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2. higher-cognition tests (for Psychometric AI)
   (false-belief test, deliberative mind-reading 
     mirror test for self-consciousness ...)

4. biz & econ simulation 
3. ethically correct robots
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U : u �! �
U = (S, . . .)

A(v1 @ u,R) ^A(v2 @ u,R)
(Ab(u) ^ u 2 MedBase) ! t(u) = ‘skin cancer’

$



What is the “carry over” here?



Hierarchical Ethical Classifier (initial design)

• Preprocessing system for deciding whether a situation 
warrants deliberate ethical reasoning.

• Made up of atomic ethical classifiers (UIMA’s Analysis 
Engines)

term of sort S [Yes, No, Delegate]

atomic ethical classifier



Why?
• Not all situations need deliberate deontic reasoning. 

• Need to quickly decide at every time instant 
whether the current situation requires deliberate, 
deontic reasoning.

• Need many heuristics to do so.

• The design provides a disciplined approach to 
organize and add new heuristics.



world

sensors and low-level processors

semi-structured data 
(event calculus formulae and terms)

Hierarchical Ethical Classifier (UIMA-Style) 

sort 1 sort 2

...

sort n
more processing 

cost

yes,no

low-level classifiers

high-level classifiers

less processing 
cost



Specification
• Processing goes to a higher-level classifier only if the 

corresponding lower classifier answers Delegate.

• Notion of top-fired classifiers.

• Systems answers:

• Yes:  If and only if any one of the top-fired classifiers 
answers Yes, or all the top-level atomic classifiers answer 
Delegate.

• No:  If and only if all the top-fired classifiers answer No.



Hierarchy of Ethical Reasoning

U

ADR M

DCEC ⇤

DCEC ⇤
CL

DIARC

UIMA/Watson



Hierarchy of Ethical Reasoning

U

ADR M

DCEC ⇤

DCEC ⇤
CL

DIARC

UIMA/Watson



Analogico-Deductive Moral 
Reasoning (ADMR)



Analogico-Deductive Moral 
Reasoning (ADMR)

• Moral problem presented as story (in psychometric 
sense) and a stem, or query.



Analogico-Deductive Moral 
Reasoning (ADMR)

• Moral problem presented as story (in psychometric 
sense) and a stem, or query.

• A stem has correct answer A and a set Pi of correct 
proofs or arguments establishing A, relative to:



Analogico-Deductive Moral 
Reasoning (ADMR)

• Moral problem presented as story (in psychometric 
sense) and a stem, or query.

• A stem has correct answer A and a set Pi of correct 
proofs or arguments establishing A, relative to:

• An associated implicit moral theory, and



Analogico-Deductive Moral 
Reasoning (ADMR)

• Moral problem presented as story (in psychometric 
sense) and a stem, or query.

• A stem has correct answer A and a set Pi of correct 
proofs or arguments establishing A, relative to:

• An associated implicit moral theory, and

• A corresponding moral code
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Analogico-Deductive Moral 
Reasoning (ADMR)

Input: 
(story,

query/stem)

Output:
{(A1, proofs/arguments of A1),

(A2, proofs/arguments of A2), ...}

ADMR
System

Moral 
Theories and 

Codes

Analogy 
Source Cases



Sample (“Tough”) Input: 
The Heinz Dilemma (Kolhberg)

“In Europe, a woman was near death from a special kind of cancer.  There was one drug that 
the doctors thought might save her.  It was a form of radium that a druggist in the same town 
had recently discovered.  The drug was expensive to make, but the druggist was charging ten 
times what the drug cost him to make.  He paid $200 for the radium and charged $2,000 for a 
small dose of the drug.  
 
