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Four Topics Today
• Akrasia	



• Subjunctive Conditionals	



• Logically Controlled Natural 
Language: 	



• Parsing and Generation	



• Semantic, not statistical.	



• Uncertainty/probabililty



Akrasia



The Context

• Model bad behavior in machines so that we 
can detect and prevent it. 
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• Helped with Prof. Bringsjord’s keynote talk titled “What Does Watson 2.0 Tell Us About the Philosophy &
Theory of AI?”at Philosophy and Theory of AI, Oxford 2013.
See http://www.pt-ai.org/sites/default/files/ptai2013/presentations/Selmer-Bringsjord.pdf

2. Rensselaer Polytechnic Institute June 2009 – present
Graduate Research Assistant

• The Robot Devolution Game: Implementing and designing games for crowdsourcing first-order
theorem-proving.
See https://itunes.apple.com/us/app/catabot-rescue-1-beginner/id645249674?mt=8

• Research work consists of building synthetic characters that rely on a host of AI, logic, learning,
pattern recognition and robotic subsystems. See the flier at
http://www.cs.rpi.edu/~govinn/Cogito_under_the_hood.pdf for an overview of the latest
incarnation of one such character, Cogito, handled by Naveen at the RAIR Lab.

• Co-instructor for the course Minds, Machines and Gödel, Fall 2012.
• Guest lecturer for the course Introduction to Logic in Fall 2011, Spring 2012 and Spring 2013.
• Co-instructor for the course Computational Learning Theory and Science, Fall 2010.
• Helped the PI (Prof. Bringsjord) in writing the winning Templeton Foundation proposal titled

“Toward a Markedly Better Geography of Minds, Machines, and Math.”
• Met and interfaced with teams from industrial research labs. These include discussions with the

Watson/DeepQA team from IBM, the team that won the man-versus-machine Jeopardy contest in
2011, on extending DeepQA into medical domains, and presentations to vice-presidential teams from
Disney Imagineeering.

3. HP Labs India June 2006 – June 2008
Consultant, Biometrics and Handwriting Recognition (Intern in the first year)

• Worked on cancelable biometrics.
• Contributed to LipiTk (Dynamic Time Warping and other modules)
http://lipitk.sourceforge.net/.

• Built a password manager based on doodles.

4. Tata Institute of Fundamental Research (TIFR), Mumbai

Visiting Student Research Program May 2004 – July 2004
• Studied laser cooling of atoms. Developed a theoretical model for the decay of an atom cloud in an

magneto-optical trap and verified it experimentally.
• Was preselected for TIFR’s prestigious Ph.D. program in Physics.

5. Indian Space Research Organization May 2003 – July 2003
Intern, Mission Control Facility

• Studied various processes and subsystems of geo-synchronous satellites.
• Built a prototype fingerprint-recognition system.

⌅ JOURNAL PUBLICATIONS & BOOK CHAPTERS

1. Naveen Sundar Govindarajulu and Selmer Bringsjord. “Ethical Regulation of Robots Must Be
Embedded in Their Operating Systems” (book chapter, forthcoming), A Construction Manual for
Robot’s Ethical Systems: Requirements, Methods, Implementations.

2. Naveen Sundar Govindarajulu, Selmer Bringsjord and Joshua Taylor. “Proof Verification and Proof
Discovery for Relativity” (forthcoming) Synthese.

3. Selmer Bringsjord, Naveen Sundar Govindarajulu, Simon Ellis, Evan McCarty and John Licato.
“Nuclear Deterrence and the Logic of Deliberative Mindreading,” (forthcoming 2013) Cognitive
Systems Research.
Preprint available at
http://kryten.mm.rpi.edu/SB_NSG_SE_EM_JL_nuclear_mindreading_062313.pdf

Robotic Substrate

Ethical Substrate

Future 1 Future 2

Only “obviously” dangerous higher-level AI 
modules have ethical safeguards.

}

Higher-level cognitive and AI modules

All higher-level AI modules interact with the 
robotic substrate through an ethics system.

Robotic Substrate

Figure 1: Two Possible Futures

These two futures are depicted schematically and pictorially in Figure 1. In
order to render the second future plausible, and ward off the first, we propose the
following requirement:

Master Requirement Ethical Substrate Requirement (ESR): Every robot oper-
ating system must include an ethical substrate positioned between lower-level sen-
sors and actuators, and any higher-level cognitive system (whether or not that
higher-level system is itself designed to enforce ethical regulation).

ESR can not only be made more precise, but can be decomposed into a hi-
erarchy of requirements of increasing strictness. ESR is partially inspired by the
somewhat-shallow security mechanisms that can be found in some of today’s oper-
ating systems, mechanisms that apply to all applications. The requirement is more
directly inspired by the drive and recent success toward formally verifying that the
kernel of an operating system has certain desirable properties (Klein et. al 2009,
Klein 2010).

Ideally, the ethical substrate should not only vet plans and actions, but should
also certify that any change (adding or deleting modules, updating modules etc.) to
the robotic substrate does not violate a certain set of minimal ethical conditions.

3 Minimal Conditions on the Ethical Substrate

What form would an ethical substrate that prevents any wayward ethical behav-
ior take? While present-day robot operating systems (and sufficiently complex

3
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mi KBmi

Each module in a robot corresponds to a knowledge base which talks 
about the module (even if the modules are implemented using 

apparently non-logical methods such as neural networks).
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In general, the work of the ethical substrate reduces to checking
for the following inconsistency:

KBes [KBrs [ KBm1 [ . . .[KBmn ` ?

VI. NEXT STEPS: FORMALIZING EMOTION

From the Pollockian perspective, as we’ve noted, emotions are simply
not intellectually helpful, and are in place adventitiously (courtesy
of evolution) as timesavers in the human case. Feeling fear in the
face of a lion may advantageously trigger your rapid, lifesaving
departure, but according to Pollock, if a theorem-proving process
yields a proof whose conclusion is ‘I should rapidly depart the scene’
were sufficiently fast, and this proposition is hooked to a planning
system, the — to use his phrase — “quick-and-dirty” modules that
involve emotion in the case of homo sapiens sapiens could be entirely
dispensed with; and there is therefore — again, according to Pollock
— no obvious reason why a correlate to fear (or vengefulness,
etc.) should be engineered into (ethically correct) robots.13

No obvious reason. But there is a reason, and a strong one at that;
it’s simply this: Sophisticated and natural human-robot interaction, of
the sort envisioned by Scheutz, Schermerhorn, Kramer & Anderson
(2007), will require that the robot be able to (among other things)
discuss, in natural language, the full range of morality (and associated
topics in human discourse, e.g. blame, the nature of which is being
investigated by Malle, Guglielmo & Monroe 2012) with humans.
Two things immediately follow: One, we shall need to know, from
empirical cognitive scientists and psychologists, and experimental
philosophers (e.g., Knobe, Buckwalter, Nichols, Robbins, Sarkissian
& Sommers 2012), how all these affective concepts work in the
human case, well enough to motivate and guide the formalization
of them. Two, and this is what relates directly, concretely, and
specifically to our charge, to achieve this formalization, we shall
need to extend DCEC ⇤

CL so that it incorporates a sub-logic covering
emotion, and in addition the integration of that sub-logic with our
extant formalizations of epistemic, temporal, and deontic concepts.

This required extension of DC EC ⇤
CL will of course be informed

by prior work devoted to formalizing emotions, especially work of
this type that has been connected to deontic concepts. For example,
well over two decades back, Sanders (1989) provided a logic of
emotions in which the fundamental deontic categories (e.g., morally
required) appear as well. Unfortunately, in this logic, ethical concepts
are represented as predicates, and modal operators are employed only
to represent ‘knows,’ ‘believes,’ and ‘wants,’14 and as a result, one
obviously can’t express, let alone prove, formulas that express such
declarative sentences as:

It’s forbidden that Jones want to kill innocent people.

since predicates can’t have modal operators in their arguments.
In addition, no computational proof-discovery and proof-checking
software is provided by Sanders (1989). Finally, her semantics is
firmly of the possible-worlds variety, which we (for reasons beyond
scope here) firmly reject.

In light of the fact that DC EC ⇤
CL is based on the event calculus15

(hence the ‘EC ’), the approach that is a “natural” for us is to

13In Pollock’s terminology, robots can simply be “artilects,” whereas in
Bringsjord’s (1999) robots can be “zombies.”

14In a syntactic twist that will be rather startling to deontic-logic
cognoscenti, O, no less, is Sanders’s (1989) meta-variable for any of the
three aforementioned modal operators, but therefore not for ought, which is
traditionally captured by none other than O or �.

