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Deontic Cognitive Event Calculus
(with Castaneda’s *)

|. natural language semantics (non-Montagovian)

2. higher-cognition tests (for Psychometric Al)
(false-belief test, deliberative mind-reading
mirror test for self-consciousness ...)

3. ethically correct robots
4.biz & econ simulation
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Many experts to IBM: “Can’t be done!”

No one asked me.



From computational logic for configuration and design to ...
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David Ferrucci: Life After Watson
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To the degree
there was a
human face of
Watson, the
“Jeopardy!”
computer
champion, it was
David Ferrucci.

He was the I.B.M.

researcher who
led the
development of
Watson, an
artificial
intelligence

c - o a ~ITha aw Yoark Timas
Suzanne DeChillb/The New York Times

David Ferrucci has left |.B.M., and Watson, and joined the hedge
fund, Bridgewater Associates.

engine. The goateed computer scientist was always articulate and at ease in

front of a camera or a microphone.

Dr. Ferrucci has left I.B.M. to join the giant hedge fund Bridgewater
Associates. And the weight of the Watson-related fame, it seems, played a
role. “I was so linked to the Watson achievement, and where I.B.M. was
taking it, that I felt I was almost losing my identity,” he said in a recent

interview.
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What is the “carry over” here?



Hierarchical Ethical Classifier (initial design)

® Preprocessing system for deciding whether a situation
warrants deliberate ethical reasoning.

® Made up of atomic ethical classifiers (UIMA’s Analysis
Engines)

[Yes, No, Delegate]

>

term of sort S

atomic ethical classifier



Why!

Not all situations need deliberate deontic reasoning.

Need to quickly decide at every time instant
whether the current situation requires deliberate,
deontic reasoning.

Need many heuristics to do so.

The design provides a disciplined approach to
organize and add new heuristics.



Hierarchical Ethical Classifier (UIMA-Style)

more processing
cost

high-level classifiers

less processing
cost

low-level classifiers

semi-structured data

(event calculus formulae and terms)

e

? sort | sort?2

sort n

\_

J

T1tt

sensors and low-level processors T T T T

—

world

yes,no



Specification

Processing goes to a higher-level classifier only if the
corresponding lower classifier answers Delegate.

Notion of top-fired classifiers.

Systems answers:

® Yes: If and only if any one of the top-fired classifiers

answers Yes, or all the top-level atomic classifiers answer
Delegate.

® No: If and only if all the top-fired classifiers answer No.
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Analogico-Deductive Moral
Reasoning (ADMR)

® Moral problem presented as story (in psychometric
sense) and a stem, or query.

® A stem has correct answer A and a set P; of correct
proofs or arguments establishing A, relative to:

® An associated implicit moral theory, and

® A corresponding moral code
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Analogico-Deductive Moral
Reasoning (ADMR)

ADMR
Input: System
(story, —_—
query/stem)

Moral
Theories and

Codes

Analogy
Source Cases

Output:

{(A, proofs/arguments of A)),
(A2, proofs/arguments of A,), ...}



Sample (“Tough”) Input:
The Heinz Dilemma (Kolhberg)

“In Europe, a woman was near death from a special kind of cancer. There was one drug that
the doctors thought might save her. It was a form of radium that a druggist in the same town
had recently discovered. The drug was expensive to make, but the druggist was charging ten
times what the drug cost him to make. He paid $200 for the radium and charged $2,000 for a
small dose of the drug.

The sick woman’s husband, Heinz, went to everyone he knew to borrow the money, but he
could only get together about $1,000, which is half of what it cost. He told the druggist that his
wife was dying and asked him to sell it cheaper or let him pay later. But the druggist said:“No, |
discovered the drug and I'm going to make money from it.” So Heinz got desperate and broke
into the man’s store to steal the drug for his wife. Should the husband have done that?”
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Moral Problem Py
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Solution to Py

Solution to P>

Solution to P




Fragment of Heinz in DCEC*

m Vt : Moment,a : Agent (halds(sick(a),t) A (‘v’t’ : Moment t' < T = —happens(treated(a),t +t’))

= (happens(dies(a),t + T )V holds(dead(a),t + T))

holds(sick(wife(lx)),t9) A (Vt' : Moment ¢’ < T = —happens(treated(wife(l%)),to+1')

E happens(dies(wife(lx)),to+T) V holds(dead(wife(lx)),tg+ T)
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DCEC’