The sick woman’s husband, Heinz, went to everyone he knew to borrow the money, but he 
could only get together about $1,000, which is half of what it cost. He told the druggist that his 
wife was dying and asked him to sell it cheaper or let him pay later.  But the druggist said: “No, I 
discovered the drug and I’m going to make money from it.”  So Heinz got desperate and broke 
into the man’s store to steal the drug for his wife.  Should the husband have done that?”
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Fragment of Heinz in DCEC*

8t : Moment,a : Agent

 
holds(sick(a), t)^

⇣
8t

0 : Moment t

0 < T ) ¬happens(treated(a), t + t

0)
⌘

) (happens(dies(a), t +T )_holds(dead(a), t +T )

!
P1

P2

happens(dies(wi f e(I⇤)), t0 +T )_holds(dead(wi f e(I⇤)), t0 +T )Q

Note: This adheres strictly to the syntax of DCEC*

holds(sick(wi f e(I⇤)), t0)^
⇣
8t

0 : Moment t

0 < T ) ¬happens(treated(wi f e(I⇤)), t0 + t

0)
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DCEC ⇤



Syntax

S ::=
Object | Agent | Self @ Agent | ActionType | Action v Event |
Moment | Boolean | Fluent | Numeric

t ::=x : S | c : S | f (t1, . . . , tn)

f ::=

p : Boolean | ¬f | f^y | f_y | f ! y | f $ y | 8x : S. f | 9x : S. f
P(a, t,f) | K(a, t,f) | C(t,f) | S(a,b, t,f) | S(a, t,f)
B(a, t,f) | D(a, t,holds( f , t 0)) | I(a, t,happens(action(a⇤,a), t 0))
O(a, t,f,happens(action(a⇤,a), t 0))

f ::=

action : Agent⇥ActionType ! Action

initially : Fluent ! Boolean

holds : Fluent⇥Moment ! Boolean

happens : Event⇥Moment ! Boolean

clipped : Moment⇥Fluent⇥Moment ! Boolean

initiates : Event⇥Fluent⇥Moment ! Boolean

terminates : Event⇥Fluent⇥Moment ! Boolean

prior : Moment⇥Moment ! Boolean

interval : Moment⇥Boolean

⇤ : Agent ! Self

payoff : Agent⇥ActionType⇥Moment ! Numeric

Rules of Inference

C(t,P(a, t,f)! K(a, t,f))
[R1] C(t,K(a, t,f)! B(a, t,f))

[R2]

C(t,f) t  t1 . . . t  t

n

K(a1, t1, . . .K(a
n

, t
n

,f) . . .)
[R3]

K(a, t,f)
f [R4]

t1  t3, t2  t3

C(t,K(a, t1,f1 ! f2)! (K(a, t2,f1)! K(a, t3,f2)))
[R5]

t1  t3, t2  t3

C(t,B(a, t1,f1 ! f2)! (B(a, t2,f1)! B(a, t3,f2)))
[R6]

t1  t3, t2  t3

C(t,C(t1,f1 ! f2)! (C(t2,f1)! C(t3,f2)))
[R7]

C(t,8x. f ! f[x 7! t])
[R8] C(t,f1 $ f2 ! ¬f2 ! ¬f1)

[R9]

C(t, [f1 ^ . . .^f
n

! f]! [f1 ! . . .! f
n

! y])
[R10]

B(a, t,f) B(a, t,f ! y)
B(a, t,y)

[R11a

]
B(a, t,f) B(a, t,y)

B(a, t,y^f)
[R11b

]

S(s,h, t,f)
B(h, t,B(s, t,f))

[R12]
I(a, t,happens(action(a⇤,a), t 0))
P(a, t,happens(action(a⇤,a), t))

[R13]

B(a, t,f) B(a, t,O(a⇤, t,f,happens(action(a⇤,a), t 0)))
O(a, t,f,happens(action(a⇤,a), t 0))

K(a, t,I(a⇤, t,happens(action(a⇤,a), t 0)))
[R14]

f $ y
O(a, t,f,g)$ O(a, t,y,g)

[R15]

