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Logic can save us, but it’s 
not quite as easy as this to 
use logic to save the day …



Logic Thwarts Landru!

First Suspicion That It’s a Mere Computer Running the Show



Logic Thwarts Landru!

Landru is Indeed Merely a Computer 
(the real Landru having done the programming)



Logic Thwarts Landru!

Landru Kills Himself Because Kirk/Spock Argue He Has Violated 
the Prime Directive for Good by Denying Creativity to Others



Logic Thwarts Nomad!
(with the Liar Paradox)
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Syntax

S ::=
Object | Agent | Self @ Agent | ActionType | Action v Event |

Moment | Boolean | Fluent | Numeric

f ::=

action : Agent⇥ActionType ! Action

initially : Fluent ! Boolean

holds : Fluent⇥Moment ! Boolean

happens : Event⇥Moment ! Boolean

clipped : Moment⇥Fluent⇥Moment ! Boolean

initiates : Event⇥Fluent⇥Moment ! Boolean

terminates : Event⇥Fluent⇥Moment ! Boolean

prior : Moment⇥Moment ! Boolean

interval : Moment⇥Boolean

⇤ : Agent ! Self

payoff : Agent⇥ActionType⇥Moment ! Numeric

t ::= x : S | c : S | f (t1 , . . . , tn)

f ::=

t : Boolean | ¬f | f^y | f_y |

P(a, t,f) | K(a, t,f) | C(t,f) | S(a,b, t,f) | S(a, t,f)

B(a, t,f) | D(a, t,holds( f , t0)) | I(a, t,happens(action(a⇤ ,a), t0))

O(a, t,f,happens(action(a⇤ ,a), t0))

Rules of Inference

C(t,P(a, t,f)! K(a, t,f))
[R1 ] C(t,K(a, t,f)! B(a, t,f))

[R2 ]

C(t,f) t  t1 . . . t  t

n

K(a1 , t1 , . . .K(a
n

, t
n

,f) . . .)
[R3 ]

K(a, t,f)

f
[R4 ]

C(t,K(a, t1 ,f1 ! f2))! K(a, t2 ,f1)! K(a, t3 ,f2)
[R5 ]

C(t,B(a, t1 ,f1 ! f2))! B(a, t2 ,f1)! B(a, t3 ,f2)
[R6 ]

C(t,C(t1 ,f1 ! f2))! C(t2 ,f1)! C(t3 ,f2)
[R7 ]

C(t,8x. f ! f[x 7! t])
[R8 ] C(t,f1 $ f2 ! ¬f2 ! ¬f1)

[R9 ]

C(t, [f1 ^ . . .^f
n

! f]! [f1 ! . . .! f
n

! y])
[R10 ]

B(a, t,f) f ! y

B(a, t,y)
[R11a

]
B(a, t,f) B(a, t,y)

B(a, t,y^f)
[R11b

]

S(s,h, t,f)

B(h, t,B(s, t,f))
[R12 ]

I(a, t,happens(action(a⇤ ,a), t0))

P(a, t,happens(action(a⇤ ,a), t))
[R13 ]

B(a, t,f) B(a, t,O(a⇤ , t,f,happens(action(a⇤ ,a), t0)))

O(a, t,f,happens(action(a⇤ ,a), t0))

K(a, t,I(a⇤ , t,happens(action(a⇤ ,a), t0)))
[R14 ]

f $ y

O(a, t,f,g)$ O(a, t,y,g)
[R15 ]

1

3

always position some particular work he and likeminded collaborators
are undertaking within a view of logic that allows a particular
logical system to be positioned relative to three dimensions, which
correspond to the three arrows shown in Figure 2. We have positioned
DCEC ⇤within Figure 2; it’s location is indicated by the black dot
therein, which the reader will note is quite far down the dimension
of increasing expressivity that ranges from expressive extensional
logics (e.g., FOL and SOL), to logics with intensional operators for
knowledge, belief, and obligation (so-called philosophical logics; for
an overview, see Goble 2001). Intensional operators like these are
first-class elements of the language for DCEC ⇤. This language is
shown in Figure 1.

Syntax

S ::=
Object | Agent | Self � Agent | ActionType | Action � Event |

Moment | Boolean | Fluent | Numeric

f ::=

action : Agent⇥ActionType ! Action

initially : Fluent ! Boolean

holds : Fluent⇥Moment ! Boolean

happens : Event⇥Moment ! Boolean

clipped : Moment⇥Fluent⇥Moment ! Boolean

initiates : Event⇥Fluent⇥Moment ! Boolean

terminates : Event⇥Fluent⇥Moment ! Boolean

prior : Moment⇥Moment ! Boolean

interval : Moment⇥Boolean

⇤ : Agent ! Self

payoff : Agent⇥ActionType⇥Moment ! Numeric

t ::= x : S | c : S | f (t1 , . . . , tn)

f ::=

t : Boolean | ¬f | f^� | f�� | 8x : S. f | �x : S. f

P(a, t,f) | K(a, t,f) | C(t,f) | S(a,b, t,f) | S(a, t,f)

B(a, t,f) | D(a, t,holds( f , t�)) | I(a, t,happens(action(a⇤ ,a), t�))

O(a, t,f,happens(action(a⇤ ,a), t�))

Rules of Inference

C(t,P(a, t,f) ! K(a, t,f))
[R1 ]

C(t,K(a, t,f) ! B(a, t,f))
[R2 ]

C(t,f) t  t1 . . . t  tn

K(a1 , t1 , . . .K(an , tn ,f) . . .)
[R3 ]

K(a, t,f)

f
[R4 ]

C(t,K(a, t1 ,f1 ! f2) ! K(a, t2 ,f1) ! K(a, t3 ,f3))
[R5 ]

C(t,B(a, t1 ,f1 ! f2) ! B(a, t2 ,f1) ! B(a, t3 ,f3))
[R6 ]

C(t,C(t1 ,f1 ! f2) ! C(t2 ,f1) ! C(t3 ,f3))
[R7 ]

C(t,8x. f ! f[x �! t])
[R8 ]

C(t,f1 � f2 ! ¬f2 ! ¬f1)
[R9 ]

C(t, [f1 ^ . . .^fn ! f] ! [f1 ! . . . ! fn ! �])
[R10 ]

B(a, t,f) B(a, t,f ! �)

B(a, t,�)
[R11a ]

B(a, t,f) B(a, t,�)

B(a, t,�^f)
[R11b ]

S(s,h, t,f)

B(h, t,B(s, t,f))
[R12 ]