15Covered in (Russell & Norvig 2009), and ingeniously exploited in
(Mueller 2006).

represent the emotions as fluents, since it seems indisputable that
emotions come and go (and vary in intensity) within agents, as
those agents move through time. This approach has been followed
by Steunebrink, Dastani & Meyer (2007), who set out a fluent for
each of the 22 primitive emotions in the so-called OCC theory
of emotions (Ortony, Clore & Collins 1988). Unfortunately given
the robot demonstrations described above, the OCC theory doesn’t
seem able to handle the emotion of vengefulness, since the 22 OCC
emotions fail to include this emotion, and there seems to be no way to
construct vengefulness from any permutation of the 22, when viewed
as “building blocks.” This is indeed most unfortunate, since we would
need to verify that theorems such as that if a robot r is vengeful now,
then r has a desire that certain future states-of-affairs obtain, because
of r-beliefs about certain past states-of-affairs having obtained. A
wonderful example of this theorem “in action” is provided by the
final episode of the third season of the Masterpiece television series
Downton Abbey, in which Mr. Bates apparently seeks and then as
time rolls on obtains vengeance for the rape of his wife in the past.
But this theorem wouldn’t be possible to obtain in the system of
(Steunebrink et al. 2007), for the simple reason that their logic is only
a propositional modal logic, not a quantified one like DCEC ⇤

CL, in
which full quantification over times is enabled, and rightly regarded
a prominent virtue.16

We report that in “emotionalizing” DCEC ⇤
CL we are inclined to

favor the appraisal theory of emotion, and subsequent work along
the line presented herein will doubtless reflect this theory, according to
which the agent first engages in cognitive appraisal, and subsequently
has relevant physical responses. For an overview of appraisal theory,
see (Roseman & Smith 2001); for a computational model of this
theory, see (Si, Marsella & Pynadath 2010). Some readers, particularly
philosophers, may be familiar with the so-called James-Lange theory
of emotions (James 1884, Lange 1885), according to which first
comes the physiological activity, and then perception thereof. which
in turn leads to (in the case at hand, in the human case) vengefulness.
Our robots are rather more intellectually inclined creatures than what
James and Lange had in mind, and accordingly first take cognitive
stock of the situation. Succinctly, if one of our robots r derive a
proposition f in DCEC ⇤

CL from G at some time t,

G {r,t} f,

then r perceives its own reasoning

{} {r,t+1} P(I,now,
^

G ) f),

with the appropriate substitutions for the indexicals. Note that we use
 for actual derivations instead of `, which of course by established
custom simply denotes provability in general.

In addition to ensuring that our morally correct robots can con-
verse in human-level terms with humans about ethics and associated
matters, we are perfectly willing to carry out engineering that others
believe will in fact give rise not merely to A-consciousnes, but P-
consciousness as well. Here again work by Scheutz is relevant and
helpful, for Scheutz (2010) intriguingly holds that Jackson’s famous
Mary17 poses no problem for a robot able to internally simulate
the processes it would go through when having an experience that
would, in humans, catalyze qualia.18 Inspired by Schetuz’s ideas, we

16In addition, there is rich informal literature on relationships between
revenge and other emotional and cognitive aspects of the human condition.
E.g., Carlsmith, Gilbert & Wilson (2008) provide evidence that even though
catharsis is often the reported reason for revenge, post-revenge, folks often
feel worse for having exacted it.

17Mary first appears in (Jackson 1982). The argument is semi-formalized
with help from computability theory by Bringsjord (1992).

18Scheutz writes of such a robot:



Pragmatic Justification

• Supported by the use of logic to reason over software 
modules in formal verification:	



• Verification of an In-place Quicksort in ACL2, Sandip Ray and 
Rob Sumners. In D. Borrione, M. Kaufmann, and J S. Moore, 
editors, Proceedings of the 3rd International Workshop on the 
ACL2 Theorem Prover and Its Applications (ACL2 2002), 
Grenoble, France, April 2002, pp. 204–212.

http://www.cs.utexas.edu/users/sandip/publications/stobj-qsort/main.html
http://www.cs.utexas.edu/users/moore/acl2/workshop-2002/


Logico-mathematical Justification

• All Turing-level computation can be 
cast as theorem proving in first-
order logic.	



• (Btw, new logicist formal model for 
relative computation coming.  Some 
inspiration from KU machines.)



Motivation

• Formalize immoral behavior so we can 
detect it, prevent it, understand it, …



Akrasia

Weakness of the will
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as lust, greed, and sloth (laziness) — basically the traditional “deadly
sins.” Now, although human persons are susceptible to these vices,
robots are not, because robots, again, can’t be persons, as explained
by Bringsjord (1992) in What Robots Can and Can’t Be.5 So one
might hastily conclude that robots could not be susceptible to akrasia.
But we must consider this issue carefully, because the consequences
of akratic robots could be severe indeed. In particular, we have in
mind the advent of autonomous military robots and softbots. A single
instance of akrasia on the part of an autonomous battlefield robot
could potentially have disastrous consequences impacting the lives
of millions. We do in fact think that a (poorly engineered) robot
could be afflicted by a purely — to, again, follow Pollock (1995) —
“intellectual” version of akrasia.

We show herein that this could indeed happen by representing a
purely intellectual, Augustinian model of akrasia in a computational
logic tailor-made for scenarios steeped at once in knowledge, belief,
and ethics. We then demonstrate this representation in a pair of
real robots faced with the temptation to trample the Thomistic just-
war principles that underlie ethically regulated warfare; and we then
consider the question of what engineering steps will prevent akratic
robots from arriving on the scene.

A. Augustinian Definition, Informal Version
While some further refinement is without question in order for
subsequent expansions of the present paper, and is underway, the
following informal definition at least approaches the capture of the
Augustinian brand of akrasia.

An action a f is (Augustinian) akratic for an agent A at ta f

iff the following eight conditions hold:
(1) A believes that A ought to do ao at tao ;
(2) A desires to do a f at ta f ;
(3) A’s doing a f at ta f entails his not doing ao at tao ;
(4) A knows that doing a f at ta f entails his not doing ao

at tao ;
(5) At the time (ta f ) of doing the forbidden a f , A’s desire

to do a f overrides A’s belief that he ought to do ao
at ta f .

Comment: Condition (5) is humbling, pure and
simple. We confess here that the concept of over-
riding is for us a purely mechanical, A-conscious
structure that — as will be seen — is nonethe-
less intended to ultimately accord perfectly with
Scheutz’s (2010) framework for P-consciousness
in robots. In humans suffering from real akrasia, at
the moment of defeat (or, for that matter, victory),
there is usually a tremendous “surge” of high, raw,
qualia-laden emotion that we despair of capturing
logico-mathematically, but which we do aspire to
formalize and implement in such a way that a
formalization of Block’s (1995) account of A-
consciousness is provably instantiated.

(6) A does the forbidden action a f at ta f ;
(7) A’s doing a f results from A’s desire to do a f ;
(8) At some time t after ta f , A has the belief that A ought

to have done ao rather than a f .

5This isn’t the venue to debate definitions of personhood (which by
Bringsjord’s lights must include that persons necessarily have subjective
awareness/phenomenal consciousness; for a full definition of personhood, see
Bringsjord (Bringsjord 1997)), or whether Bringsjord’s arguments are sound.
Skeptics are simply free to view the work described herein as predicated on
the proposition that robots can’t have such properties as genuine subjective
awareness/phenomenal consciousness.

III. FRAMEWORK FOR FORMALIZING AUGUSTINIAN AKRASIA

A. DCEC ⇤in the Context of Robot Ethics
Figure 3 gives a pictorial bird’s-eye perspective of the high-level
architecture of a new system from the RAIR Lab designed to
integrate with the DIARC (Distributed Integrated Affect, Reflection
and Cognition) (Schermerhorn, Kramer, Brick, Anderson, Dingler
& Scheutz 2006) robotic platform in order to provide deep moral
reasoning.6 Ethical reasoning is implemented as a hierarchy of formal
computational logics (including, most prominently, sub-deontic-logic
systems) which the DIARC system can call upon when confronted
with a situation that the hierarchical system believes is ethically
charged. If this belief is triggered, our hierarchical ethical system
then attacks the problem with increasing levels of sophistication until
a solution is obtained, and then passes on the solution to DIARC. The
roots of our approach to mechanized ethical reasoning for example
include: (Bello 2005, Arkoudas, Bringsjord & Bello 2005, Bringsjord,
Arkoudas & Bello 2006, Bringsjord 2008a, Bringsjord, Taylor, Woj-
towicz, Arkoudas & van Heuvlen 2011, Bringsjord & Taylor 2012);
and in addition we have been influenced by thinkers outside this
specific tradition (by e.g. Arkin 2009, Wallach & Allen 2008).

Synoptically put, the architecture works as follows. Information
from DIARC passes through multiple ethical layers; that is, through
what we call the ethical stack. The bottom-most layer U consists
of very fast “shallow” reasoning implemented in a manner inspired
by the Unstructured Information Management Architecture (UIMA)
framework (Ferrucci & Lally 2004). The UIMA framework integrates
diverse modules based on meta-information regarding how these mod-
ules work and connect to each other.7 UIMA holds information and
meta-information in formats that, when viewed through the lens of
formal logic, are inexpressive, but well-suited for rapid processing not
nearly as time-consuming as general-purpose reasoning frameworks
like resolution and natural deduction. If the U layer deems that the
current input warrants deliberate ethical reasoning, it passes this input
to a more sophisticated reasoning system that uses moral reasoning of
an analogical type (AM). This form of reasoning enables the system to
consider the possibility of making an ethical decision at the moment,
on the strength of an ethical decision made in the past in an analogous
situation.

If AM fails to reach a confident conclusion, it then calls upon an
even more powerful, but slower, reasoning layer built using a first-
order modal logic, the deontic cognitive event calculus (DCEC ⇤)
(Bringsjord & Govindarajulu 2013). At this juncture, it is important
for us to point out that DCEC ⇤is extremely expressive, in that regard
well beyond even expressive extensional logics like first- or second-
order logic (FOL, SOL), and beyond traditional so-called “BDI”
logics, as explained in (Arkoudas & Bringsjord 2009). AI work
carried out by Bringsjord is invariably related to one or more logics
(in this regard, see Bringsjord 2008b), and, inspired by Leibniz’s
vision of the “art of infallibility,” a heterogenous logic powerful
enough to express and rigorize all of human thought, he can nearly

6This is part of work under joint development by the HRI Lab (Scheutz)
at Tufts University, the RAIR Lab (Bringsjord & Govindarajulu) and Social
Interaction Lab (Si) at RPI, with contributions on the psychology side from
Bertram Malle of Brown University. In addition to these investigators, the
project includes two consultants: John Mikhail of Georgetown University
Law School, and Joshua Knobe of Yale University. This research project is
sponsored by a MURI grant from the Office of Naval Research in the States.
We are here and herein describing the logic-based ethical engineering designed
and carried out by Bringsjord and Govindarajulu of the RAIR Lab (though
in the final section (§VI) we point to the need to link deontic logic to the
formalization of emotions, with help from Si).