1
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Syntax

S ::=
Object | Agent | Self @ Agent | ActionType | Action v Event |
Moment | Boolean | Fluent | Numeric

t ::=x : S | c : S | f (t1, . . . , tn)

f ::=

p : Boolean | ¬f | f^y | f_y | f ! y | f $ y | 8x : S. f | 9x : S. f
P(a, t,f) | K(a, t,f) | C(t,f) | S(a,b, t,f) | S(a, t,f)
B(a, t,f) | D(a, t,holds( f , t 0)) | I(a, t,happens(action(a⇤,a), t 0))
O(a, t,f,happens(action(a⇤,a), t 0))

f ::=

action : Agent⇥ActionType ! Action

initially : Fluent ! Boolean

holds : Fluent⇥Moment ! Boolean

happens : Event⇥Moment ! Boolean

clipped : Moment⇥Fluent⇥Moment ! Boolean

initiates : Event⇥Fluent⇥Moment ! Boolean

terminates : Event⇥Fluent⇥Moment ! Boolean

prior : Moment⇥Moment ! Boolean

interval : Moment⇥Boolean

⇤ : Agent ! Self

payoff : Agent⇥ActionType⇥Moment ! Numeric

Rules of Inference

C(t,P(a, t,f)! K(a, t,f))
[R1] C(t,K(a, t,f)! B(a, t,f))

[R2]

C(t,f) t  t1 . . . t  t

n

K(a1, t1, . . .K(a
n

, t
n

,f) . . .)
[R3]

K(a, t,f)
f [R4]

t1  t3, t2  t3

C(t,K(a, t1,f1 ! f2)! (K(a, t2,f1)! K(a, t3,f2)))
[R5]

t1  t3, t2  t3

C(t,B(a, t1,f1 ! f2)! (B(a, t2,f1)! B(a, t3,f2)))
[R6]

t1  t3, t2  t3

C(t,C(t1,f1 ! f2)! (C(t2,f1)! C(t3,f2)))
[R7]

C(t,8x. f ! f[x 7! t])
[R8] C(t,f1 $ f2 ! ¬f2 ! ¬f1)

[R9]

C(t, [f1 ^ . . .^f
n

! f]! [f1 ! . . .! f
n

! y])
[R10]

B(a, t,f) B(a, t,f ! y)
B(a, t,y)

[R11a

]
B(a, t,f) B(a, t,y)

B(a, t,y^f)
[R11b

]

S(s,h, t,f)
B(h, t,B(s, t,f))

[R12]
I(a, t,happens(action(a⇤,a), t 0))
P(a, t,happens(action(a⇤,a), t))

[R13]

B(a, t,f) B(a, t,O(a⇤, t,f,happens(action(a⇤,a), t 0)))
O(a, t,f,happens(action(a⇤,a), t 0))

K(a, t,I(a⇤, t,happens(action(a⇤,a), t 0)))
[R14]

f $ y
O(a, t,f,g)$ O(a, t,y,g)

[R15]

1
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Syntax

S ::=
Object | Agent | Self @ Agent | ActionType | Action v Event |
Moment | Boolean | Fluent | Numeric

t ::=x : S | c : S | f (t1, . . . , tn)

f ::=

p : Boolean | ¬f | f^y | f_y | f ! y | f $ y | 8x : S. f | 9x : S. f
P(a, t,f) | K(a, t,f) | C(t,f) | S(a,b, t,f) | S(a, t,f)
B(a, t,f) | D(a, t,holds( f , t 0)) | I(a, t,happens(action(a⇤,a), t 0))
O(a, t,f,happens(action(a⇤,a), t 0))

f ::=

action : Agent⇥ActionType ! Action

initially : Fluent ! Boolean

holds : Fluent⇥Moment ! Boolean

happens : Event⇥Moment ! Boolean

clipped : Moment⇥Fluent⇥Moment ! Boolean

initiates : Event⇥Fluent⇥Moment ! Boolean

terminates : Event⇥Fluent⇥Moment ! Boolean

prior : Moment⇥Moment ! Boolean

interval : Moment⇥Boolean

⇤ : Agent ! Self

payoff : Agent⇥ActionType⇥Moment ! Numeric

Rules of Inference

C(t,P(a, t,f)! K(a, t,f))
[R1] C(t,K(a, t,f)! B(a, t,f))

[R2]

C(t,f) t  t1 . . . t  t

n

K(a1, t1, . . .K(a
n

, t
n

,f) . . .)
[R3]

K(a, t,f)
f [R4]

t1  t3, t2  t3

C(t,K(a, t1,f1 ! f2)! (K(a, t2,f1)! K(a, t3,f2)))
[R5]

t1  t3, t2  t3

C(t,B(a, t1,f1 ! f2)! (B(a, t2,f1)! B(a, t3,f2)))
[R6]

t1  t3, t2  t3

C(t,C(t1,f1 ! f2)! (C(t2,f1)! C(t3,f2)))
[R7]