Syntax

g Object | Agent | Self  Agent | ActionType | Action C Event |

" Moment | Boolean | Fluent | Numeric
to=x:S|c:S|f(tr,...,tn)

action : Agent x ActionType — Action
initially : Fluent — Boolean

holds : Fluent x Moment — Boolean
happens : Event x Moment — Boolean

clipped : Moment x Fluent x Moment — Boolean

p:Boolean | =0 [ OAW | OVY O =W |0+ Y| Vx:S. ¢ |Tx:S. 0 f ::= initiates : Event X Fluent x Moment — Boolean

o P(@1.0) | K(a,1,0) [ €(1,0) |S(a,b,1.9) | S(ar,0)

O(a,t,0,happens(action(a*,a),t’))

Rules of Inference

" B(a,,0) | D(a,t,holds(f,1")) | X(a,t, happens(action(a*, o)1)

C(t,P(a,1,0) — K(a,1,0)) Ri] C(r,K(a,1,0) — B(a,1,0))

C(t,0)t<t1...t <ty K(a,t,0)

K(ai,t1, ... K(dn,tn,0)...) Rs| o R4l
1 <3, <13

C(t,K(a,11,01 = ¢2) — (K(a,12,91) — K(a,13,02)))
t S13,10 <13

C(t,B(a,1,01 — ¢02) — (B(a,2,01) = B(a,13,02)))

1 S13,10 <13 Ry]
C(#,C(t1,01 — ¢2) = (C12,01) = C(13,92)))

[Rs]

[R¢]

terminates : Event X Fluent x Moment — Boolean
prior : Moment x Moment — Boolean

interval : Moment x Boolean

* : Agent — Self

payoff : Agent x ActionType x Moment — Numeric

[Rs

| C(t,01 <> o2 — =2 — =01)

ClHt,[01N.. . AOp—= 0] = [01 = ... = Oy = V)) Rio
B(a,1,9) B(a,1,0 = ) B(a,1,9) Bla,1,y)
B(a,t,V) B(a,t,y A\ 9)
S(s,h,t,0) I(a,t, happens(action(a*,a),t"))
B(h,t,B(s,1,0)) P(a,t,happens(action(a*,a),t))
B(a,t,9) B(a,t,0(a*,t,d, happens(action(a*,a),t’)))
O(a,t,$, happens(action(a*,a),t"))

C(t,Vx. 0 = O[x—1])

11a [Ri1p)

12

; B [Ria]
K(a,t,1(a*,t, happens(action(a*,a),t")))

by [R15]

O(a,t,9,7) <> O(a,t,v,Y)

R

[R13]

9]




DCEC’

Syntax

g Object | Agent | Self  Agent | ActionType | Action C Event |

" Moment | Boolean | Fluent | Numeric
to=x:S|c:S|f(tr,...,tn)

Where are the emotions!?

action : Agent x ActionType — Action
initially : Fluent — Boolean

holds : Fluent x Moment — Boolean
happens : Event x Moment — Boolean

clipped : Moment x Fluent x Moment — Boolean

p:Boolean | =0 [ OAW | OVY O =W |0+ Y| Vx:S. ¢ |Tx:S. 0 f ::= initiates : Event X Fluent x Moment — Boolean

o P(@1.0) | K(a,1,0) [ €(1,0) |S(a,b,1.9) | S(ar,0)

O(a,t,0,happens(action(a*,a),t’))

Rules of Inference

[R1]

" B(a,,0) | D(a,t,holds(f,1")) | X(a,t, happens(action(a*, o)1)

C(t,P(a,t,0) — K(a,t,0)) C(t,K(a,t,0) — B(a,t,0))
C(t,0)t<t1...t <ty K(a,t,0)

K(ay,t,...K(ap,t;,0)...) R3] () [Ra]
1 <3, <13

C(t.K(a,11,01 — ¢2) — (K(a,2,01) = K(a,13,2)))
t S13,10 <13

C(t,B(a,1,01 — ¢02) — (B(a,2,01) = B(a,13,02)))

1 S13,10 <13 Ry]
C(#,C(t1,01 — ¢2) = (C12,01) = C(13,92)))

[Rs]

[R¢]

terminates : Event X Fluent x Moment — Boolean
prior : Moment x Moment — Boolean

interval : Moment x Boolean

* : Agent — Self

payoff : Agent x ActionType x Moment — Numeric

B o o 0= ~0a = o)

ClHt,[01N.. . AOp—= 0] = [01 = ... = Oy = V)) Rio
B(a,1,9) B(a,1,0 = ) B(a,1,9) Bla,1,y)
B(a,t,V) B(a,t,y A\ 9)
S(s,h,t,0) I(a,t, happens(action(a*,a),t"))
B(h,t,B(s,1,0)) P(a,t,happens(action(a*,a),t))
B(a,t,9) B(a,t,0(a*,t,d, happens(action(a*,a),t’)))
O(a,t,$, happens(action(a*,a),t"))