7UIMA has found considerable success as the backbone of IBM’s famous
Watson system (Ferrucci et al. 2010), which in 2011, to much fanfare (at least
in the U.S.), beat the best human players in the game of Jeopardy!.
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(3) A’s doing a f at ta f entails his not doing ao at tao ;
(4) A knows that doing a f at ta f entails his not doing ao

at tao ;
(5) At the time (ta f ) of doing the forbidden a f , A’s desire

to do a f overrides A’s belief that he ought to do ao
at ta f .

Comment: Condition (5) is humbling, pure and
simple. We confess here that the concept of over-
riding is for us a purely mechanical, A-conscious
structure that — as will be seen — is nonethe-
less intended to ultimately accord perfectly with
Scheutz’s (2010) framework for P-consciousness
in robots. In humans suffering from real akrasia, at
the moment of defeat (or, for that matter, victory),
there is usually a tremendous “surge” of high, raw,
qualia-laden emotion that we despair of capturing
logico-mathematically, but which we do aspire to
formalize and implement in such a way that a
formalization of Block’s (1995) account of A-
consciousness is provably instantiated.

(6) A does the forbidden action a f at ta f ;
(7) A’s doing a f results from A’s desire to do a f ;
(8) At some time t after ta f , A has the belief that A ought

to have done ao rather than a f .

5This isn’t the venue to debate definitions of personhood (which by
Bringsjord’s lights must include that persons necessarily have subjective
awareness/phenomenal consciousness; for a full definition of personhood, see
Bringsjord (Bringsjord 1997)), or whether Bringsjord’s arguments are sound.
Skeptics are simply free to view the work described herein as predicated on
the proposition that robots can’t have such properties as genuine subjective
awareness/phenomenal consciousness.

III. FRAMEWORK FOR FORMALIZING AUGUSTINIAN AKRASIA

A. DCEC ⇤in the Context of Robot Ethics
Figure 3 gives a pictorial bird’s-eye perspective of the high-level
architecture of a new system from the RAIR Lab designed to
integrate with the DIARC (Distributed Integrated Affect, Reflection
and Cognition) (Schermerhorn, Kramer, Brick, Anderson, Dingler
& Scheutz 2006) robotic platform in order to provide deep moral
reasoning.6 Ethical reasoning is implemented as a hierarchy of formal
computational logics (including, most prominently, sub-deontic-logic
systems) which the DIARC system can call upon when confronted
with a situation that the hierarchical system believes is ethically
charged. If this belief is triggered, our hierarchical ethical system
then attacks the problem with increasing levels of sophistication until
a solution is obtained, and then passes on the solution to DIARC. The
roots of our approach to mechanized ethical reasoning for example
include: (Bello 2005, Arkoudas, Bringsjord & Bello 2005, Bringsjord,
Arkoudas & Bello 2006, Bringsjord 2008a, Bringsjord, Taylor, Woj-
towicz, Arkoudas & van Heuvlen 2011, Bringsjord & Taylor 2012);
and in addition we have been influenced by thinkers outside this
specific tradition (by e.g. Arkin 2009, Wallach & Allen 2008).

Synoptically put, the architecture works as follows. Information
from DIARC passes through multiple ethical layers; that is, through
what we call the ethical stack. The bottom-most layer U consists
of very fast “shallow” reasoning implemented in a manner inspired
by the Unstructured Information Management Architecture (UIMA)
framework (Ferrucci & Lally 2004). The UIMA framework integrates
diverse modules based on meta-information regarding how these mod-
ules work and connect to each other.7 UIMA holds information and
meta-information in formats that, when viewed through the lens of
formal logic, are inexpressive, but well-suited for rapid processing not
nearly as time-consuming as general-purpose reasoning frameworks
like resolution and natural deduction. If the U layer deems that the
current input warrants deliberate ethical reasoning, it passes this input
to a more sophisticated reasoning system that uses moral reasoning of
an analogical type (AM). This form of reasoning enables the system to
consider the possibility of making an ethical decision at the moment,
on the strength of an ethical decision made in the past in an analogous
situation.

If AM fails to reach a confident conclusion, it then calls upon an
even more powerful, but slower, reasoning layer built using a first-
order modal logic, the deontic cognitive event calculus (DCEC ⇤)
(Bringsjord & Govindarajulu 2013). At this juncture, it is important
for us to point out that DCEC ⇤is extremely expressive, in that regard
well beyond even expressive extensional logics like first- or second-
order logic (FOL, SOL), and beyond traditional so-called “BDI”
logics, as explained in (Arkoudas & Bringsjord 2009). AI work
carried out by Bringsjord is invariably related to one or more logics
(in this regard, see Bringsjord 2008b), and, inspired by Leibniz’s
vision of the “art of infallibility,” a heterogenous logic powerful
enough to express and rigorize all of human thought, he can nearly

6This is part of work under joint development by the HRI Lab (Scheutz)
at Tufts University, the RAIR Lab (Bringsjord & Govindarajulu) and Social
Interaction Lab (Si) at RPI, with contributions on the psychology side from
Bertram Malle of Brown University. In addition to these investigators, the
project includes two consultants: John Mikhail of Georgetown University
Law School, and Joshua Knobe of Yale University. This research project is
sponsored by a MURI grant from the Office of Naval Research in the States.
We are here and herein describing the logic-based ethical engineering designed
and carried out by Bringsjord and Govindarajulu of the RAIR Lab (though
in the final section (§VI) we point to the need to link deontic logic to the
formalization of emotions, with help from Si).

7UIMA has found considerable success as the backbone of IBM’s famous
Watson system (Ferrucci et al. 2010), which in 2011, to much fanfare (at least
in the U.S.), beat the best human players in the game of Jeopardy!.
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always position some particular work he and likeminded collaborators
are undertaking within a view of logic that allows a particular
logical system to be positioned relative to three dimensions, which
correspond to the three arrows shown in Figure 2. We have positioned
DCEC ⇤within Figure 2; it’s location is indicated by the black dot
therein, which the reader will note is quite far down the dimension
of increasing expressivity that ranges from expressive extensional
logics (e.g., FOL and SOL), to logics with intensional operators for
knowledge, belief, and obligation (so-called philosophical logics; for
an overview, see Goble 2001). Intensional operators like these are
first-class elements of the language for DCEC ⇤. This language is
shown in Figure 1.

Syntax

S ::=
Object | Agent | Self � Agent | ActionType | Action � Event |

Moment | Boolean | Fluent | Numeric

f ::=

action : Agent⇥ActionType ! Action

initially : Fluent ! Boolean

holds : Fluent⇥Moment ! Boolean

happens : Event⇥Moment ! Boolean

clipped : Moment⇥Fluent⇥Moment ! Boolean

initiates : Event⇥Fluent⇥Moment ! Boolean

terminates : Event⇥Fluent⇥Moment ! Boolean

prior : Moment⇥Moment ! Boolean

interval : Moment⇥Boolean

⇤ : Agent ! Self

payoff : Agent⇥ActionType⇥Moment ! Numeric

t ::= x : S | c : S | f (t1 , . . . , tn)

f ::=

t : Boolean | ¬f | f^� | f�� | 8x : S. f | �x : S. f

P(a, t,f) | K(a, t,f) | C(t,f) | S(a,b, t,f) | S(a, t,f)

B(a, t,f) | D(a, t,holds( f , t�)) | I(a, t,happens(action(a⇤ ,a), t�))

O(a, t,f,happens(action(a⇤ ,a), t�))

Rules of Inference

C(t,P(a, t,f) ! K(a, t,f))
[R1 ]

C(t,K(a, t,f) ! B(a, t,f))
[R2 ]

C(t,f) t  t1 . . . t  tn

K(a1 , t1 , . . .K(an , tn ,f) . . .)
[R3 ]

K(a, t,f)

f
[R4 ]

C(t,K(a, t1 ,f1 ! f2) ! K(a, t2 ,f1) ! K(a, t3 ,f3))
[R5 ]

C(t,B(a, t1 ,f1 ! f2) ! B(a, t2 ,f1) ! B(a, t3 ,f3))
[R6 ]

C(t,C(t1 ,f1 ! f2) ! C(t2 ,f1) ! C(t3 ,f3))
[R7 ]

C(t,8x. f ! f[x �! t])
[R8 ]

C(t,f1 � f2 ! ¬f2 ! ¬f1)
[R9 ]

C(t, [f1 ^ . . .^fn ! f] ! [f1 ! . . . ! fn ! �])
[R10 ]

B(a, t,f) B(a, t,f ! �)

B(a, t,�)
[R11a ]

B(a, t,f) B(a, t,�)

B(a, t,�^f)
[R11b ]

S(s,h, t,f)

B(h, t,B(s, t,f))
[R12 ]

I(a, t,happens(action(a⇤ ,a), t�))

P(a, t,happens(action(a⇤ ,a), t))
[R13 ]

B(a, t,f) B(a, t,O(a⇤ , t,f,happens(action(a⇤ ,a), t�)))

O(a, t,f,happens(action(a⇤ ,a), t�))

K(a, t,I(a⇤ , t,happens(action(a⇤ ,a), t�)))
[R14 ]

f � �

O(a, t,f,�) � O(a, t,�,�)
[R15 ]

1

Fig. 1. DCEC ⇤Syntax and Rules of Inference

Fig. 2. Locating DCEC ⇤in “Three-Ray” Leibnizian Universe

The final layer in our hierarchy is built upon an even more expres-
sive logic: DC EC ⇤

CL. The subscript here indicates that distinctive
elements of the branch of logic known as conditional logic are

U

ADR M

DCEC ⇤

DCEC ⇤
CL

Moral/Ethical Stack

Robotic Stack

Fig. 3. Pictorial Overview of the Situation Now The first layer, U, is, as
said in the main text, inspired by UIMA; the second layer is based on what
we call analogico-deductive reasoning for ethics; the third on the “deontic
cognitive event calculus” with a indirect indexical; and the fourth like the
third except that the logic in question includes aspects of conditional logic.
(Robot schematic from Aldebaran Robotics’ user manual for Nao. The RAIR
Lab has a number of Aldebaran’s impressive Nao robots.)

included.8 Without these elements, the only form of a conditional
used in our hierarchy is the material conditional; but the material
conditional is notoriously inexpressive, as it cannot represent coun-
terfactuals like:

If the robot had been more empathetic, Officer Smith would have thrived.