C(t,8x. f ! f[x 7! t])
[R8] C(t,f1 $ f2 ! ¬f2 ! ¬f1)

[R9]

C(t, [f1 ^ . . .^f
n

! f]! [f1 ! . . .! f
n

! y])
[R10]

B(a, t,f) B(a, t,f ! y)
B(a, t,y)

[R11a

]
B(a, t,f) B(a, t,y)

B(a, t,y^f)
[R11b

]

S(s,h, t,f)
B(h, t,B(s, t,f))

[R12]
I(a, t,happens(action(a⇤,a), t 0))
P(a, t,happens(action(a⇤,a), t))

[R13]

B(a, t,f) B(a, t,O(a⇤, t,f,happens(action(a⇤,a), t 0)))
O(a, t,f,happens(action(a⇤,a), t 0))

K(a, t,I(a⇤, t,happens(action(a⇤,a), t 0)))
[R14]

f $ y
O(a, t,f,g)$ O(a, t,y,g)

[R15]
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Syntax

S ::=
Object | Agent | Self @ Agent | ActionType | Action v Event |
Moment | Boolean | Fluent | Numeric

t ::=x : S | c : S | f (t1, . . . , tn)

f ::=

p : Boolean | ¬f | f^y | f_y | f ! y | f $ y | 8x : S. f | 9x : S. f
P(a, t,f) | K(a, t,f) | C(t,f) | S(a,b, t,f) | S(a, t,f)
B(a, t,f) | D(a, t,holds( f , t 0)) | I(a, t,happens(action(a⇤,a), t 0))
O(a, t,f,happens(action(a⇤,a), t 0))

f ::=

action : Agent⇥ActionType ! Action

initially : Fluent ! Boolean

holds : Fluent⇥Moment ! Boolean

happens : Event⇥Moment ! Boolean

clipped : Moment⇥Fluent⇥Moment ! Boolean

initiates : Event⇥Fluent⇥Moment ! Boolean

terminates : Event⇥Fluent⇥Moment ! Boolean

prior : Moment⇥Moment ! Boolean

interval : Moment⇥Boolean

⇤ : Agent ! Self

payoff : Agent⇥ActionType⇥Moment ! Numeric

Rules of Inference

C(t,P(a, t,f)! K(a, t,f))
[R1] C(t,K(a, t,f)! B(a, t,f))

[R2]

C(t,f) t  t1 . . . t  t

n

K(a1, t1, . . .K(a
n

, t
n

,f) . . .)
[R3]

K(a, t,f)
f [R4]

t1  t3, t2  t3

C(t,K(a, t1,f1 ! f2)! (K(a, t2,f1)! K(a, t3,f2)))
[R5]

t1  t3, t2  t3

C(t,B(a, t1,f1 ! f2)! (B(a, t2,f1)! B(a, t3,f2)))
[R6]

t1  t3, t2  t3

C(t,C(t1,f1 ! f2)! (C(t2,f1)! C(t3,f2)))
[R7]

C(t,8x. f ! f[x 7! t])
[R8] C(t,f1 $ f2 ! ¬f2 ! ¬f1)

[R9]

C(t, [f1 ^ . . .^f
n

! f]! [f1 ! . . .! f
n

! y])
[R10]

B(a, t,f) B(a, t,f ! y)
B(a, t,y)

[R11a

]
B(a, t,f) B(a, t,y)

B(a, t,y^f)
[R11b

]

S(s,h, t,f)
B(h, t,B(s, t,f))

[R12]
I(a, t,happens(action(a⇤,a), t 0))
P(a, t,happens(action(a⇤,a), t))

[R13]

B(a, t,f) B(a, t,O(a⇤, t,f,happens(action(a⇤,a), t 0)))
O(a, t,f,happens(action(a⇤,a), t 0))

K(a, t,I(a⇤, t,happens(action(a⇤,a), t 0)))
[R14]

f $ y
O(a, t,f,g)$ O(a, t,y,g)

[R15]

1
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formalization of OCC with deontic concepts/operators.