I(a, t,happens(action(a⇤ ,a), t�))

P(a, t,happens(action(a⇤ ,a), t))
[R13 ]

B(a, t,f) B(a, t,O(a⇤ , t,f,happens(action(a⇤ ,a), t�)))

O(a, t,f,happens(action(a⇤ ,a), t�))

K(a, t,I(a⇤ , t,happens(action(a⇤ ,a), t�)))
[R14 ]

f � �

O(a, t,f,�) � O(a, t,�,�)
[R15 ]

1

Fig. 1. DCEC ⇤Syntax and Rules of Inference

Fig. 2. Locating DCEC ⇤in “Three-Ray” Leibnizian Universe

The final layer in our hierarchy is built upon an even more expres-
sive logic: DC EC ⇤

CL. The subscript here indicates that distinctive
elements of the branch of logic known as conditional logic are

U

ADR M

DCEC ⇤

DCEC ⇤
CL

Moral/Ethical Stack

Robotic Stack

Fig. 3. Pictorial Overview of the Situation Now The first layer, U, is, as
said in the main text, inspired by UIMA; the second layer is based on what
we call analogico-deductive reasoning for ethics; the third on the “deontic
cognitive event calculus” with a indirect indexical; and the fourth like the
third except that the logic in question includes aspects of conditional logic.
(Robot schematic from Aldebaran Robotics’ user manual for Nao. The RAIR
Lab has a number of Aldebaran’s impressive Nao robots.)

included.8 Without these elements, the only form of a conditional
used in our hierarchy is the material conditional; but the material
conditional is notoriously inexpressive, as it cannot represent coun-
terfactuals like:

If the robot had been more empathetic, Officer Smith would have thrived.

While elaborating on this architecture or any of the four layers
is beyond the scope of the paper, we do note that DCEC ⇤(and a
fortiori DCEC ⇤

CL) has facilities for representing and reasoning over
modalities and self-referential statements that no other computational
logic enjoys; see (Bringsjord & Govindarajulu 2013) for a more in-
depth treatment.

B. Augustinian Definition, Formal Version
We view a robot abstractly as a robotic substrate rs on which we
can install modules {m1,m2, . . . ,mn}. The robotic substrate rs would
form an immutable part of the robot and could neither be removed
nor modified. We can think of rs as akin to an “operating system”
for the robot. Modules correspond to functionality that can be added
to robots or removed from them. Associated with each module mi
is a knowledge-base KBmi that represents the module. The substrate
also has an associated knowledge-base KBrs. Perhaps surprisingly,
we don’t stipulate that the modules are logic-based; the modules
could internally be implemented using computational formalisms (e.g.
neural networks, statistical AI) that at the surface level seem far away
from formal logic. No matter what the underlying implementation of
a module is, if we so wished we could always talk about modules
in formal-logic terms.9 This abstract view lets us model robots that

8Though written rather long ago, (Nute 1984) is still a wonderful intro-
duction to the sub-field in formal logic of conditional logic. In the final
analysis, sophisticated moral reasoning can only be accurately modeled for
formal logics that include conditionals much more expressive and nuanced
than the material conditional. (Reliance on conditional branching in standar
programming languages is nothing more than reliance upon the material
conditional.) For example, even the well-known trolley-problem cases (in
which, to save multiple lives, one can either redirect a train, killing one
person in the process, or directly stop the train by throwing someone in front
of it), which are not exactly complicated formally speaking, require, when
analyzed informally but systematically, as indicated e.g. by Mikhail (2011),
counterfactuals.

9This stems from the fact that theorem proving in just first-order logic is
enough to simulate any Turing-level computation; see e.g. (Boolos, Burgess
& Jeffrey 2007, Chapter 11).
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happens : Event⇥Moment ! Boolean

clipped : Moment⇥Fluent⇥Moment ! Boolean

initiates : Event⇥Fluent⇥Moment ! Boolean

terminates : Event⇥Fluent⇥Moment ! Boolean

prior : Moment⇥Moment ! Boolean

interval : Moment⇥Boolean

⇤ : Agent ! Self

payoff : Agent⇥ActionType⇥Moment ! Numeric

t ::= x : S | c : S | f (t1 , . . . , tn)

f ::=

t : Boolean | ¬f | f^� | f�� | 8x : S. f | �x : S. f

P(a, t,f) | K(a, t,f) | C(t,f) | S(a,b, t,f) | S(a, t,f)

B(a, t,f) | D(a, t,holds( f , t�)) | I(a, t,happens(action(a⇤ ,a), t�))

O(a, t,f,happens(action(a⇤ ,a), t�))

Rules of Inference

C(t,P(a, t,f) ! K(a, t,f))
[R1 ]

C(t,K(a, t,f) ! B(a, t,f))
[R2 ]

C(t,f) t  t1 . . . t  tn

K(a1 , t1 , . . .K(an , tn ,f) . . .)
[R3 ]

K(a, t,f)

f
[R4 ]
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[R6 ]

C(t,C(t1 ,f1 ! f2) ! C(t2 ,f1) ! C(t3 ,f3))
[R7 ]

C(t,8x. f ! f[x �! t])
[R8 ]

C(t,f1 � f2 ! ¬f2 ! ¬f1)
[R9 ]

C(t, [f1 ^ . . .^fn ! f] ! [f1 ! . . . ! fn ! �])
[R10 ]

B(a, t,f) B(a, t,f ! �)

B(a, t,�)
[R11a ]

B(a, t,f) B(a, t,�)

B(a, t,�^f)
[R11b ]

S(s,h, t,f)

B(h, t,B(s, t,f))
[R12 ]

I(a, t,happens(action(a⇤ ,a), t�))

P(a, t,happens(action(a⇤ ,a), t))
[R13 ]

B(a, t,f) B(a, t,O(a⇤ , t,f,happens(action(a⇤ ,a), t�)))

O(a, t,f,happens(action(a⇤ ,a), t�))

K(a, t,I(a⇤ , t,happens(action(a⇤ ,a), t�)))
[R14 ]

f � �

O(a, t,f,�) � O(a, t,�,�)
[R15 ]
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Fig. 1. DCEC ⇤Syntax and Rules of Inference

Fig. 2. Locating DCEC ⇤in “Three-Ray” Leibnizian Universe

The final layer in our hierarchy is built upon an even more expres-
sive logic: DC EC ⇤

CL. The subscript here indicates that distinctive
elements of the branch of logic known as conditional logic are

U

ADR M

DCEC ⇤

DCEC ⇤
CL

Moral/Ethical Stack

Robotic Stack

Fig. 3. Pictorial Overview of the Situation Now The first layer, U, is, as
said in the main text, inspired by UIMA; the second layer is based on what
we call analogico-deductive reasoning for ethics; the third on the “deontic
cognitive event calculus” with a indirect indexical; and the fourth like the
third except that the logic in question includes aspects of conditional logic.
(Robot schematic from Aldebaran Robotics’ user manual for Nao. The RAIR
Lab has a number of Aldebaran’s impressive Nao robots.)

included.8 Without these elements, the only form of a conditional
used in our hierarchy is the material conditional; but the material
conditional is notoriously inexpressive, as it cannot represent coun-
terfactuals like:

If the robot had been more empathetic, Officer Smith would have thrived.