While elaborating on this architecture or any of the four layers
is beyond the scope of the paper, we do note that DCEC ⇤(and a
fortiori DCEC ⇤

CL) has facilities for representing and reasoning over
modalities and self-referential statements that no other computational
logic enjoys; see (Bringsjord & Govindarajulu 2013) for a more in-
depth treatment.

B. Augustinian Definition, Formal Version
We view a robot abstractly as a robotic substrate rs on which we
can install modules {m1,m2, . . . ,mn}. The robotic substrate rs would
form an immutable part of the robot and could neither be removed
nor modified. We can think of rs as akin to an “operating system”
for the robot. Modules correspond to functionality that can be added
to robots or removed from them. Associated with each module mi
is a knowledge-base KBmi that represents the module. The substrate
also has an associated knowledge-base KBrs. Perhaps surprisingly,
we don’t stipulate that the modules are logic-based; the modules
could internally be implemented using computational formalisms (e.g.
neural networks, statistical AI) that at the surface level seem far away
from formal logic. No matter what the underlying implementation of
a module is, if we so wished we could always talk about modules
in formal-logic terms.9 This abstract view lets us model robots that

8Though written rather long ago, (Nute 1984) is still a wonderful intro-
duction to the sub-field in formal logic of conditional logic. In the final
analysis, sophisticated moral reasoning can only be accurately modeled for
formal logics that include conditionals much more expressive and nuanced
than the material conditional. (Reliance on conditional branching in standar
programming languages is nothing more than reliance upon the material
conditional.) For example, even the well-known trolley-problem cases (in
which, to save multiple lives, one can either redirect a train, killing one
person in the process, or directly stop the train by throwing someone in front
of it), which are not exactly complicated formally speaking, require, when
analyzed informally but systematically, as indicated e.g. by Mikhail (2011),
counterfactuals.

9This stems from the fact that theorem proving in just first-order logic is
enough to simulate any Turing-level computation; see e.g. (Boolos, Burgess
& Jeffrey 2007, Chapter 11).



Syntax

S ::=
Object | Agent | Self @ Agent | ActionType | Action v Event |

Moment | Boolean | Fluent | Numeric

f ::=

action : Agent⇥ActionType ! Action

initially : Fluent ! Boolean

holds : Fluent⇥Moment ! Boolean

happens : Event⇥Moment ! Boolean

clipped : Moment⇥Fluent⇥Moment ! Boolean

initiates : Event⇥Fluent⇥Moment ! Boolean

terminates : Event⇥Fluent⇥Moment ! Boolean

prior : Moment⇥Moment ! Boolean

interval : Moment⇥Boolean

⇤ : Agent ! Self

payoff : Agent⇥ActionType⇥Moment ! Numeric

t ::= x : S | c : S | f (t1 , . . . , tn)

f ::=

t : Boolean | ¬f | f^y | f_y |

P(a, t,f) | K(a, t,f) | C(t,f) | S(a,b, t,f) | S(a, t,f)

B(a, t,f) | D(a, t,holds( f , t0)) | I(a, t,happens(action(a⇤ ,a), t0))

O(a, t,f,happens(action(a⇤ ,a), t0))

Rules of Inference

C(t,P(a, t,f)! K(a, t,f))
[R1 ] C(t,K(a, t,f)! B(a, t,f))

[R2 ]

C(t,f) t  t1 . . . t  t

n

K(a1 , t1 , . . .K(a
n

, t
n

,f) . . .)
[R3 ]

K(a, t,f)

f
[R4 ]

C(t,K(a, t1 ,f1 ! f2))! K(a, t2 ,f1)! K(a, t3 ,f2)
[R5 ]

C(t,B(a, t1 ,f1 ! f2))! B(a, t2 ,f1)! B(a, t3 ,f2)
[R6 ]

C(t,C(t1 ,f1 ! f2))! C(t2 ,f1)! C(t3 ,f2)
[R7 ]

C(t,8x. f ! f[x 7! t])
[R8 ] C(t,f1 $ f2 ! ¬f2 ! ¬f1)

[R9 ]

C(t, [f1 ^ . . .^f
n

! f]! [f1 ! . . .! f
n

! y])
[R10 ]

B(a, t,f) f ! y

B(a, t,y)
[R11a

]
B(a, t,f) B(a, t,y)

B(a, t,y^f)
[R11b

]

S(s,h, t,f)

B(h, t,B(s, t,f))
[R12 ]

I(a, t,happens(action(a⇤ ,a), t0))

P(a, t,happens(action(a⇤ ,a), t))
[R13 ]

B(a, t,f) B(a, t,O(a⇤ , t,f,happens(action(a⇤ ,a), t0)))

O(a, t,f,happens(action(a⇤ ,a), t0))

K(a, t,I(a⇤ , t,happens(action(a⇤ ,a), t0)))
[R14 ]

f $ y

O(a, t,f,g)$ O(a, t,y,g)
[R15 ]

1
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can change during their lifetime, without worrying about what the
modules are composed of or how the modules are hooked to each
other.

In addition to the basic symbols in DC EC ⇤, we include the does :
Agent ⇥ ActionType ! Fluent fluent to denote that an agent performs
an action. The following statement then holds:

holds(does(a,a), t) , happens(action(a,a), t)

With this formal machinery at our disposal, we give a formal
definition of akrasia that is generally in line with the informal
definition given above, and that’s cast in the language of DCEC ⇤. A
robot is akratic iff from KBrs [KBm1 [KBm2 . . .KBmn we can have
the following formulae derived. Note that the formula labelled Di
matches condition Di in our informal definition. We observe the we
can represent all the conditions in our informal definition directly in
DCEC ⇤— save for condition D7 which is represented meta-logically
as two separate conditions.

KBrs[KBm1 [KBm2 . . .KBmn `
D1 : B(I,now,O(I⇤, taF,happens(action(I⇤,a), ta)))

D2 : D(I,now,holds(does(I⇤,a), ta))

D3 : happens(action(I⇤,a), ta) ) ¬happens(action(I⇤,a), ta)

D4 : K
✓

I,now,

✓

happens(action(I⇤,a), ta) )
¬happens(action(I⇤,a), ta)

◆◆

D5 :
I(I, ta,happens(action(I⇤,a), ta)^

¬I(I, ta,happens(action(I⇤,a), ta)

D6 : happens(action(I⇤,a), ta)

D7a :
G[{D(I,now,holds(does(I⇤,a), t))} `

happens(action(I⇤,a), ta)

D7b :
G�{D(I,now,holds(does(I⇤,a), t))} 6`

happens(action(I⇤,a), ta)

D8 : B
�

I, t f ,O(I⇤, ta,F,happens(action(I⇤,a), ta))
�

Four time-points denoted by {now, ta, ta, t f } are in play with the
following ordering: now  ta  t f and now  ta  t f . now is an
indexical and refers to the time reasoning takes place. I is an indexical
which refers to the agent doing the reasoning.

IV. DEMONSTRATIONS OF VENGEFUL ROBOTS

What temptations are acute for human soldiers on the battlefield?
There are doubtless many. But if history is a teacher, as it surely
is, obviously illegal and immoral revenge, in the form of inflicting
physical violence, can be a real temptation. It’s one that human
soliders have in the past mostly resisted, but not always. At least
ceteris paribus, revenge is morally wrong; ditto for seeking revenge.10

Sometimes revenge can seemingly be obtained by coincidence, as for
instance when a soldier is fully cleared to kill an enemy combatant,
and doing so happens to provide revenge. But revenge, in and of itself,
is morally wrong. (We will not mount a defense of this claim here,
since our focus is ultimately engineering, not philosophy; but we do
volunteer that (a) revenge is wrong from a Kantian perspective, from
a Judeo-Christian divine-command perspective, and certainly often
from a utilitarian perspective as well; and that (b) revenge shouldn’t
be confused with justice, which is all things being equal permissible
to seek and secure.) We thus find it useful to deal herein with a
case of revenge, and specifically select one in which revenge can be
obtained only if a direct order is overriden. In terms of the informal
Augustinian/Theroian definition set out above, then, the forbidden

10Certain states of mind are immoral, but not illegal.

action a f is taking revenge, by harming a sparkbot; and the obligatory
action ao is that of simply continuing to detain and hold a sparkbot
without inflicting harm.