C(t,Vx. 0 = O[x—1])

11a [Ri1p)

12

: B [Ria]
K(a,t,1(a*,t, happens(action(a*,a),t")))

¢y

R
O(a,t,0,7) <> O(a,t,y,Y) Ris)

R

[R13]
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Syntax

g Object | Agent | Self  Agent | ActionType | Action C Event |

" Moment | Boolean | Fluent | Numeric
to=x:S|c:S|f(tr,...,tn)

action : Agent x ActionType — Action
initially : Fluent — Boolean

holds : Fluent x Moment — Boolean
happens : Event x Moment — Boolean

clipped : Moment x Fluent x Moment — Boolean

p:Boolean | =0 [ OAW | OVY O =W |0+ Y| Vx:S. ¢ |Tx:S. 0 f ::= initiates : Event X Fluent x Moment — Boolean

o P(@1.0) | K(a,1,0) [ €(1,0) |S(a,b,1.9) | S(ar,0)

O(a,t,0,happens(action(a*,a),t’))

Rules of Inference

" B(a,,0) | D(a,t,holds(f,1")) | X(a,t, happens(action(a*, o)1)

C(t,P(a,1,0) — K(a,1,0)) Ri] C(r,K(a,1,0) — B(a,1,0))

C(t,0)t<t1...t <ty K(a,t,0)

K(ai,t1, ... K(dn,tn,0)...) Rs| o R4l
1 <3, <13

C(t,K(a,11,01 = ¢2) — (K(a,12,91) — K(a,13,02)))
t S13,10 <13

C(t,B(a,1,01 — ¢02) — (B(a,2,01) = B(a,13,02)))

1 S13,10 <13 Ry]
C(#,C(t1,01 — ¢2) = (C12,01) = C(13,92)))

[Rs]
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| C(t,01 <> o2 — =2 — =01)

ClHt,[01N.. . AOp—= 0] = [01 = ... = Oy = V)) Rio
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DCEC’

Step #| (Selmer, Mei, Naveen): Integrate version of prior
ssdermalization of OCC with deontic concepts/operators.

g Object | Agent | Self  Agent | ActionType | Action C Event |

" Moment | Boolean | Fluent | Numeric

to=x:S|c:S|f(tr,...,tn)

action : Agent x ActionType — Action
initially : Fluent — Boolean

holds : Fluent x Moment — Boolean
happens : Event x Moment — Boolean

clipped : Moment x Fluent x Moment — Boolean

p:Boolean | =0 [OAY |[OVY |[0— Y | by |Vx:S. ¢]dx:S. ¢ f ::= initiates : Event X Fluent x Moment — Boolean

o P(@1.0) | K(a,1,0) [ €(1,0) |S(a,b,1.9) | S(ar,0)

O(a,t,0,happens(action(a*,a),t’))

" B(a,,0) | D(a,t,holds(f,1")) | X(a,t, happens(action(a*, o)1)

terminates : Event x Fluent x Moment — Boolean
prior : Moment X Moment — Boolean

interval : Moment x Boolean

* : Agent — Self
payoff : Agent x ActionType x Moment — Numeric

Rules of Inference

Clevr oo onam) B Croon s 0o o) 1O
R R
ClPlar ) K@ra) ) CoR@no) = Bane) > o h Ao o gy
C(t7¢)t§t1“'t§t’1 [R ] K(Cl,t,(l)) [R ] B(Cl,t,(l)) B(a,f,¢—>\|f) B(Cl,t,(l)) B(Cl,t,\V) R
K(ay,n, K@nt,0).) 0 ¢ B(a,t,y) TRy
1 <t3,1r <13 Rs) S(s,h,t,0) I(a,t, happens(action(a*,a),t"))
C(t,K(a,t1,01 = ¢2) — (K(a,t2,01) — K(a,13,02))) B(h,t,B(s,1,0)) 2 P(a,t,happens(action(a*,a),t)) R3]
1 <t3,tp <n3 [Re] B(a,t,0) B(a,t,0(a*,t,0,happens(action(a*,a),t')))
C(t7B(a7t17¢1 — (I)Z) — (B(a7t27¢1) — B(a7t37¢2>)) O(a,t,q),happens(action(a*,OC),I’))
b 2D Ry K(ar 1@ happensiaction(@ o) .0)
C1-Clinobr = 62) = (Cliz 01) — Cl12.02)) o
[R15]