While elaborating on this architecture or any of the four layers
is beyond the scope of the paper, we do note that DCEC ⇤(and a
fortiori DCEC ⇤

CL) has facilities for representing and reasoning over
modalities and self-referential statements that no other computational
logic enjoys; see (Bringsjord & Govindarajulu 2013) for a more in-
depth treatment.

B. Augustinian Definition, Formal Version
We view a robot abstractly as a robotic substrate rs on which we
can install modules {m1,m2, . . . ,mn}. The robotic substrate rs would
form an immutable part of the robot and could neither be removed
nor modified. We can think of rs as akin to an “operating system”
for the robot. Modules correspond to functionality that can be added
to robots or removed from them. Associated with each module mi
is a knowledge-base KBmi that represents the module. The substrate
also has an associated knowledge-base KBrs. Perhaps surprisingly,
we don’t stipulate that the modules are logic-based; the modules
could internally be implemented using computational formalisms (e.g.
neural networks, statistical AI) that at the surface level seem far away
from formal logic. No matter what the underlying implementation of
a module is, if we so wished we could always talk about modules
in formal-logic terms.9 This abstract view lets us model robots that

8Though written rather long ago, (Nute 1984) is still a wonderful intro-
duction to the sub-field in formal logic of conditional logic. In the final
analysis, sophisticated moral reasoning can only be accurately modeled for
formal logics that include conditionals much more expressive and nuanced
than the material conditional. (Reliance on conditional branching in standar
programming languages is nothing more than reliance upon the material
conditional.) For example, even the well-known trolley-problem cases (in
which, to save multiple lives, one can either redirect a train, killing one
person in the process, or directly stop the train by throwing someone in front
of it), which are not exactly complicated formally speaking, require, when
analyzed informally but systematically, as indicated e.g. by Mikhail (2011),
counterfactuals.

9This stems from the fact that theorem proving in just first-order logic is
enough to simulate any Turing-level computation; see e.g. (Boolos, Burgess
& Jeffrey 2007, Chapter 11).
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Syntax

S ::=
Object | Agent | Self @ Agent | ActionType | Action v Event |

Moment | Boolean | Fluent | Numeric

f ::=

action : Agent⇥ActionType ! Action

initially : Fluent ! Boolean

holds : Fluent⇥Moment ! Boolean

happens : Event⇥Moment ! Boolean

clipped : Moment⇥Fluent⇥Moment ! Boolean

initiates : Event⇥Fluent⇥Moment ! Boolean

terminates : Event⇥Fluent⇥Moment ! Boolean

prior : Moment⇥Moment ! Boolean

interval : Moment⇥Boolean

⇤ : Agent ! Self

payoff : Agent⇥ActionType⇥Moment ! Numeric

t ::= x : S | c : S | f (t1 , . . . , tn)

f ::=

t : Boolean | ¬f | f^y | f_y |

P(a, t,f) | K(a, t,f) | C(t,f) | S(a,b, t,f) | S(a, t,f)

B(a, t,f) | D(a, t,holds( f , t0)) | I(a, t,happens(action(a⇤ ,a), t0))

O(a, t,f,happens(action(a⇤ ,a), t0))

Rules of Inference

C(t,P(a, t,f)! K(a, t,f))
[R1 ] C(t,K(a, t,f)! B(a, t,f))

[R2 ]

C(t,f) t  t1 . . . t  t

n

K(a1 , t1 , . . .K(a
n

, t
n

,f) . . .)
[R3 ]

K(a, t,f)

f
[R4 ]

C(t,K(a, t1 ,f1 ! f2))! K(a, t2 ,f1)! K(a, t3 ,f2)
[R5 ]

C(t,B(a, t1 ,f1 ! f2))! B(a, t2 ,f1)! B(a, t3 ,f2)
[R6 ]

C(t,C(t1 ,f1 ! f2))! C(t2 ,f1)! C(t3 ,f2)
[R7 ]

C(t,8x. f ! f[x 7! t])
[R8 ] C(t,f1 $ f2 ! ¬f2 ! ¬f1)

[R9 ]

C(t, [f1 ^ . . .^f
n

! f]! [f1 ! . . .! f
n

! y])
[R10 ]

B(a, t,f) f ! y

B(a, t,y)
[R11a

]
B(a, t,f) B(a, t,y)

B(a, t,y^f)
[R11b

]

S(s,h, t,f)

B(h, t,B(s, t,f))
[R12 ]

I(a, t,happens(action(a⇤ ,a), t0))

P(a, t,happens(action(a⇤ ,a), t))
[R13 ]

B(a, t,f) B(a, t,O(a⇤ , t,f,happens(action(a⇤ ,a), t0)))

O(a, t,f,happens(action(a⇤ ,a), t0))

K(a, t,I(a⇤ , t,happens(action(a⇤ ,a), t0)))
[R14 ]

f $ y

O(a, t,f,g)$ O(a, t,y,g)
[R15 ]
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always position some particular work he and likeminded collaborators
are undertaking within a view of logic that allows a particular
logical system to be positioned relative to three dimensions, which
correspond to the three arrows shown in Figure 2. We have positioned
DCEC ⇤within Figure 2; it’s location is indicated by the black dot
therein, which the reader will note is quite far down the dimension
of increasing expressivity that ranges from expressive extensional
logics (e.g., FOL and SOL), to logics with intensional operators for
knowledge, belief, and obligation (so-called philosophical logics; for
an overview, see Goble 2001). Intensional operators like these are
first-class elements of the language for DCEC ⇤. This language is
shown in Figure 1.
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P(a, t,f) | K(a, t,f) | C(t,f) | S(a,b, t,f) | S(a, t,f)

B(a, t,f) | D(a, t,holds( f , t�)) | I(a, t,happens(action(a⇤ ,a), t�))
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[R2 ]
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C(t,f1 � f2 ! ¬f2 ! ¬f1)
[R9 ]
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The final layer in our hierarchy is built upon an even more expres-
sive logic: DC EC ⇤

CL. The subscript here indicates that distinctive
elements of the branch of logic known as conditional logic are
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Fig. 3. Pictorial Overview of the Situation Now The first layer, U, is, as
said in the main text, inspired by UIMA; the second layer is based on what
we call analogico-deductive reasoning for ethics; the third on the “deontic
cognitive event calculus” with a indirect indexical; and the fourth like the
third except that the logic in question includes aspects of conditional logic.
(Robot schematic from Aldebaran Robotics’ user manual for Nao. The RAIR
Lab has a number of Aldebaran’s impressive Nao robots.)

included.8 Without these elements, the only form of a conditional
used in our hierarchy is the material conditional; but the material
conditional is notoriously inexpressive, as it cannot represent coun-
terfactuals like:

If the robot had been more empathetic, Officer Smith would have thrived.