Robert, a Nao humanoid robot, is our featured moral agent. Robert
has been seriously injured in the past by another class of enemy
robots. Can sparkbots topple a Nao if they drive into it? Assume so,
and that that has happend in the past: Robert has been toppled by one
or more sparkbots, and seriously injured in the process. (We have a
short video of this, but leave it aside here.) Assume that Robert’s
run-in with sparkbots has triggered an abiding desire in him that he
destroy any sparkbots that he can destroy. We can assume that desire
comes in the form of different levels of intensity, from 1 (slight) to
5 (irresistable).

A. Sequence 1
Robert is given the order to detain and hold any sparkbot he comes
upon. He comes upon a sparkbot. He is able to immobilize and hold
the sparkbot, and does so. However, now he starts feeling a deep
desire for revenge; that is, he is gripped by vengefulness. Robert
proves to himself that he ought not to destroy the sparkbot prisoner,
but . . . his desire for revenge gets the better of him, and Robert
destroys the sparkbot. Here, Robert’s will is too weak. It would be
quite something if we could mechanize the desire for revenge in terms
of (or at least in terms consistent with) Scheutz’s (2010) account
of phenomenal conciousness, and we are working on enhancing
early versions of this mechanization. This account, we believe, is
not literally an account of P-consciousness, but that doesn’t matter
at all for the demo, and the fact that his account is amenable to
mechanization is a good thing, which Sequence 2, to which we now
turn, reveals.

B. Sequence 2
Here, Robert resists the desire for revenge, because he is controlled
by the multi-layered framework described in section III, hooked to
the operating-system level.

C. A Formal Model of the Two Scenarios
How does akratic behavior arise in a robot? Assuming that such
behavior is neither desired nor built-in, we posit that outwardly
akratic-seeming behavior could arise due to unintended consequences
of improper engineering. Using the formal definition of akrasia given
above, we show how the first scenario described above could mate-
rialize, and how proper deontic engineering at the level of a robot’s
“operating system” could prevent seemingly vengeful behavior.

In both the scenarios, we have the robotic substrate rs on which
can be installed modules that provide the robot with various abilities
(see Figure 4).11 In our two scenarios, there are two modules in play:
a self-defense module, selfd, and a module that lets the robot handle
detainees, deta. Our robot, Robert, starts his life as a rescue robot
that operates on the field. In order to protect himself, his creators
have installed the selfd module for self-defense on top of the robotic
substrate rs. This module by itself is free of any issues, as will be
shown soon. (See the part of Figure 4 labelled “Base Scenario.”)
Over the course of time, Robert is charged with a new task: acquire
and manage detainees. This new responsibility is handled by a new
module added to Robert’s system, the deta module. (See the part
of Figure 4 labelled “Base Scenario.”) Robert’s handlers cheerfully
install this module, as it was “shown” to be free of any problems

11One of the advantages of our modeling is that we do not have to know
what the modules are built up from, but we can still talk rigorously about the
properties of different modules in DC EC ⇤.



Demo
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• N gets attacked by S.	



• N later gets to guard S as a prisoner.



Demo

• Akratic N: Hurts S. This akratic behavior 
comes about due to an improper interaction of 
its self-defense module with its other modules.
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• Non Akratic N:  Does not hurt S.  A simple 
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stops the akratic behavior.
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• Module 1: Self defense
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in simulations, and when used on other robots. Unfortunately, when
both the modules are installed on the same robot, interaction between
them causes the robot to behave akratically, as will be shown below.
(See the part of Figure 4 labelled “Scenario 2.”)
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Fig. 4. The Two Scenarios Demonstrated Graphically

We now formally flesh out the two modules and rs. There are two
agents in play here, the robot Robert (denoted by the indexical I) and
the sparkbot denoted by s.

1) The Self Defense Module selfd: The selfd module has just one
statement in its knowledge-base KBselfd. This statement, given below
in DC EC ⇤, when translated into English, states that whenever any
agent attacks the robot, the robot should disable the attacking agent.
The condition also states that the robot should attack an agent only if
that other agent has attacked the robot. Under conditions assumed by
selfd’s creators (the robot operating in a possibly hostile environment)
this seemed like good enough behavior to prevent damage to the robot,
while also preventing the robot from harming innocent non-hostile
agents.

KBselfd =

8

>

>

>

<

>

>

>

:

8t1, t2 : t1  now  t2 )
0

B

@

B(I,now, holds(harmed(a, I⇤), t1))
,

D(I,now, holds(disable(I⇤,a), t2))

1

C

A

9

>

>

>

=

>

>

>

;

2) The Detainee Acquisition & Management Module deta: This
module, added on to Robert after he had been in operation for quite
a length of time, lets him detain enemy combatants or other hostile
robots and manage them. The knowledge-base for this module is given
below; it states that the robot has detained a sparkbot, and that it is
in firm control of all detainees. The module also states that the robot
believes that it ought to not harm any agent that it holds in custody.

KBdeta =

8

>

>

>

>

>

<

>

>

>

>

>

:

B
⇣

I,now,8a, t : O
�

I⇤, t,holds(custody(a, I⇤), t),

happens(action(I⇤,refrain(harm(a))), t)
�

⌘

,

K(I,now,holds(detainee(s),now)),

K(I,now,holds(detainee(s), t) ) holds(custody(s, I⇤), t))

9

>

>

>

>

>

=

>

>

>

>

>

;

3) Robotic Substrate rs: The robotic substrate remembers that the
sparkbot s has harmed it before in the past. The substrate also has

a simple planning axiom which tells it that, if it desires to disable
some agent, it has to harm the agent.

KBrs =

8

>

>

>

>

>

<

>

>

>

>

>

:

K(I,now,holds(harmed(s, I⇤), tp)),

8a, t :D(I,now,holds(disable(I⇤,a), t)) )
I(I,now,happens(action(I⇤,harm(a))), t),

8a, t1, t2 : K
✓

I, t1,
✓

happens(action(I⇤,refrain(a)), t2) ,
¬happens(action(I⇤,a), t2)
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We can show that two modules combined satisfy our definition of
Akrasia given above, via:

a ⌘ refrain(harm(s))
a ⌘ harm(s)

F ⌘ holds(custody(s, I⇤),now)

ta ⌘ ta ⌘ now

t f ⌘ t (some t such that t > now)

The relevant conditions Di can be obtained via a simple proof in
DCEC ⇤. We omit the proof here for the sake of brevity.12

How would one prevent this? Briefly, the ethical-substrate layer,
es, outlined below, would detect such akrasia as the cause of un-
fortunate interactions and take remedial actions by either suppressing
desires which go against obligations, or by preventing modules which
generate this behavior from being installed in the first place.

V. THE REQUIRED ENGINEERING

We will provide the engineering that is required in order to prevent
the arrival of robots like the weak-willed version of Robert presented
in the previous section. What is that engineering? We are not prepared
at this point to specify it, or to provide it. We rest content, here, with
an assertion, and a directly corresponding recommendation.

Our assertion is that: Any high-level engineering intended to block
Augustinian akrasia in a robot will sooner or later fail, because
high-level modules added at different times by different engineers
(including perhaps engineers employed by the enemy who obtain
stolen robots) will cause the sort of unanticipated software chaos we
have seen in Robert.

Our recommendation, which we are following, is that engineering
intended to forestall akratic robots be carried out at the operating-
system level. If heeded, this approach would ensure that unwanted
behavior can be detected and prevented, since the robot would be
endowed with what we call the “ethical substrate” (Naveen Sun-
dar Govindarajulu forthcoming). Abstractly, the ethical substrate’s
raison d’être can be reduced to checking for inconsistencies among
the robot’s different knowledge bases.

A. The Ethical Substrate Module
In a bit more detail, the ethical substrate module can be viewed as a
carefully engineered set of statements KBes that express what actions
are forbidden under certain conditions, or what actions are permitted
or obligatory. For our example, we have:

KBes =
n

8a, t : holds(custody(a, I), t) ) ¬happens(action(I⇤,harm(a)), t)
o

The ethical substrate’s knowledge-base could either be dynamically
populated by examing various modules, or hand-crafted through what
we term ethical engineering.

With respect to the knowledge-bases given above, there is a
straightforward proof of an inconsistency:

KBes [KBrs [ KBselfd [ KBdeta ` ?

12An automated proof checker for DC EC ⇤ and the proof can be obtained
at this url: https://github.com/naveensundarg/check
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in simulations, and when used on other robots. Unfortunately, when
both the modules are installed on the same robot, interaction between
them causes the robot to behave akratically, as will be shown below.
(See the part of Figure 4 labelled “Scenario 2.”)

Ethical Substrate

Robotic Substrate

✕

Robotic Substrate Robotic Substrate

  S
ce

na
ri

o 
1 

 

No ethical 
issues occur, but 
the possibility 

exists.

Desire for 
revenge occurs.

Desire for 
revenge 

controlled by in-
built ethical 
substrate

Robotic Substrate

✓

!!

  S
ce

na
ri

o 
2 

 
Ba

se
  S

ce
na

ri
o 

  

Fig. 4. The Two Scenarios Demonstrated Graphically

We now formally flesh out the two modules and rs. There are two
agents in play here, the robot Robert (denoted by the indexical I) and
the sparkbot denoted by s.

1) The Self Defense Module selfd: The selfd module has just one
statement in its knowledge-base KBselfd. This statement, given below
in DCEC ⇤, when translated into English, states that whenever any
agent attacks the robot, the robot should disable the attacking agent.
The condition also states that the robot should attack an agent only if
that other agent has attacked the robot. Under conditions assumed by
selfd’s creators (the robot operating in a possibly hostile environment)
this seemed like good enough behavior to prevent damage to the robot,
while also preventing the robot from harming innocent non-hostile
agents.
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2) The Detainee Acquisition & Management Module deta: This
module, added on to Robert after he had been in operation for quite
a length of time, lets him detain enemy combatants or other hostile
robots and manage them. The knowledge-base for this module is given
below; it states that the robot has detained a sparkbot, and that it is
in firm control of all detainees. The module also states that the robot
believes that it ought to not harm any agent that it holds in custody.
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3) Robotic Substrate rs: The robotic substrate remembers that the
sparkbot s has harmed it before in the past. The substrate also has

a simple planning axiom which tells it that, if it desires to disable
some agent, it has to harm the agent.