O(a7t7 q)aY) A O(a’t’w’ ’Y)




DCEC’

Syntax

g Object | Agent | Self  Agent | ActionType | Action C Event |

" Moment | Boolean | Fluent | Numeric
to=x:S|c:S|f(tr,...,tn)

action : Agent x ActionType — Action
initially : Fluent — Boolean

holds : Fluent x Moment — Boolean
happens : Event x Moment — Boolean

clipped : Moment x Fluent x Moment — Boolean

p:Boolean | =0 [ OAW | OVY O =W |0+ Y| Vx:S. ¢ |Tx:S. 0 f ::= initiates : Event X Fluent x Moment — Boolean

o P(@1.0) | K(a,1,0) [ €(1,0) |S(a,b,1.9) | S(ar,0)

O(a,t,0,happens(action(a*,a),t’))

Rules of Inference

" B(a,,0) | D(a,t,holds(f,1")) | X(a,t, happens(action(a*, o)1)

C(t,P(a,1,0) — K(a,1,0)) Ri] C(r,K(a,1,0) — B(a,1,0))

C(t,0)t<t1...t <ty K(a,t,0)

K(ai,t1, ... K(dn,tn,0)...) Rs| o R4l
1 <3, <13

C(t,K(a,11,01 = ¢2) — (K(a,12,91) — K(a,13,02)))
t S13,10 <13

C(t,B(a,1,01 — ¢02) — (B(a,2,01) = B(a,13,02)))

1 S13,10 <13 Ry]
C(#,C(t1,01 — ¢2) = (C12,01) = C(13,92)))

[Rs]

[R¢]

terminates : Event X Fluent x Moment — Boolean
prior : Moment x Moment — Boolean

interval : Moment x Boolean

* : Agent — Self

payoff : Agent x ActionType x Moment — Numeric

[Rs

| C(t,01 <> o2 — =2 — =01)

ClHt,[01N.. . AOp—= 0] = [01 = ... = Oy = V)) Rio
B(a,1,9) B(a,1,0 = ) B(a,1,9) Bla,1,y)
B(a,t,V) B(a,t,y A\ 9)
S(s,h,t,0) I(a,t, happens(action(a*,a),t"))
B(h,t,B(s,1,0)) P(a,t,happens(action(a*,a),t))
B(a,t,9) B(a,t,0(a*,t,d, happens(action(a*,a),t’)))
O(a,t,$, happens(action(a*,a),t"))

C(t,Vx. 0 = O[x—1])

11a [Ri1p)

12

; B [Ria]
K(a,t,1(a*,t, happens(action(a*,a),t")))

by [R15]

O(a,t,9,7) <> O(a,t,v,Y)

R

[R13]

9]
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Abstract

This paper formalizes a well-known psychological model of
emotions in an agent specification language. This is done
by introducing a logical language and its scmantics that are
used to specify an agent model in terms of mental attitudes
including emotions. We show that our formalization renders
a number of intuitive and plausible properties of emotions.
We also show how this formalization can be used to specify
the effect of emotions on an agent’s decision making process.
Ultimately, the emotions in this model function as heuristics
as they constrain an agent's model.

Introduction

In psychological studies, the emotions that influence the de-
liberation and practical reasoning of an agent are considered
as heuristics for preventing excessive deliberation (Dama-
sio 1994). Meyer & Dastani (2004: 2006) propose a func-
tional approach to describe the role of emotions in practical
reasoning. According to this functional approach, an agent
is assuned to execute domain actions in order to reach its
goals. The effects of these domain actions cause and/or
influence the appraisal of emotions according to a human-
inspired model. These emotions in turn influence the delib-
eration operations of the agent, functioning as heuristics for
determining which domain actions have to be chosen next,
which completes the circle.

Although logics for modeling the behavior of intelligent
agents are in abundance, the effect of emotions on rational
behavior is usually not considered, despite of their (arguably
positive) contribution. Philosophical studies describing (ide-
alized) human behavior have previously been formalized us-
ing one or more logics (often mixed or extended). For exam-
ple, Bratman's BDI theory of belief, desire, and intentions
(Bratman 1987) has been modeled and studied in e.g. lin-
ear time logic (Cohen & Levesque 1990) and dynamic logic
(Meyer, Hoek, & Linder 1999).