While elaborating on this architecture or any of the four layers
is beyond the scope of the paper, we do note that DCEC ⇤(and a
fortiori DCEC ⇤

CL) has facilities for representing and reasoning over
modalities and self-referential statements that no other computational
logic enjoys; see (Bringsjord & Govindarajulu 2013) for a more in-
depth treatment.

B. Augustinian Definition, Formal Version
We view a robot abstractly as a robotic substrate rs on which we
can install modules {m1,m2, . . . ,mn}. The robotic substrate rs would
form an immutable part of the robot and could neither be removed
nor modified. We can think of rs as akin to an “operating system”
for the robot. Modules correspond to functionality that can be added
to robots or removed from them. Associated with each module mi
is a knowledge-base KBmi that represents the module. The substrate
also has an associated knowledge-base KBrs. Perhaps surprisingly,
we don’t stipulate that the modules are logic-based; the modules
could internally be implemented using computational formalisms (e.g.
neural networks, statistical AI) that at the surface level seem far away
from formal logic. No matter what the underlying implementation of
a module is, if we so wished we could always talk about modules
in formal-logic terms.9 This abstract view lets us model robots that

8Though written rather long ago, (Nute 1984) is still a wonderful intro-
duction to the sub-field in formal logic of conditional logic. In the final
analysis, sophisticated moral reasoning can only be accurately modeled for
formal logics that include conditionals much more expressive and nuanced
than the material conditional. (Reliance on conditional branching in standar
programming languages is nothing more than reliance upon the material
conditional.) For example, even the well-known trolley-problem cases (in
which, to save multiple lives, one can either redirect a train, killing one
person in the process, or directly stop the train by throwing someone in front
of it), which are not exactly complicated formally speaking, require, when
analyzed informally but systematically, as indicated e.g. by Mikhail (2011),
counterfactuals.

9This stems from the fact that theorem proving in just first-order logic is
enough to simulate any Turing-level computation; see e.g. (Boolos, Burgess
& Jeffrey 2007, Chapter 11).
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Syntax

S ::=
Object | Agent | Self @ Agent | ActionType | Action v Event |

Moment | Boolean | Fluent | Numeric

f ::=

action : Agent⇥ActionType ! Action

initially : Fluent ! Boolean

holds : Fluent⇥Moment ! Boolean

happens : Event⇥Moment ! Boolean

clipped : Moment⇥Fluent⇥Moment ! Boolean

initiates : Event⇥Fluent⇥Moment ! Boolean

terminates : Event⇥Fluent⇥Moment ! Boolean

prior : Moment⇥Moment ! Boolean

interval : Moment⇥Boolean

⇤ : Agent ! Self

payoff : Agent⇥ActionType⇥Moment ! Numeric

t ::= x : S | c : S | f (t1 , . . . , tn)

f ::=

t : Boolean | ¬f | f^y | f_y |

P(a, t,f) | K(a, t,f) | C(t,f) | S(a,b, t,f) | S(a, t,f)

B(a, t,f) | D(a, t,holds( f , t0)) | I(a, t,happens(action(a⇤ ,a), t0))

O(a, t,f,happens(action(a⇤ ,a), t0))

Rules of Inference

C(t,P(a, t,f)! K(a, t,f))
[R1 ] C(t,K(a, t,f)! B(a, t,f))

[R2 ]

C(t,f) t  t1 . . . t  t

n

K(a1 , t1 , . . .K(a
n

, t
n

,f) . . .)
[R3 ]

K(a, t,f)

f
[R4 ]

C(t,K(a, t1 ,f1 ! f2))! K(a, t2 ,f1)! K(a, t3 ,f2)
[R5 ]

C(t,B(a, t1 ,f1 ! f2))! B(a, t2 ,f1)! B(a, t3 ,f2)
[R6 ]

C(t,C(t1 ,f1 ! f2))! C(t2 ,f1)! C(t3 ,f2)
[R7 ]

C(t,8x. f ! f[x 7! t])
[R8 ] C(t,f1 $ f2 ! ¬f2 ! ¬f1)

[R9 ]

C(t, [f1 ^ . . .^f
n

! f]! [f1 ! . . .! f
n

! y])
[R10 ]

B(a, t,f) f ! y

B(a, t,y)
[R11a

]
B(a, t,f) B(a, t,y)

B(a, t,y^f)
[R11b

]

S(s,h, t,f)

B(h, t,B(s, t,f))
[R12 ]

I(a, t,happens(action(a⇤ ,a), t0))

P(a, t,happens(action(a⇤ ,a), t))
[R13 ]

B(a, t,f) B(a, t,O(a⇤ , t,f,happens(action(a⇤ ,a), t0)))

O(a, t,f,happens(action(a⇤ ,a), t0))

K(a, t,I(a⇤ , t,happens(action(a⇤ ,a), t0)))
[R14 ]

f $ y

O(a, t,f,g)$ O(a, t,y,g)
[R15 ]
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always position some particular work he and likeminded collaborators
are undertaking within a view of logic that allows a particular
logical system to be positioned relative to three dimensions, which
correspond to the three arrows shown in Figure 2. We have positioned
DCEC ⇤within Figure 2; it’s location is indicated by the black dot
therein, which the reader will note is quite far down the dimension
of increasing expressivity that ranges from expressive extensional
logics (e.g., FOL and SOL), to logics with intensional operators for
knowledge, belief, and obligation (so-called philosophical logics; for
an overview, see Goble 2001). Intensional operators like these are
first-class elements of the language for DCEC ⇤. This language is
shown in Figure 1.
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prior : Moment⇥Moment ! Boolean
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said in the main text, inspired by UIMA; the second layer is based on what
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included.8 Without these elements, the only form of a conditional
used in our hierarchy is the material conditional; but the material
conditional is notoriously inexpressive, as it cannot represent coun-
terfactuals like:

If the robot had been more empathetic, Officer Smith would have thrived.

