logical system known
as first-order logic (£y )sz

Fig. 1. Piaget’s famous “rigged” rotating board to test for the development
of Stage-3-or-better reasoning in children. The board. A, is divided into
sectors of different colors and equal surfces: opposite sectors match in
color. B is a rotating disk with a metal rod spanning its diameter — but the
catch s that the star cards have magnets buried under them (inside wax), so
the alignment after spinning is invariably as shown bere, no matter how the
shapes are repositioned in the sectors (with matching shapes directly across
from each other). This phenomenon is what subjects struggle to explain,
Details can be found in [4].

Judging by the cognition taken by Piaget to be stage-
three or stage-four (e.g.. see Figure [T| which shows one

*Various other symbols are used, e.g.. the more informative L.
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Fig. 2. This figure shows two proofs, one expressed in Ly, the other in Lpc.
The first-arder proof produces the conclusion that what causes the metal rod
to invariably stop at the stars is that there are hidden magnets. The basic
structure of this proof is proof by cases. Of the four disjuncts enertained
as the possible source of the rod-star regularity, the right one is deduced
‘when the others are eliminated. The functor = is shown here to indicate that
the basic structure can be preserved in a proof couched exclusively in the
propositional calculus,

see when deployed in warfare and counter-terrorism, where
post-stage-four reasoning and decision-making is necessary
for successfully handling these situations. The work here is
connected to NSF-sponsored efforts on our part to extend
CMU’s Tekkotsu [20], [21] framework so that it includes
operat: approach to robotics,
and specifically to roboethics — for example, operators for
belief (B), knowledge (K), and obl

that are central to our lo,

ation () of standard

deontic logic). The idea is that these operators would link
to their counterparts in bona fide caleuli for automated and
semi-automated machine reasoning. One such calculus has
already been designed and implemented: the socio-cognitive
calculus; see [22]. This calculus includes the full event
calculus.

Given that our initial experiments will make use of simple
hand-eye robots recently acquired by the RAIR Lab from the
Tekkotsu group at CMU, Figure[3] which shows one of these
robots, sums up the situation (in connection with the magnet
challenge). If sufficiently intricate manipulation cannot be
achieved with the simple hand-eye robots, we will use the
mare powerful PERL shown in Figure [1]

nsjoyia)

'sninoje anniubo)-0120§

Fig. 3. The basic configuration for our initial

Fig. 4. The RAIR Lab’s PER]
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Solving Problem 3:
Piagetian Roboethics via
Category Theory ...

ooooooooooooooooo



Absolutely Crucial for
Al, Robotics, Roboethics:

Betting the farm on one or two logical
systems (e.g., FOL, propositional calculus).
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Absolutely Crucial for
Al, Robotics, Roboethics:

Betting the farm on one or two logical
systems (e.g., FOL, propositional calculus).

VErsus

We know humans operate in ways that range
across an infinite number of logical systems, so we
need a formal theory, and a corresponding set of

processes, that captures the meta-coordination of
myriad logical systems.
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Background
Logic

Inspired by Piaget’s
five-stage view.

|

= —

Simon seemed to be
starting to face up to the
daunting reality shortly
before his death.

(Slate, e.g.) (Vivid, e.g.)
Classical Strength-Factor Visual
Mathematics Logics Logics Infinitary
Logics
Deontic
Logics )
(Socio-Cognitive Godelian
Calculus, e.g.) Incompleteness
Epistemic Description
Logics Logics
Propositional
FOL Calculus
Aristotelian
Logic

Monday, June 8, 2009



One promising approach to taming this formally:
category theory, where categories are logical systems.
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Categories

® A category comprises a collection of objects
and a collection of arrows (or morphisms).

Each arrow has a domain (or source) and a
codomain (or target).

For each object A there is an identity
arrow ida :A — A.

For arrows f:A = Band g:B — (C, there
is an arrow g-f :A = C.
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Functors

® A functor is a pair of mappings comprising an
object mapping and an arrow mapping.