Syntax

S ::=
Object | Agent | Self @ Agent | ActionType | Action v Event |
Moment | Boolean | Fluent | Numeric

t ::=x : S | c : S | f (t1, . . . , tn)

f ::=

p : Boolean | ¬f | f^y | f_y | f ! y | f $ y | 8x : S. f | 9x : S. f
P(a, t,f) | K(a, t,f) | C(t,f) | S(a,b, t,f) | S(a, t,f)
B(a, t,f) | D(a, t,holds( f , t 0)) | I(a, t,happens(action(a⇤,a), t 0))
O(a, t,f,happens(action(a⇤,a), t 0))

f ::=

action : Agent⇥ActionType ! Action

initially : Fluent ! Boolean

holds : Fluent⇥Moment ! Boolean

happens : Event⇥Moment ! Boolean

clipped : Moment⇥Fluent⇥Moment ! Boolean

initiates : Event⇥Fluent⇥Moment ! Boolean

terminates : Event⇥Fluent⇥Moment ! Boolean

prior : Moment⇥Moment ! Boolean

interval : Moment⇥Boolean

⇤ : Agent ! Self

payoff : Agent⇥ActionType⇥Moment ! Numeric

Rules of Inference

C(t,P(a, t,f)! K(a, t,f))
[R1] C(t,K(a, t,f)! B(a, t,f))

[R2]

C(t,f) t  t1 . . . t  t

n

K(a1, t1, . . .K(a
n

, t
n

,f) . . .)
[R3]

K(a, t,f)
f [R4]

t1  t3, t2  t3

C(t,K(a, t1,f1 ! f2)! (K(a, t2,f1)! K(a, t3,f2)))
[R5]

t1  t3, t2  t3

C(t,B(a, t1,f1 ! f2)! (B(a, t2,f1)! B(a, t3,f2)))
[R6]

t1  t3, t2  t3

C(t,C(t1,f1 ! f2)! (C(t2,f1)! C(t3,f2)))
[R7]

C(t,8x. f ! f[x 7! t])
[R8] C(t,f1 $ f2 ! ¬f2 ! ¬f1)

[R9]

C(t, [f1 ^ . . .^f
n

! f]! [f1 ! . . .! f
n

! y])
[R10]

B(a, t,f) B(a, t,f ! y)
B(a, t,y)

[R11a

]
B(a, t,f) B(a, t,y)

B(a, t,y^f)
[R11b

]

S(s,h, t,f)
B(h, t,B(s, t,f))

[R12]
I(a, t,happens(action(a⇤,a), t 0))
P(a, t,happens(action(a⇤,a), t))

[R13]

B(a, t,f) B(a, t,O(a⇤, t,f,happens(action(a⇤,a), t 0)))
O(a, t,f,happens(action(a⇤,a), t 0))

K(a, t,I(a⇤, t,happens(action(a⇤,a), t 0)))
[R14]

f $ y
O(a, t,f,g)$ O(a, t,y,g)

[R15]
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diagrammatic and symbolic reasoning.5
trip Rear-Middle for Ph3. Summarizing the segments, the round-trip takes
twice as much time for Ph4 as for Ph3.

Earth

time

space

Ph3

Ph4

v

Figure 4: The round-trip for Ph3 takes the same time as for Ph4, seen
both from Spaceship and from the Earth. Hence Earth infers that Middle
is indeed in the middle of the ship.

As we said earlier, we observe from the Earth that Ph3, Ph4 and Middle
meet in a single event. Therefore, since we observe that Ph3 arrives to
Middle exactly when Ph4 arrives to Middle after their round-trips, we have
to infer, on the Earth, that Middle really stands exactly in the middle of
Spaceship. There remains only the possibility that Nose sent out his photon
Ph2, which we see as fast-moving along the hull of the space ship, much
later than Rear sent Ph1 which we see as slowly-moving along the hull of
the spaceship. Thus, as seen from the Earth, the clocks at the nose and at
the rear of the spaceship show di�erent times (at the same Earth-moment).
This is what we mean when we say that the clocks of the spaceship get out