While elaborating on this architecture or any of the four layers
is beyond the scope of the paper, we do note that DCEC ⇤(and a
fortiori DCEC ⇤

CL) has facilities for representing and reasoning over
modalities and self-referential statements that no other computational
logic enjoys; see (Bringsjord & Govindarajulu 2013) for a more in-
depth treatment.

B. Augustinian Definition, Formal Version
We view a robot abstractly as a robotic substrate rs on which we
can install modules {m1,m2, . . . ,mn}. The robotic substrate rs would
form an immutable part of the robot and could neither be removed
nor modified. We can think of rs as akin to an “operating system”
for the robot. Modules correspond to functionality that can be added
to robots or removed from them. Associated with each module mi
is a knowledge-base KBmi that represents the module. The substrate
also has an associated knowledge-base KBrs. Perhaps surprisingly,
we don’t stipulate that the modules are logic-based; the modules
could internally be implemented using computational formalisms (e.g.
neural networks, statistical AI) that at the surface level seem far away
from formal logic. No matter what the underlying implementation of
a module is, if we so wished we could always talk about modules
in formal-logic terms.9 This abstract view lets us model robots that

8Though written rather long ago, (Nute 1984) is still a wonderful intro-
duction to the sub-field in formal logic of conditional logic. In the final
analysis, sophisticated moral reasoning can only be accurately modeled for
formal logics that include conditionals much more expressive and nuanced
than the material conditional. (Reliance on conditional branching in standar
programming languages is nothing more than reliance upon the material
conditional.) For example, even the well-known trolley-problem cases (in
which, to save multiple lives, one can either redirect a train, killing one
person in the process, or directly stop the train by throwing someone in front
of it), which are not exactly complicated formally speaking, require, when
analyzed informally but systematically, as indicated e.g. by Mikhail (2011),
counterfactuals.

9This stems from the fact that theorem proving in just first-order logic is
enough to simulate any Turing-level computation; see e.g. (Boolos, Burgess
& Jeffrey 2007, Chapter 11).
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Syntax

S ::=
Object | Agent | Self @ Agent | ActionType | Action v Event |

Moment | Boolean | Fluent | Numeric

f ::=

action : Agent⇥ActionType ! Action

initially : Fluent ! Boolean

holds : Fluent⇥Moment ! Boolean

happens : Event⇥Moment ! Boolean

clipped : Moment⇥Fluent⇥Moment ! Boolean

initiates : Event⇥Fluent⇥Moment ! Boolean

terminates : Event⇥Fluent⇥Moment ! Boolean

prior : Moment⇥Moment ! Boolean

interval : Moment⇥Boolean

⇤ : Agent ! Self

payoff : Agent⇥ActionType⇥Moment ! Numeric

t ::= x : S | c : S | f (t1 , . . . , tn)

f ::=

t : Boolean | ¬f | f^y | f_y |

P(a, t,f) | K(a, t,f) | C(t,f) | S(a,b, t,f) | S(a, t,f)

B(a, t,f) | D(a, t,holds( f , t0)) | I(a, t,happens(action(a⇤ ,a), t0))

O(a, t,f,happens(action(a⇤ ,a), t0))

Rules of Inference

C(t,P(a, t,f)! K(a, t,f))
[R1 ] C(t,K(a, t,f)! B(a, t,f))

[R2 ]

C(t,f) t  t1 . . . t  t

n

K(a1 , t1 , . . .K(a
n

, t
n

,f) . . .)
[R3 ]

K(a, t,f)

f
[R4 ]

C(t,K(a, t1 ,f1 ! f2))! K(a, t2 ,f1)! K(a, t3 ,f2)
[R5 ]

C(t,B(a, t1 ,f1 ! f2))! B(a, t2 ,f1)! B(a, t3 ,f2)
[R6 ]

C(t,C(t1 ,f1 ! f2))! C(t2 ,f1)! C(t3 ,f2)
[R7 ]

C(t,8x. f ! f[x 7! t])
[R8 ] C(t,f1 $ f2 ! ¬f2 ! ¬f1)

[R9 ]

C(t, [f1 ^ . . .^f
n

! f]! [f1 ! . . .! f
n

! y])
[R10 ]

B(a, t,f) f ! y

B(a, t,y)
[R11a

]
B(a, t,f) B(a, t,y)

B(a, t,y^f)
[R11b

]

S(s,h, t,f)

B(h, t,B(s, t,f))
[R12 ]

I(a, t,happens(action(a⇤ ,a), t0))

P(a, t,happens(action(a⇤ ,a), t))
[R13 ]

B(a, t,f) B(a, t,O(a⇤ , t,f,happens(action(a⇤ ,a), t0)))

O(a, t,f,happens(action(a⇤ ,a), t0))

K(a, t,I(a⇤ , t,happens(action(a⇤ ,a), t0)))
[R14 ]

f $ y

O(a, t,f,g)$ O(a, t,y,g)
[R15 ]

1

3

always position some particular work he and likeminded collaborators
are undertaking within a view of logic that allows a particular
logical system to be positioned relative to three dimensions, which
correspond to the three arrows shown in Figure 2. We have positioned
DCEC ⇤within Figure 2; it’s location is indicated by the black dot
therein, which the reader will note is quite far down the dimension
of increasing expressivity that ranges from expressive extensional
logics (e.g., FOL and SOL), to logics with intensional operators for
knowledge, belief, and obligation (so-called philosophical logics; for
an overview, see Goble 2001). Intensional operators like these are
first-class elements of the language for DCEC ⇤. This language is
shown in Figure 1.