® A functor F: € = D maps each object of C to
an object in D, and each arrow of € to to an
arrow of D, such that:

® |[fffA—Bisin C,then F(f).F(A)—F(B) is in D.
® For every Ain C F(ida) = idrp).
* Fg-f) = Kg)-F
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Deductive Systems

® Deductive Systems are categories whose
objects are sentences and whose arrows are
proofs.

® |dentity arrows are typically applications of
reiteration rules, and proofs typically compose.

® Other inference rules can be presented
schematically. E.g, conditional elimination:

/ g
—> — —> _
! ¢:>e“fnbf,g ! ¢ [= elim]
Y > &
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Four Logical Systems as

Categories

The Propositional Calculus

The First Order Predicate Calculus
(and its truth-functional subsystem)

Propositional S5

The Description Logic ALC
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Functors Specified
(by Joshua Taylor)

It then becomes easy to prove:

Theorem: If ® Fpgs ¢ then F(®)F(Fpss)/ Fr F (@)
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Example ...




Piaget’s Magnetic Board

® A needle mounted to a
board, but able to spin
freely always stops at
the yellow stars.

® How does a human
reasoner approach the
problem?

® |deally, by considering
and testing some
hypotheses
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[ Listener  Output |

PIAGETIAN-FUNCTORS 8 > ffrun-board-test) ~

e

Cerl-¢ Ctrl-p
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Second Example ...




Chisholm’s
Contrary-to-Duty Paradox

® |et us suppose:

|. It ought to be that a certain man go to the
assistance of his neighbours.

2. It ought to be that if he does go he tells
them he is coming. But

3. if he does not go then he ought not to tell
them he is coming; and

4. he does not go.
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The Paradox

Within Standard
Deontic Logic, SDL, this
leads to a paradox, for
the man both ought to
tell his neighbours that
he is coming, and ought
not to tell them that he
is coming.

N O O A WD

10

OBg

OB(g = 1)
—g = OB—t¢
—8

OBt

OBg = OBt
OB:

PE:

—~OB—t¢

1

= elim, 3, 4
OB-dist, 2
= elim, 1,6
OB-D, 7
def. PE, 8
1 intro, 5,9
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OO Listener 4

D) () ks 8 %BYE BEE e =
', Listener = Output

=

PIAGETIAN-FUNCTORS 12 > (assert-sdl '(obligatory g))
NIL

PIAGETIAN-FUNCTORS 13 > (assert-sdl '(obligatory (if g t)))
NIL

PIAGETIAN-FUNCTORS 14 > (assert-sdl '(if (not g) (obligatory (not t)
NIL

~
L
~

PIAGETIAN-FUNCTORS 15 > (assert-sdl '(not g))
NIL

PIAGETIAN-FUNCTORS 16 > (prove-sdl 'false)
Eiaal
: PROOF-FOUND

PIAGETIAN-FUNCTORS 17 >

The functor translates both sentences and
proofs, so the contradiction is still present, even
when the reasoner is first-order.
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CeE e &EUEE @88 CU= WE)@)))E) ke
, | Listener = Output

PIAGETIAN-FUNCTORS 11 >

(ASSERT-SDL WFF-58843 &REST KEYS-58844)

] |

L & )

>
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Handling Chisholm’s paradox an absolute
requirement:

Robots, like humans, will inevitably fail to meet
some obligations, giving rise to situations where
their subsequent obligations are of a particular
nature. Without contrary-to-duty imperatives
handled, robots (and humans) will spin out of
ethical control.
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Coming

® The formalisms applied to more militarily
relevant situations.

® |t would be nice to have some lethal robots
to play with.
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Finally,
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Finally,

what could possibly be an alternative
approach to solving the problem?
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Logic is Our Only Hope

We only have one way to fix the meaning of

programs, to verify that they will behave as
advertised.

We only have one way to rigorously set out
and mechanize sophisticated ethical

reasoning, and to impart that reasoning to
autonomous lethal robots.

Logic is our only hope, ladies and gentlemen.
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Finis
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