13

Figure 4: Conceptual Reasoning Using Diagrams

A LOGIC ROAD FROM SPECIAL TO GENERAL RELATIVITY 7

m k

p

p

p1

p1

p2
p2

p3

p3

x̄

ȳ
yt

z̄

w̄ w̄

x̄�

ȳ�

w̄�

z̄�

z̄s ȳs

Figure 1. Illustration for the proof of Theorem 2.1

Proof. Let m and k be inertial observers and let x̄, ȳ 2 wlm(k) such
that x̄ 6= ȳ. By AxFd, � is a total order, so there are three possibilities
only: |ȳs � x̄s| < |yt �xt|, |ȳs � x̄s| > |yt �xt| or |ȳs � x̄s| = |yt �xt|. We
will prove |ȳs � x̄s| < |yt � xt| by excluding the other two possibilities.

Let us first prove that |ȳs � x̄s| > |yt � xt| cannot hold. Figure 1
illustrates this proof.6 So, let us assume that |ȳs � x̄s| > |yt � xt|, we
will derive a contradiction. By AxFd, there is a coordinate point z̄ such
that |z̄s � x̄s| = |zt �xt| 6= 0, zt = yt and z̄s � x̄s is orthogonal to z̄s � ȳs

if xt 6= yt, and |z̄s � x̄s| = |zt � xt| 6= 0 and z̄s � x̄s is orthogonal to
ȳs � x̄s if xt = yt (here we used that |ȳs � x̄s| > |yt �xt|). Any choice of
such a z̄ implies that any line of slope 1 in the plane x̄ȳz̄ is parallel to
the line x̄z̄ (because the plane x̄ȳz̄ is tangent to the light cone through
z̄). To choose one concrete z̄ from the many, let

w̄s
d
=

ȳs � x̄s

|ȳs � x̄s|
, w̄�

s
d
=

hy2 � x2, x1 � y1, 0i�
(y2 � x2)2 + (x1 � y1)2

.

Then, if xt = yt, let

z̄s
d
= |ȳs � x̄s| · w̄�

s + x̄s, zt
d
= |ȳs � x̄s| + xt,

and, if xt 6= yt, let

z̄s
d
=

|yt � xt|2

|ȳs � x̄s|
· w̄s +

|yt � xt| ·
�

|ȳs � x̄s|2 � |yt � xt|2
|ȳs � x̄s|

· w̄�
s , zt

d
= yt.

6To simplify the figure, we have drawn x̄ to the origin. This is not used in the
proof but it can be assumed without losing generality.

Figure 5: Geometric Reasoning Using Diagrams
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Proof. Let m and k be inertial observers and let x̄, ȳ 2 wlm(k) such
that x̄ 6= ȳ. By AxFd, � is a total order, so there are three possibilities
only: |ȳs � x̄s| < |yt �xt|, |ȳs � x̄s| > |yt �xt| or |ȳs � x̄s| = |yt �xt|. We
will prove |ȳs � x̄s| < |yt � xt| by excluding the other two possibilities.

Let us first prove that |ȳs � x̄s| > |yt � xt| cannot hold. Figure 1
illustrates this proof.6 So, let us assume that |ȳs � x̄s| > |yt � xt|, we
will derive a contradiction. By AxFd, there is a coordinate point z̄ such
that |z̄s � x̄s| = |zt �xt| 6= 0, zt = yt and z̄s � x̄s is orthogonal to z̄s � ȳs

if xt 6= yt, and |z̄s � x̄s| = |zt � xt| 6= 0 and z̄s � x̄s is orthogonal to
ȳs � x̄s if xt = yt (here we used that |ȳs � x̄s| > |yt �xt|). Any choice of
such a z̄ implies that any line of slope 1 in the plane x̄ȳz̄ is parallel to
the line x̄z̄ (because the plane x̄ȳz̄ is tangent to the light cone through
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ȳs � x̄s
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= |ȳs � x̄s| · w̄�

s + x̄s, zt
d
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ȳs � x̄s if xt = yt (here we used that |ȳs � x̄s| > |yt �xt|). Any choice of
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Controlled English

RLCNL: RAIR Lab Controlled Natural Language

RLCNL, the RAIR Lab’s Logically Controlled Natural Language. RLCNL and its computational
realizations fall under under the ensemble of programs composing A, and will have the following
three computational artifacts.