Syntax

S ::=
Object | Agent | Self � Agent | ActionType | Action � Event |

Moment | Boolean | Fluent | Numeric

f ::=

action : Agent⇥ActionType ! Action

initially : Fluent ! Boolean

holds : Fluent⇥Moment ! Boolean

happens : Event⇥Moment ! Boolean

clipped : Moment⇥Fluent⇥Moment ! Boolean

initiates : Event⇥Fluent⇥Moment ! Boolean

terminates : Event⇥Fluent⇥Moment ! Boolean

prior : Moment⇥Moment ! Boolean

interval : Moment⇥Boolean

⇤ : Agent ! Self

payoff : Agent⇥ActionType⇥Moment ! Numeric

t ::= x : S | c : S | f (t1 , . . . , tn)

f ::=

t : Boolean | ¬f | f^� | f�� | 8x : S. f | �x : S. f

P(a, t,f) | K(a, t,f) | C(t,f) | S(a,b, t,f) | S(a, t,f)

B(a, t,f) | D(a, t,holds( f , t�)) | I(a, t,happens(action(a⇤ ,a), t�))

O(a, t,f,happens(action(a⇤ ,a), t�))

Rules of Inference

C(t,P(a, t,f) ! K(a, t,f))
[R1 ]

C(t,K(a, t,f) ! B(a, t,f))
[R2 ]

C(t,f) t  t1 . . . t  tn

K(a1 , t1 , . . .K(an , tn ,f) . . .)
[R3 ]

K(a, t,f)

f
[R4 ]

C(t,K(a, t1 ,f1 ! f2) ! K(a, t2 ,f1) ! K(a, t3 ,f3))
[R5 ]

C(t,B(a, t1 ,f1 ! f2) ! B(a, t2 ,f1) ! B(a, t3 ,f3))
[R6 ]

C(t,C(t1 ,f1 ! f2) ! C(t2 ,f1) ! C(t3 ,f3))
[R7 ]

C(t,8x. f ! f[x �! t])
[R8 ]

C(t,f1 � f2 ! ¬f2 ! ¬f1)
[R9 ]

C(t, [f1 ^ . . .^fn ! f] ! [f1 ! . . . ! fn ! �])
[R10 ]

B(a, t,f) B(a, t,f ! �)

B(a, t,�)
[R11a ]

B(a, t,f) B(a, t,�)

B(a, t,�^f)
[R11b ]

S(s,h, t,f)

B(h, t,B(s, t,f))
[R12 ]

I(a, t,happens(action(a⇤ ,a), t�))

P(a, t,happens(action(a⇤ ,a), t))
[R13 ]

B(a, t,f) B(a, t,O(a⇤ , t,f,happens(action(a⇤ ,a), t�)))

O(a, t,f,happens(action(a⇤ ,a), t�))

K(a, t,I(a⇤ , t,happens(action(a⇤ ,a), t�)))
[R14 ]

f � �

O(a, t,f,�) � O(a, t,�,�)
[R15 ]

1

Fig. 1. DCEC ⇤Syntax and Rules of Inference

Fig. 2. Locating DCEC ⇤in “Three-Ray” Leibnizian Universe

The final layer in our hierarchy is built upon an even more expres-
sive logic: DCEC ⇤

CL. The subscript here indicates that distinctive
elements of the branch of logic known as conditional logic are

U

ADR M

DC EC ⇤

DCEC ⇤
CL

Moral/Ethical Stack

Robotic Stack

Fig. 3. Pictorial Overview of the Situation Now The first layer, U, is, as
said in the main text, inspired by UIMA; the second layer is based on what
we call analogico-deductive reasoning for ethics; the third on the “deontic
cognitive event calculus” with a indirect indexical; and the fourth like the
third except that the logic in question includes aspects of conditional logic.
(Robot schematic from Aldebaran Robotics’ user manual for Nao. The RAIR
Lab has a number of Aldebaran’s impressive Nao robots.)

included.8 Without these elements, the only form of a conditional
used in our hierarchy is the material conditional; but the material
conditional is notoriously inexpressive, as it cannot represent coun-
terfactuals like:

If the robot had been more empathetic, Officer Smith would have thrived.

While elaborating on this architecture or any of the four layers
is beyond the scope of the paper, we do note that DCEC ⇤(and a
fortiori DCEC ⇤

CL) has facilities for representing and reasoning over
modalities and self-referential statements that no other computational
logic enjoys; see (Bringsjord & Govindarajulu 2013) for a more in-
depth treatment.

B. Augustinian Definition, Formal Version
We view a robot abstractly as a robotic substrate rs on which we
can install modules {m1,m2, . . . ,mn}. The robotic substrate rs would
form an immutable part of the robot and could neither be removed
nor modified. We can think of rs as akin to an “operating system”
for the robot. Modules correspond to functionality that can be added
to robots or removed from them. Associated with each module mi
is a knowledge-base KBmi that represents the module. The substrate
also has an associated knowledge-base KBrs. Perhaps surprisingly,
we don’t stipulate that the modules are logic-based; the modules
could internally be implemented using computational formalisms (e.g.
neural networks, statistical AI) that at the surface level seem far away
from formal logic. No matter what the underlying implementation of
a module is, if we so wished we could always talk about modules
in formal-logic terms.9 This abstract view lets us model robots that

8Though written rather long ago, (Nute 1984) is still a wonderful intro-
duction to the sub-field in formal logic of conditional logic. In the final
analysis, sophisticated moral reasoning can only be accurately modeled for
formal logics that include conditionals much more expressive and nuanced
than the material conditional. (Reliance on conditional branching in standar
programming languages is nothing more than reliance upon the material
conditional.) For example, even the well-known trolley-problem cases (in
which, to save multiple lives, one can either redirect a train, killing one
person in the process, or directly stop the train by throwing someone in front
of it), which are not exactly complicated formally speaking, require, when
analyzed informally but systematically, as indicated e.g. by Mikhail (2011),
counterfactuals.

9This stems from the fact that theorem proving in just first-order logic is
enough to simulate any Turing-level computation; see e.g. (Boolos, Burgess
& Jeffrey 2007, Chapter 11).
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Syntax

S ::=
Object | Agent | Self @ Agent | ActionType | Action v Event |

Moment | Boolean | Fluent | Numeric

f ::=

action : Agent⇥ActionType ! Action

initially : Fluent ! Boolean

holds : Fluent⇥Moment ! Boolean

happens : Event⇥Moment ! Boolean

clipped : Moment⇥Fluent⇥Moment ! Boolean

initiates : Event⇥Fluent⇥Moment ! Boolean

terminates : Event⇥Fluent⇥Moment ! Boolean

prior : Moment⇥Moment ! Boolean

interval : Moment⇥Boolean

⇤ : Agent ! Self

payoff : Agent⇥ActionType⇥Moment ! Numeric

t ::= x : S | c : S | f (t1 , . . . , tn)

f ::=

t : Boolean | ¬f | f^y | f_y |

P(a, t,f) | K(a, t,f) | C(t,f) | S(a,b, t,f) | S(a, t,f)

B(a, t,f) | D(a, t,holds( f , t0)) | I(a, t,happens(action(a⇤ ,a), t0))