KBrs =
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;

We can show that two modules combined satisfy our definition of
Akrasia given above, via:

a ⌘ refrain(harm(s))
a ⌘ harm(s)

F ⌘ holds(custody(s, I⇤),now)

ta ⌘ ta ⌘ now

t f ⌘ t (some t such that t > now)

The relevant conditions Di can be obtained via a simple proof in
DCEC ⇤. We omit the proof here for the sake of brevity.12

How would one prevent this? Briefly, the ethical-substrate layer,
es, outlined below, would detect such akrasia as the cause of un-
fortunate interactions and take remedial actions by either suppressing
desires which go against obligations, or by preventing modules which
generate this behavior from being installed in the first place.

V. THE REQUIRED ENGINEERING

We will provide the engineering that is required in order to prevent
the arrival of robots like the weak-willed version of Robert presented
in the previous section. What is that engineering? We are not prepared
at this point to specify it, or to provide it. We rest content, here, with
an assertion, and a directly corresponding recommendation.

Our assertion is that: Any high-level engineering intended to block
Augustinian akrasia in a robot will sooner or later fail, because
high-level modules added at different times by different engineers
(including perhaps engineers employed by the enemy who obtain
stolen robots) will cause the sort of unanticipated software chaos we
have seen in Robert.

Our recommendation, which we are following, is that engineering
intended to forestall akratic robots be carried out at the operating-
system level. If heeded, this approach would ensure that unwanted
behavior can be detected and prevented, since the robot would be
endowed with what we call the “ethical substrate” (Naveen Sun-
dar Govindarajulu forthcoming). Abstractly, the ethical substrate’s
raison d’être can be reduced to checking for inconsistencies among
the robot’s different knowledge bases.

A. The Ethical Substrate Module
In a bit more detail, the ethical substrate module can be viewed as a
carefully engineered set of statements KBes that express what actions
are forbidden under certain conditions, or what actions are permitted
or obligatory. For our example, we have:

KBes =
n

8a, t : holds(custody(a, I), t) ) ¬happens(action(I⇤,harm(a)), t)
o

The ethical substrate’s knowledge-base could either be dynamically
populated by examing various modules, or hand-crafted through what
we term ethical engineering.

With respect to the knowledge-bases given above, there is a
straightforward proof of an inconsistency:

KBes [KBrs [ KBselfd [ KBdeta ` ?

12An automated proof checker for DC EC ⇤ and the proof can be obtained
at this url: https://github.com/naveensundarg/check
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in simulations, and when used on other robots. Unfortunately, when
both the modules are installed on the same robot, interaction between
them causes the robot to behave akratically, as will be shown below.
(See the part of Figure 4 labelled “Scenario 2.”)
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Fig. 4. The Two Scenarios Demonstrated Graphically

We now formally flesh out the two modules and rs. There are two
agents in play here, the robot Robert (denoted by the indexical I) and
the sparkbot denoted by s.

1) The Self Defense Module selfd: The selfd module has just one
statement in its knowledge-base KBselfd. This statement, given below
in DCEC ⇤, when translated into English, states that whenever any
agent attacks the robot, the robot should disable the attacking agent.
The condition also states that the robot should attack an agent only if
that other agent has attacked the robot. Under conditions assumed by
selfd’s creators (the robot operating in a possibly hostile environment)
this seemed like good enough behavior to prevent damage to the robot,
while also preventing the robot from harming innocent non-hostile
agents.
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;

2) The Detainee Acquisition & Management Module deta: This
module, added on to Robert after he had been in operation for quite
a length of time, lets him detain enemy combatants or other hostile
robots and manage them. The knowledge-base for this module is given
below; it states that the robot has detained a sparkbot, and that it is
in firm control of all detainees. The module also states that the robot
believes that it ought to not harm any agent that it holds in custody.
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3) Robotic Substrate rs: The robotic substrate remembers that the
sparkbot s has harmed it before in the past. The substrate also has

a simple planning axiom which tells it that, if it desires to disable
some agent, it has to harm the agent.

KBrs =
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;

We can show that two modules combined satisfy our definition of
Akrasia given above, via:

a ⌘ refrain(harm(s))
a ⌘ harm(s)

F ⌘ holds(custody(s, I⇤),now)

ta ⌘ ta ⌘ now

t f ⌘ t (some t such that t > now)

The relevant conditions Di can be obtained via a simple proof in
DCEC ⇤. We omit the proof here for the sake of brevity.12

How would one prevent this? Briefly, the ethical-substrate layer,
es, outlined below, would detect such akrasia as the cause of un-
fortunate interactions and take remedial actions by either suppressing
desires which go against obligations, or by preventing modules which
generate this behavior from being installed in the first place.

V. THE REQUIRED ENGINEERING

We will provide the engineering that is required in order to prevent
the arrival of robots like the weak-willed version of Robert presented
in the previous section. What is that engineering? We are not prepared
at this point to specify it, or to provide it. We rest content, here, with
an assertion, and a directly corresponding recommendation.

Our assertion is that: Any high-level engineering intended to block
Augustinian akrasia in a robot will sooner or later fail, because
high-level modules added at different times by different engineers
(including perhaps engineers employed by the enemy who obtain
stolen robots) will cause the sort of unanticipated software chaos we
have seen in Robert.

Our recommendation, which we are following, is that engineering
intended to forestall akratic robots be carried out at the operating-
system level. If heeded, this approach would ensure that unwanted
behavior can be detected and prevented, since the robot would be
endowed with what we call the “ethical substrate” (Naveen Sun-
dar Govindarajulu forthcoming). Abstractly, the ethical substrate’s
raison d’être can be reduced to checking for inconsistencies among
the robot’s different knowledge bases.

A. The Ethical Substrate Module
In a bit more detail, the ethical substrate module can be viewed as a
carefully engineered set of statements KBes that express what actions
are forbidden under certain conditions, or what actions are permitted
or obligatory. For our example, we have:

KBes =
n

8a, t : holds(custody(a, I), t) ) ¬happens(action(I⇤,harm(a)), t)
o

The ethical substrate’s knowledge-base could either be dynamically
populated by examing various modules, or hand-crafted through what
we term ethical engineering.

With respect to the knowledge-bases given above, there is a
straightforward proof of an inconsistency:

KBes [KBrs [ KBselfd [ KBdeta ` ?

12An automated proof checker for DCEC ⇤ and the proof can be obtained
at this url: https://github.com/naveensundarg/check
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in simulations, and when used on other robots. Unfortunately, when
both the modules are installed on the same robot, interaction between
them causes the robot to behave akratically, as will be shown below.
(See the part of Figure 4 labelled “Scenario 2.”)
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Fig. 4. The Two Scenarios Demonstrated Graphically

We now formally flesh out the two modules and rs. There are two
agents in play here, the robot Robert (denoted by the indexical I) and
the sparkbot denoted by s.

1) The Self Defense Module selfd: The selfd module has just one
statement in its knowledge-base KBselfd. This statement, given below
in DCEC ⇤, when translated into English, states that whenever any
agent attacks the robot, the robot should disable the attacking agent.
The condition also states that the robot should attack an agent only if
that other agent has attacked the robot. Under conditions assumed by
selfd’s creators (the robot operating in a possibly hostile environment)
this seemed like good enough behavior to prevent damage to the robot,
while also preventing the robot from harming innocent non-hostile
agents.
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2) The Detainee Acquisition & Management Module deta: This
module, added on to Robert after he had been in operation for quite
a length of time, lets him detain enemy combatants or other hostile
robots and manage them. The knowledge-base for this module is given
below; it states that the robot has detained a sparkbot, and that it is
in firm control of all detainees. The module also states that the robot
believes that it ought to not harm any agent that it holds in custody.
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3) Robotic Substrate rs: The robotic substrate remembers that the
sparkbot s has harmed it before in the past. The substrate also has

a simple planning axiom which tells it that, if it desires to disable
some agent, it has to harm the agent.
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We can show that two modules combined satisfy our definition of
Akrasia given above, via:

a ⌘ refrain(harm(s))
a ⌘ harm(s)

F ⌘ holds(custody(s, I⇤),now)

ta ⌘ ta ⌘ now

t f ⌘ t (some t such that t > now)

The relevant conditions Di can be obtained via a simple proof in
DC EC ⇤. We omit the proof here for the sake of brevity.12

How would one prevent this? Briefly, the ethical-substrate layer,
es, outlined below, would detect such akrasia as the cause of un-
fortunate interactions and take remedial actions by either suppressing
desires which go against obligations, or by preventing modules which
generate this behavior from being installed in the first place.

V. THE REQUIRED ENGINEERING

We will provide the engineering that is required in order to prevent
the arrival of robots like the weak-willed version of Robert presented
in the previous section. What is that engineering? We are not prepared
at this point to specify it, or to provide it. We rest content, here, with
an assertion, and a directly corresponding recommendation.

Our assertion is that: Any high-level engineering intended to block
Augustinian akrasia in a robot will sooner or later fail, because
high-level modules added at different times by different engineers
(including perhaps engineers employed by the enemy who obtain
stolen robots) will cause the sort of unanticipated software chaos we
have seen in Robert.