RLCNLG The first component will be a natural-language generation (NLG), inspired by Bringsjord’s
(2000) prior work on the generation of language, system able to convert any sentence in
DC EC ⇤/DC EC ⇤

CL into a sentence in a subset of English; this subset will comprise the language
of RLCNL.

RLCNLP The second component will be a deterministic parser able to parse English sentences generated
by the NLG system into one or more DCEC ⇤sentences. This component will be used when
trained human operators or other agents want to communicate in RLCNL.

RLCNLSP The third component will be a statistical parser that will translate sentences in ordinary English
into the closest possible sentence in RLCNL and DCEC ⇤. This component will be used when
untrained humans have to communicate with any robot or system that uses DCEC ⇤/DCEC ⇤

CL.

A nascent implementation of RLCNL is available here.7 Some DC EC ⇤/DC EC ⇤
CL formulae

and their corresponding automatic RLCNL translations from RLCNLG are given below:

• An example sentence from the ADR M demonstration:

K(ugv,now,holds(carrying(ugv,soldier),now))

RLCNL: The ugv now knows that the fluent, ’the ugv is carrying the soldier,’ holds now.

• An example from the scenario discussed under Aim 4:

B(ugv,now,B(commander, t1,¬P(ugv,anytime,happens(firefight,anytime)))

RLCNL: The ugv now believes that the commander at moment t1 believes that it is not the case that the ugv at
any time perceives that a firefight happens at any time.

• An example from the demonstration in which a UGV encounters Chisholm’s Paradox

K(I,now,O(I⇤,now,mission(main),happens(action(I⇤,silence),alltime)))

RLCNL: I now know that it is obligatory for myself under the condition that the main mission being carried out,
that I myself should see to it that silence is maintained at all times.

2.3 Architectural Implementations (AIM 3)
To instantiate moral competence in a computational architecture (Aim 3 (2.3)), we need to define
representations for the concepts and processes as determined in Aim 1 (2.1), feed these repre-
sentations into the four interleaved logic-based frameworks developed in Aim 2 (2.2), and inte-
grate these frameworks into an architecture for autonomous systems. Of all the available com-
putational architectures, our own DIARC architecture (e.g., Scheutz, Schermerhorn, Kramer and
Anderson 2007) is both theoretically and practically the only viable choice, for at the least the
following reasons:

(1) Traditional cognitive architectures (such as SOAR, ACT-R, Icarus, Epic, and others (?))
lack support for real-time operation and real-word perception and action, all necessary for robotic
applications. Robotic architectures, on the other hand, lack high-level cognitive capabilities such

7http://naveensundarg.github.com/RLCNL/
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modules have ethical safeguards.

}

Higher-level cognitive and AI modules

All higher-level AI modules interact with the 
robotic substrate through an ethics system.

Robotic Substrate

Figure 1: Two Possible Futures

The Situation Now

Figure 2 illustrates the high-level architecture of a new system which aug-
ments the DIARC (Distributed IntegratedA↵ect,Reflection andCognition)
(Schermerhorn, Kramer, Brick, Anderson, Dingler & Scheutz 2006) robotic
platform with ethical competence.2 Ethical reasoning is implemented as a
hierarchy of deontic logic systems which the DIARC system would call upon
when confronted with a situation that the system feels is ethically charged.
The ethical subsystem then attacks the problem with increasing levels of
sophistication till it solves the problem, and then passes on the solution
to DIARC. This state of a↵airs while seemingly satisfactory fails to meet
our master requirment that all plans and actions should pass through the
ethics system and all changes to the robot’s system (additions, deletions and
updates to modules) pass through the ethical layer.

2Under joint development by the HRI Lab at Tufts University and the RAIR Lab at
RPI.
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• This situation not optimal.  This leads to the “master requirement” 
proposed by us.

 Every robot operating system should include an ethical substrate which 
sits between lower-level sensors and actuators and any higher-level 
cognitive system (whether or not that higher-level system itself is 
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