O(a, t,f,happens(action(a⇤ ,a), t0))

Rules of Inference

C(t,P(a, t,f)! K(a, t,f))
[R1 ] C(t,K(a, t,f)! B(a, t,f))

[R2 ]

C(t,f) t  t1 . . . t  t

n

K(a1 , t1 , . . .K(a
n

, t
n

,f) . . .)
[R3 ]

K(a, t,f)

f
[R4 ]

C(t,K(a, t1 ,f1 ! f2))! K(a, t2 ,f1)! K(a, t3 ,f2)
[R5 ]

C(t,B(a, t1 ,f1 ! f2))! B(a, t2 ,f1)! B(a, t3 ,f2)
[R6 ]

C(t,C(t1 ,f1 ! f2))! C(t2 ,f1)! C(t3 ,f2)
[R7 ]

C(t,8x. f ! f[x 7! t])
[R8 ] C(t,f1 $ f2 ! ¬f2 ! ¬f1)

[R9 ]

C(t, [f1 ^ . . .^f
n

! f]! [f1 ! . . .! f
n

! y])
[R10 ]

B(a, t,f) f ! y

B(a, t,y)
[R11a

]
B(a, t,f) B(a, t,y)

B(a, t,y^f)
[R11b

]

S(s,h, t,f)

B(h, t,B(s, t,f))
[R12 ]

I(a, t,happens(action(a⇤ ,a), t0))

P(a, t,happens(action(a⇤ ,a), t))
[R13 ]

B(a, t,f) B(a, t,O(a⇤ , t,f,happens(action(a⇤ ,a), t0)))

O(a, t,f,happens(action(a⇤ ,a), t0))

K(a, t,I(a⇤ , t,happens(action(a⇤ ,a), t0)))
[R14 ]

f $ y

O(a, t,f,g)$ O(a, t,y,g)
[R15 ]

1

3

always position some particular work he and likeminded collaborators
are undertaking within a view of logic that allows a particular
logical system to be positioned relative to three dimensions, which
correspond to the three arrows shown in Figure 2. We have positioned
DCEC ⇤within Figure 2; it’s location is indicated by the black dot
therein, which the reader will note is quite far down the dimension
of increasing expressivity that ranges from expressive extensional
logics (e.g., FOL and SOL), to logics with intensional operators for
knowledge, belief, and obligation (so-called philosophical logics; for
an overview, see Goble 2001). Intensional operators like these are
first-class elements of the language for DCEC ⇤. This language is
shown in Figure 1.

Syntax

S ::=
Object | Agent | Self � Agent | ActionType | Action � Event |

Moment | Boolean | Fluent | Numeric

f ::=

action : Agent⇥ActionType ! Action

initially : Fluent ! Boolean

holds : Fluent⇥Moment ! Boolean

happens : Event⇥Moment ! Boolean

clipped : Moment⇥Fluent⇥Moment ! Boolean

initiates : Event⇥Fluent⇥Moment ! Boolean

terminates : Event⇥Fluent⇥Moment ! Boolean

prior : Moment⇥Moment ! Boolean

interval : Moment⇥Boolean

⇤ : Agent ! Self

payoff : Agent⇥ActionType⇥Moment ! Numeric

t ::= x : S | c : S | f (t1 , . . . , tn)

f ::=

t : Boolean | ¬f | f^� | f�� | 8x : S. f | �x : S. f

P(a, t,f) | K(a, t,f) | C(t,f) | S(a,b, t,f) | S(a, t,f)

B(a, t,f) | D(a, t,holds( f , t�)) | I(a, t,happens(action(a⇤ ,a), t�))

O(a, t,f,happens(action(a⇤ ,a), t�))

Rules of Inference

C(t,P(a, t,f) ! K(a, t,f))
[R1 ]

C(t,K(a, t,f) ! B(a, t,f))
[R2 ]

C(t,f) t  t1 . . . t  tn

K(a1 , t1 , . . .K(an , tn ,f) . . .)
[R3 ]

K(a, t,f)

f
[R4 ]

C(t,K(a, t1 ,f1 ! f2) ! K(a, t2 ,f1) ! K(a, t3 ,f3))
[R5 ]

C(t,B(a, t1 ,f1 ! f2) ! B(a, t2 ,f1) ! B(a, t3 ,f3))
[R6 ]

C(t,C(t1 ,f1 ! f2) ! C(t2 ,f1) ! C(t3 ,f3))
[R7 ]

C(t,8x. f ! f[x �! t])
[R8 ]

C(t,f1 � f2 ! ¬f2 ! ¬f1)
[R9 ]

C(t, [f1 ^ . . .^fn ! f] ! [f1 ! . . . ! fn ! �])
[R10 ]

B(a, t,f) B(a, t,f ! �)

B(a, t,�)
[R11a ]

B(a, t,f) B(a, t,�)

B(a, t,�^f)
[R11b ]

S(s,h, t,f)

B(h, t,B(s, t,f))
[R12 ]

I(a, t,happens(action(a⇤ ,a), t�))

P(a, t,happens(action(a⇤ ,a), t))
[R13 ]

B(a, t,f) B(a, t,O(a⇤ , t,f,happens(action(a⇤ ,a), t�)))

O(a, t,f,happens(action(a⇤ ,a), t�))

K(a, t,I(a⇤ , t,happens(action(a⇤ ,a), t�)))
[R14 ]

f � �

O(a, t,f,�) � O(a, t,�,�)
[R15 ]

1

Fig. 1. DCEC ⇤Syntax and Rules of Inference

Fig. 2. Locating DCEC ⇤in “Three-Ray” Leibnizian Universe

The final layer in our hierarchy is built upon an even more expres-
sive logic: DCEC ⇤

CL. The subscript here indicates that distinctive
elements of the branch of logic known as conditional logic are

U

ADR M

DC EC ⇤

DCEC ⇤
CL

Moral/Ethical Stack

Robotic Stack

Fig. 3. Pictorial Overview of the Situation Now The first layer, U, is, as
said in the main text, inspired by UIMA; the second layer is based on what
we call analogico-deductive reasoning for ethics; the third on the “deontic
cognitive event calculus” with a indirect indexical; and the fourth like the
third except that the logic in question includes aspects of conditional logic.
(Robot schematic from Aldebaran Robotics’ user manual for Nao. The RAIR
Lab has a number of Aldebaran’s impressive Nao robots.)

included.8 Without these elements, the only form of a conditional
used in our hierarchy is the material conditional; but the material
conditional is notoriously inexpressive, as it cannot represent coun-
terfactuals like:

If the robot had been more empathetic, Officer Smith would have thrived.