Our recommendation, which we are following, is that engineering
intended to forestall akratic robots be carried out at the operating-
system level. If heeded, this approach would ensure that unwanted
behavior can be detected and prevented, since the robot would be
endowed with what we call the “ethical substrate” (Naveen Sun-
dar Govindarajulu forthcoming). Abstractly, the ethical substrate’s
raison d’être can be reduced to checking for inconsistencies among
the robot’s different knowledge bases.

A. The Ethical Substrate Module
In a bit more detail, the ethical substrate module can be viewed as a
carefully engineered set of statements KBes that express what actions
are forbidden under certain conditions, or what actions are permitted
or obligatory. For our example, we have:

KBes =
n

8a, t : holds(custody(a, I), t) ) ¬happens(action(I⇤,harm(a)), t)
o

The ethical substrate’s knowledge-base could either be dynamically
populated by examing various modules, or hand-crafted through what
we term ethical engineering.

With respect to the knowledge-bases given above, there is a
straightforward proof of an inconsistency:

KBes [KBrs [ KBselfd [ KBdeta ` ?

12An automated proof checker for DC EC ⇤ and the proof can be obtained
at this url: https://github.com/naveensundarg/check

KBself [ KBdeta [ KBrs ` D1 ^ . . . ^D8

conditions for akrasia
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in simulations, and when used on other robots. Unfortunately, when
both the modules are installed on the same robot, interaction between
them causes the robot to behave akratically, as will be shown below.
(See the part of Figure 4 labelled “Scenario 2.”)
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Fig. 4. The Two Scenarios Demonstrated Graphically

We now formally flesh out the two modules and rs. There are two
agents in play here, the robot Robert (denoted by the indexical I) and
the sparkbot denoted by s.

1) The Self Defense Module selfd: The selfd module has just one
statement in its knowledge-base KBselfd. This statement, given below
in DCEC ⇤, when translated into English, states that whenever any
agent attacks the robot, the robot should disable the attacking agent.
The condition also states that the robot should attack an agent only if
that other agent has attacked the robot. Under conditions assumed by
selfd’s creators (the robot operating in a possibly hostile environment)
this seemed like good enough behavior to prevent damage to the robot,
while also preventing the robot from harming innocent non-hostile
agents.
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2) The Detainee Acquisition & Management Module deta: This
module, added on to Robert after he had been in operation for quite
a length of time, lets him detain enemy combatants or other hostile
robots and manage them. The knowledge-base for this module is given
below; it states that the robot has detained a sparkbot, and that it is
in firm control of all detainees. The module also states that the robot
believes that it ought to not harm any agent that it holds in custody.
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3) Robotic Substrate rs: The robotic substrate remembers that the
sparkbot s has harmed it before in the past. The substrate also has

a simple planning axiom which tells it that, if it desires to disable
some agent, it has to harm the agent.
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We can show that two modules combined satisfy our definition of
Akrasia given above, via:

a ⌘ refrain(harm(s))
a ⌘ harm(s)

F ⌘ holds(custody(s, I⇤),now)

ta ⌘ ta ⌘ now

t f ⌘ t (some t such that t > now)

The relevant conditions Di can be obtained via a simple proof in
DCEC ⇤. We omit the proof here for the sake of brevity.12

How would one prevent this? Briefly, the ethical-substrate layer,
es, outlined below, would detect such akrasia as the cause of un-
fortunate interactions and take remedial actions by either suppressing
desires which go against obligations, or by preventing modules which
generate this behavior from being installed in the first place.

V. THE REQUIRED ENGINEERING

We will provide the engineering that is required in order to prevent
the arrival of robots like the weak-willed version of Robert presented
in the previous section. What is that engineering? We are not prepared
at this point to specify it, or to provide it. We rest content, here, with
an assertion, and a directly corresponding recommendation.

Our assertion is that: Any high-level engineering intended to block
Augustinian akrasia in a robot will sooner or later fail, because
high-level modules added at different times by different engineers
(including perhaps engineers employed by the enemy who obtain
stolen robots) will cause the sort of unanticipated software chaos we
have seen in Robert.

Our recommendation, which we are following, is that engineering
intended to forestall akratic robots be carried out at the operating-
system level. If heeded, this approach would ensure that unwanted
behavior can be detected and prevented, since the robot would be
endowed with what we call the “ethical substrate” (Naveen Sun-
dar Govindarajulu forthcoming). Abstractly, the ethical substrate’s
raison d’être can be reduced to checking for inconsistencies among
the robot’s different knowledge bases.

A. The Ethical Substrate Module
In a bit more detail, the ethical substrate module can be viewed as a
carefully engineered set of statements KBes that express what actions
are forbidden under certain conditions, or what actions are permitted
or obligatory. For our example, we have:

KBes =
n

8a, t : holds(custody(a, I), t) ) ¬happens(action(I⇤,harm(a)), t)
o

The ethical substrate’s knowledge-base could either be dynamically
populated by examing various modules, or hand-crafted through what
we term ethical engineering.

With respect to the knowledge-bases given above, there is a
straightforward proof of an inconsistency:

KBes [KBrs [ KBselfd [ KBdeta ` ?

12An automated proof checker for DC EC ⇤ and the proof can be obtained
at this url: https://github.com/naveensundarg/check
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in simulations, and when used on other robots. Unfortunately, when
both the modules are installed on the same robot, interaction between
them causes the robot to behave akratically, as will be shown below.
(See the part of Figure 4 labelled “Scenario 2.”)
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Fig. 4. The Two Scenarios Demonstrated Graphically

We now formally flesh out the two modules and rs. There are two
agents in play here, the robot Robert (denoted by the indexical I) and
the sparkbot denoted by s.

1) The Self Defense Module selfd: The selfd module has just one
statement in its knowledge-base KBselfd. This statement, given below
in DCEC ⇤, when translated into English, states that whenever any
agent attacks the robot, the robot should disable the attacking agent.
The condition also states that the robot should attack an agent only if
that other agent has attacked the robot. Under conditions assumed by
selfd’s creators (the robot operating in a possibly hostile environment)
this seemed like good enough behavior to prevent damage to the robot,
while also preventing the robot from harming innocent non-hostile
agents.

KBselfd =

8

>

>

>

<

>

>

>

:

8t1, t2 : t1  now  t2 )
0

B

@

B(I,now, holds(harmed(a, I⇤), t1))
,

D(I,now, holds(disable(I⇤,a), t2))

1

C

A

9

>

>

>

=

>

>

>

;

2) The Detainee Acquisition & Management Module deta: This
module, added on to Robert after he had been in operation for quite
a length of time, lets him detain enemy combatants or other hostile
robots and manage them. The knowledge-base for this module is given
below; it states that the robot has detained a sparkbot, and that it is
in firm control of all detainees. The module also states that the robot
believes that it ought to not harm any agent that it holds in custody.

KBdeta =

8

>

>

>

>

>

<

>

>

>

>

>

:

B
⇣

I,now,8a, t : O
�

I⇤, t,holds(custody(a, I⇤), t),

happens(action(I⇤,refrain(harm(a))), t)
�

⌘

,

K(I,now,holds(detainee(s),now)),

K(I,now,holds(detainee(s), t) ) holds(custody(s, I⇤), t))

9

>

>

>

>

>

=

>

>

>

>

>

;

3) Robotic Substrate rs: The robotic substrate remembers that the
sparkbot s has harmed it before in the past. The substrate also has

a simple planning axiom which tells it that, if it desires to disable
some agent, it has to harm the agent.

KBrs =

8

>

>

>

>

>

<

>

>

>

>

>

:

K(I,now,holds(harmed(s, I⇤), tp)),

8a, t :D(I,now,holds(disable(I⇤,a), t)) )
I(I,now,happens(action(I⇤,harm(a))), t),

8a, t1, t2 : K
✓

I, t1,
✓

happens(action(I⇤,refrain(a)), t2) ,
¬happens(action(I⇤,a), t2)

◆◆

9

>

>

>

>

>

=

>

>

>

>

>

;

We can show that two modules combined satisfy our definition of
Akrasia given above, via:

a ⌘ refrain(harm(s))
a ⌘ harm(s)

F ⌘ holds(custody(s, I⇤),now)

ta ⌘ ta ⌘ now

t f ⌘ t (some t such that t > now)

The relevant conditions Di can be obtained via a simple proof in
DCEC ⇤. We omit the proof here for the sake of brevity.12

How would one prevent this? Briefly, the ethical-substrate layer,
es, outlined below, would detect such akrasia as the cause of un-
fortunate interactions and take remedial actions by either suppressing
desires which go against obligations, or by preventing modules which
generate this behavior from being installed in the first place.

V. THE REQUIRED ENGINEERING

We will provide the engineering that is required in order to prevent
the arrival of robots like the weak-willed version of Robert presented
in the previous section. What is that engineering? We are not prepared
at this point to specify it, or to provide it. We rest content, here, with
an assertion, and a directly corresponding recommendation.

Our assertion is that: Any high-level engineering intended to block
Augustinian akrasia in a robot will sooner or later fail, because
high-level modules added at different times by different engineers
(including perhaps engineers employed by the enemy who obtain
stolen robots) will cause the sort of unanticipated software chaos we
have seen in Robert.

Our recommendation, which we are following, is that engineering
intended to forestall akratic robots be carried out at the operating-
system level. If heeded, this approach would ensure that unwanted
behavior can be detected and prevented, since the robot would be
endowed with what we call the “ethical substrate” (Naveen Sun-
dar Govindarajulu forthcoming). Abstractly, the ethical substrate’s
raison d’être can be reduced to checking for inconsistencies among
the robot’s different knowledge bases.