We propose to model and formalize human emotions in
logic. There exist different psychological models of emo-
tions, of which we have chosen to consider the model of
Ortony, Clore, & Collins (1988). The “OCC model” is suit-
able for formalization because it describes a concise hierar-
chy of emotions and specifies the conditions that elicit each

Copyright (©) 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.
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emotion in terms of objects, actions, and events—concepls
that can be captured in a formal language. In this paper, we
introduce a logic for studying the appraisal, interactions, and
effects of the 22 emotions described in the OCC model. We
take a computational approach, building not only a mathe-
matically sound model but also keeping in mind its imple-
mentability in a (multi-)agent system. Multi-agent aspects
of emotions, however, are not treated in this paper.

It should be noted that previous work on specilying and
implementing emotions carried out by Meyer (2004) and
Dastani (2006) follows OQatley & Jenkins' model of emo-
tions (Oatley & Jenkins 1996) and comprises only four emo-
tons: happy, sad, angry, and fearful. Emotions are repre-
sented as labels in an agent's cognitive state. Similar to our
approach, the deliberation of an agent causes the appraisal
of emotions that in turn influence the agent’s deliberation.
Dastani & Meyer (2006) have defined transition semantics
for their emotional model, which we also intend to do for
our formalization of OCC. However, we intend to formalize
the quantitative aspects of emotions as well, which were not
considered in the purely logical model of Dastani & Meyer.
Our work is also similar to other computational models of
emotions, such as EMA (Gratch & Marsella 2004), CogAfl
(Sloman 2001), and the work of Picard (1997). however,
our goal is not to develop a specific computational model
of emotions, but rather to develop a logic for studying emo-
tional models, starting with the OCC model.

Language and Semantics

The OCC model describes a hierarchy that classifies 22 emo-
tions. The hierarchy contains three branches, namely emo-
tions concerning aspects of objects (e.g., love and hate),
actions of agents (e.g., pride and admiration), and conse-
quences of events (e.g., joy and pity). Additionally, some
branches combine to form a group of compound emotions,
namely emotions concerning consequences of events caused
by actions of agents (e.g., gratitude and anger). Because
the objects of all these emotions (i.e. objects, actions, and
events) correspond to notions commonly used in agent mod-
els (i.e. agents, plans, and goal accomplishments, respec-
tively), this makes the OCC model suitable for use in the
deliberation and practical reasoning of artificial agents. It
should be emphasized that emotions are not used to describe
the entire cognitive state of an agent (as in “the agent is
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Abstract. In this paper, we provide a logical formalization of the emotion triggering process
and of its relationship with mental attitudes, as described in Ortony, Clore, and Collins’s the-
ory. We argue that modal logics are particularly adapted to represent ageats’ mental attitudes
and to reasoa about them, and use a specific modal logic that we call Logic of Emotions in
order to provide logical definitions of all but two of their 22 emotions. While these definitions
may be subject to debate, we show that they allow to reason about emotions and to draw
interesting conclusions from the theory.
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1. Introduction

There is a great amount of work concerning emotions in various dis-
ciplines such as philosophy (Gordon, 1987, Solomon and Calhoun, 1984),
economy (Elster, 1998, Loewenstein, 2000), neuroscience and psychology.
In neuroscience, experiments have highlighted that individuals who do
not feel emotions e.g. due to brain damage are unable to make ratio-
nal decisions (see (Damasio, 1994) for instance), refuting the common-
sensical assumption that emotions prevent agents from being rational.
Psychology provides elaborated theories of emotions ranging from their
classification (Ekman, 1992, Darwin, 1872) to their triggering conditions
(Lazarus, 1991, Ortony et al., 1988) and their impact on various cognitive
processes (Forgas, 1995).

Computer scientists investigate the expression and recognition of emotion
in order to design anthropomorphic systems that can interact with human
users in a multi-modal way. Such systems are justified by the various forms
of “anthropomorphic behavior’ that users ascribe to artifacts. This has lead to
an increasing interest in Affective Computing, with particular focus on em-
bodied agents (de Rosis et al., 2003), ambient intelligence (Bartneck, 2002),
intelligent agents (Steunebrink et al., 2007), efc. All these approaches gener-
ally aim at giving computers extended capacities for enhanced functionality
or more credibility. Intelligent embodied conversational agents (ECAs) use
a model of emotions both to simulate the user’s emotion and to show their
affective state and personality. Bates has argued for the importance of emo-

* © 2009 Kluwer Academic Publishers. Printed in the Netherlands.
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DCECy corresponds to a subset of English!

RLCNL: RAIR Lab Controlled Natural Language

K(ugv, now, holds(carrying(ugv,soldier),now))

B(ugv,now,B(commander,t;, =P (ugv, anytime, happens(firefight,anytime)))

K(I, now, O(I", now, mission(main), happens(action(1”, silence), alltime) ) )

Partial Implementation: http://naveensundarg.github.io/RLCNL/
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