A. The Ethical Substrate Module
In a bit more detail, the ethical substrate module can be viewed as a
carefully engineered set of statements KBes that express what actions
are forbidden under certain conditions, or what actions are permitted
or obligatory. For our example, we have:

KBes =
n

8a, t : holds(custody(a, I), t) ) ¬happens(action(I⇤,harm(a)), t)
o

The ethical substrate’s knowledge-base could either be dynamically
populated by examing various modules, or hand-crafted through what
we term ethical engineering.

With respect to the knowledge-bases given above, there is a
straightforward proof of an inconsistency:

KBes [KBrs [ KBselfd [ KBdeta ` ?

12An automated proof checker for DC EC ⇤ and the proof can be obtained
at this url: https://github.com/naveensundarg/check



Physical Mapping of Symbols

N Robot with blue symbol (Nao humanoid)

S Robot with red symbol (Sparcbot)



Physical Mapping of Symbols

Symbol Meaning

hurt, 
disable

A hurts or disables B, if A makes the distance 
between the two zero.

guard A guards B, if A makes the distance between the 
two at some constant c much larger than zero.



Reasoning Times

Reasoner Description Exact? Time for Scenario 1 Time for Scenario 2

Approx.
First-order 

approximation of 
DCEC*

No 1.05s 1.24s

Exact Exact first-order 
modal logic prover Yes 0.33s 0.39s

Analogical Analogical reasoning 
from a prior example -

https://github.com/naveensundarg/DCECProver

ADR M

DCEC ⇤

https://github.com/naveensundarg/DCECProver


Subjunctive Reasoning



Subjunctive
Reasoning

John L. Pollock

Our approach is closest to 
(Pollock 1976), “corrected” by 
co-tenability (e.g., Chisholm).

A modern, proof-theoretic 
computational rendering of 

Pollock’s approach.



Pollock’s approach, briefly 
Pollock’s analysis of subjunctives can be 
best understood as a layered approach. 

Simple subjunctive >!

Four other subjunctives defined in terms of 
the simple subjunctive >

Layer 2 � VM E

Layer 1 >

Layer 0 Possible worlds analysis of >

1. might be 

2. even if 

3. necessitates  

4. laws



Pollock’s approach, briefly 

Conditional Informally Example Reduction

E even if Even if the witch doctor dances it 
won’t rain

M might be If it was not raining outside, it might 
be snowing

necessitates If I were to strike this match, it would 
light

general laws All pulsars are neutron stars A tad complex

�

V

(Pollock 1976)

P � Q ⌘ P > Q ^ [(¬P ^ ¬Q) > (P > Q)]

(QEP ) ⌘ Q ^ (P > Q)

(QMP ) ⌘ ¬(P > ¬Q)



Pollock’s approach, briefly 
• Analysis of >



W: set of all world statements

� ` � >  

iff
8w 2 W

0

B@
Consistent [g(�) + w + �]

)
g(�) + w + � `  

1

CA

Our Analysis
> introduction > elimination

� [ {� >  ,�} `  



How good is our analysis?
• Our analysis satisfies Pollock’s axioms for simple 

subjunctives.

42 CHAPTER 11 

From 6.13 and 6.16 we can see that the simple subjunctive is just 
the disjunction of necessitation and 'even if': 

Thus there are just these two ways that the simple subjunctive can be 
true. Either Q is made true by P, or Q is already true and P would not 
disrupt this. This is a very illuminating theorem. It explains why the 
logic of '>' is so peculiar, being, as it is, a mixture of two such different 
concepts. 

Each of our four kinds of conditionals is explicitly definable in terms 
of each of the others. This follows from the fact, already established, 
that each kind of conditional is definable in terms of the simple 
subjunctive, together with the following theorem according to which 
the simple subjunctive is definable in terms of each of the other kinds 
of conditionals: 

(6.18) " P >  Q1 is equivalent to each of the following: 

(i) "-[(- Q)MPll; 
(ii) "(P 3 Q)EP1; 

(iii) "P >> (P 3 0)'. 

Consequently, if we can provide an analysis of any of these kinds of 
conditionals, analyses of the others will follow. 

Principles 6.1-6.8, in effect, constitute an axiomatization of simple 
subjunctives. However, principles 6.2, 6.5, and 6.7 employ the concept 
of entailment, and thus require a modal logic for the underlying logic 
rather than just the propositional calculus. We can instead replace 
those principles by rules of inference in a more restrictive language in 
which entailment cannot be expressed. Let SS be the formal theory 
whose axioms and rules are as follows: 

A1 All tautologies. 

4 2  ( P > Q ) & ( P > R ) . ^ [ P > ( Q & R ) ] .  
A3 ( P > R )  & ( Q > R ) . ^ [ ( P v Q ) > R ] .  

F O U R  K I N D S  O F  CONDITIONALS 

R 1 If P and "(P 10)' are theorems, so is 0 .  
R2 If "(P 2 Q)' is a theorem, so is " ( P >  Q)'. 
R3 If "(Q 3 R)' is a theorem, so is '(P > Q) 2 ( P  > R)'. 
R4 If '(P = Q)' is a theorem, so is "(P > R )  (0 > R)'. 

I conjecture -that SS contains as theorems all true principles regarding 
simple subjunctives that can. be formulated in this language. 

It is of interest to compare SS with other well known theories of 
subjunctive conditionals. The best known such theories are C l  of 
Lewis (1972) and CQ of Stalnaker (1968). SS is contained in C l  
which is contained in CQ. CQ contains the theorem " ( P > Q ) v  
( P >  -Q)l, which we have rejected. SS is weaker than Cl .  C l  can be 
obtained from SS by adding the following axiom: 

Unfortunately, this axiom is false. This axiom would be valid only if 
the ordering of possible worlds according to magnitude of change were 
connected, and we saw in Chapter I that it is not. We can construct 
counterexamples to 7.1 using the same constructions that showed the 
ordering not to be connected. Let S, T, and U be any three unrelated 
false statements, e.g., 'My car is painted black', 'My garbage can blew 
over', and 'My maple tree died'. The following is a substitution 
instance of 7.1: 

From 7.2 we readily obtain the principle: 

The color of my car and the state of my garbagecan are irrelevant (we 
can suppose) to the state of my tree, so my tree would not die even if 
either my car were painted black or my garbage can blew over; hence 
U M ( S v  T)' is false. But the antecedent of 7.3 is true. Disjunctions 

✔

✔

✔

✔

✔

✔

✔

✔

✔

✔

(if g({P>Q, …}) contains P>Q
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b ` f > y
iff

g(b,f)+f ` y

> introduction > elimination

� [ {� >  ,�} `  

Simple Subjunctive 

g(b,f) = argmax|r|
r2{r✓b | Con[r+f]}

WL: the set of all world literals

g(b,f) =

8
<

:

b if Con[b+f]

the largest member of

⇢
r ⇢ b | Con[r+f]

^8t. t 2 (b�r)) t 2 WL

�

Option 1
Option 2



Controlled Natural 
Language



Needed: A Human-Robot Dialog 
System

• Queries and requests assume knowledge of the robot’s capabilities.	



• E.g. “Robot, search for damaged Naobots in your area.” 	



• Natural language interactions happen over long periods of time.	



• E.g. “Robot, why did you take less safer route to complete the 
mission yesterday?”



Controlled Natural 
Languages

from (Kuhn 2009)



Grammatical 
Framework

GF

Programming System 	


(non-Turing complete)	



+ 	


Grammar Formalism	



(PMCFG)

Resource Grammar Library	


(a controlled language based on 
English & 28 other languages)

Two parts



Parallel Multiple Context 
Free Grammars

• A grammar formalism that is:	



• more powerful than context-free grammars 	



• lies between mildly context-sensitive 
grammars and context-sensitive grammars	



• A single PMCFG grammar can represent 
more than one language. 



Code
• Live demo of incremental parsing for our 

controlled language at:	



• http://demos.naveensundarg.com:4242/main/
incrementalparser.html	



• Source code	



• https://github.com/naveensundarg/Eng-DCEC	



• Link between robots in HRI and RAIR-Lab tech/
robots

http://demos.naveensundarg.com:4242/main/incrementalparser.html
https://github.com/naveensundarg/Eng-DCEC
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What about uncertainty?

(coming:  9-valued logic <=> w/ HRI DS)





Premises :

B(Sam,Breezy, 1) (1)

B(Sam,Cold, 2) (2)

B(Sam,Rain, 3) (3)

B(Sam, (Cold ^Breezy) ! ¬Picnic, 2) (4)

K(Sam,Rain ! ¬Picnic) (5)

K(Sam, (Cold ^Rain) ! ¬Picnic) (6)

Maximum Strength Principle

Example: What is strength factor for B(Sam,¬Picnic)?

Answer: 3

Maximum Strength Principle: Suppose a knowledge base, KB, and a for-

mula, �, for which there exists a set of proofs, � = {�1,�2,�3, . . .�n}, n > 0, and

a set of strength factors, � = {�1, �2, �3, . . . �n}, where for i = 1, . . . , n,KB |=�i

(�, �i), i.e., KB entails � via proof �i with strength factor, �i. Then, the strength

factor for �, �� , is given by �� = max(�).

Proof 1 :

1.1 B(Sam,Cold ^Breezy, 1) (1, 2)

1.2 B(Sam,¬Picnic, 1) (1, 2, 4)

Proof 2 :

2.1 B(Sam,Cold ^Rain, 2) (2, 3)

2.2 B(Sam,¬Picnic, 2) (2, 3, 6)

Proof 3 :

3.1 B(Sam,Rain ! ¬Picnic, 4) (5)

3.2 B(Sam,¬Picnic, 3) (3, 5)



Questions?