While elaborating on this architecture or any of the four layers
is beyond the scope of the paper, we do note that DCEC ⇤(and a
fortiori DCEC ⇤

CL) has facilities for representing and reasoning over
modalities and self-referential statements that no other computational
logic enjoys; see (Bringsjord & Govindarajulu 2013) for a more in-
depth treatment.

B. Augustinian Definition, Formal Version
We view a robot abstractly as a robotic substrate rs on which we
can install modules {m1,m2, . . . ,mn}. The robotic substrate rs would
form an immutable part of the robot and could neither be removed
nor modified. We can think of rs as akin to an “operating system”
for the robot. Modules correspond to functionality that can be added
to robots or removed from them. Associated with each module mi
is a knowledge-base KBmi that represents the module. The substrate
also has an associated knowledge-base KBrs. Perhaps surprisingly,
we don’t stipulate that the modules are logic-based; the modules
could internally be implemented using computational formalisms (e.g.
neural networks, statistical AI) that at the surface level seem far away
from formal logic. No matter what the underlying implementation of
a module is, if we so wished we could always talk about modules
in formal-logic terms.9 This abstract view lets us model robots that

8Though written rather long ago, (Nute 1984) is still a wonderful intro-
duction to the sub-field in formal logic of conditional logic. In the final
analysis, sophisticated moral reasoning can only be accurately modeled for
formal logics that include conditionals much more expressive and nuanced
than the material conditional. (Reliance on conditional branching in standar
programming languages is nothing more than reliance upon the material
conditional.) For example, even the well-known trolley-problem cases (in
which, to save multiple lives, one can either redirect a train, killing one
person in the process, or directly stop the train by throwing someone in front
of it), which are not exactly complicated formally speaking, require, when
analyzed informally but systematically, as indicated e.g. by Mikhail (2011),
counterfactuals.

9This stems from the fact that theorem proving in just first-order logic is
enough to simulate any Turing-level computation; see e.g. (Boolos, Burgess
& Jeffrey 2007, Chapter 11).

17

Lei

“Universal 
Cognitive 
Calculus”

20

1.5 centuries < 

Universal 
Cognitive 
Calculus 

Found

20

CC



Syntax

S ::=
Object | Agent | Self @ Agent | ActionType | Action v Event |

Moment | Boolean | Fluent | Numeric

f ::=

action : Agent⇥ActionType ! Action

initially : Fluent ! Boolean

holds : Fluent⇥Moment ! Boolean

happens : Event⇥Moment ! Boolean

clipped : Moment⇥Fluent⇥Moment ! Boolean

initiates : Event⇥Fluent⇥Moment ! Boolean

terminates : Event⇥Fluent⇥Moment ! Boolean

prior : Moment⇥Moment ! Boolean

interval : Moment⇥Boolean

⇤ : Agent ! Self

payoff : Agent⇥ActionType⇥Moment ! Numeric

t ::= x : S | c : S | f (t1 , . . . , tn)

f ::=

t : Boolean | ¬f | f^y | f_y |

P(a, t,f) | K(a, t,f) | C(t,f) | S(a,b, t,f) | S(a, t,f)

B(a, t,f) | D(a, t,holds( f , t0)) | I(a, t,happens(action(a⇤ ,a), t0))

O(a, t,f,happens(action(a⇤ ,a), t0))

Rules of Inference

C(t,P(a, t,f)! K(a, t,f))
[R1 ] C(t,K(a, t,f)! B(a, t,f))

[R2 ]

C(t,f) t  t1 . . . t  t

n

K(a1 , t1 , . . .K(a
n

, t
n

,f) . . .)
[R3 ]

K(a, t,f)

f
[R4 ]

C(t,K(a, t1 ,f1 ! f2))! K(a, t2 ,f1)! K(a, t3 ,f2)
[R5 ]

C(t,B(a, t1 ,f1 ! f2))! B(a, t2 ,f1)! B(a, t3 ,f2)
[R6 ]

C(t,C(t1 ,f1 ! f2))! C(t2 ,f1)! C(t3 ,f2)
[R7 ]

C(t,8x. f ! f[x 7! t])
[R8 ] C(t,f1 $ f2 ! ¬f2 ! ¬f1)

[R9 ]

C(t, [f1 ^ . . .^f
n

! f]! [f1 ! . . .! f
n

! y])
[R10 ]

B(a, t,f) f ! y

B(a, t,y)
[R11a

]
B(a, t,f) B(a, t,y)

B(a, t,y^f)
[R11b

]

S(s,h, t,f)

B(h, t,B(s, t,f))
[R12 ]

I(a, t,happens(action(a⇤ ,a), t0))

P(a, t,happens(action(a⇤ ,a), t))
[R13 ]

B(a, t,f) B(a, t,O(a⇤ , t,f,happens(action(a⇤ ,a), t0)))

O(a, t,f,happens(action(a⇤ ,a), t0))

K(a, t,I(a⇤ , t,happens(action(a⇤ ,a), t0)))
[R14 ]

f $ y

O(a, t,f,g)$ O(a, t,y,g)
[R15 ]

1

3

always position some particular work he and likeminded collaborators
are undertaking within a view of logic that allows a particular
logical system to be positioned relative to three dimensions, which
correspond to the three arrows shown in Figure 2. We have positioned
DCEC ⇤within Figure 2; it’s location is indicated by the black dot
therein, which the reader will note is quite far down the dimension
of increasing expressivity that ranges from expressive extensional
logics (e.g., FOL and SOL), to logics with intensional operators for
knowledge, belief, and obligation (so-called philosophical logics; for
an overview, see Goble 2001). Intensional operators like these are
first-class elements of the language for DCEC ⇤. This language is
shown in Figure 1.

Syntax

S ::=
Object | Agent | Self � Agent | ActionType | Action � Event |

Moment | Boolean | Fluent | Numeric

f ::=

action : Agent⇥ActionType ! Action

initially : Fluent ! Boolean

holds : Fluent⇥Moment ! Boolean

happens : Event⇥Moment ! Boolean

clipped : Moment⇥Fluent⇥Moment ! Boolean

initiates : Event⇥Fluent⇥Moment ! Boolean

terminates : Event⇥Fluent⇥Moment ! Boolean

prior : Moment⇥Moment ! Boolean

interval : Moment⇥Boolean

⇤ : Agent ! Self

payoff : Agent⇥ActionType⇥Moment ! Numeric

t ::= x : S | c : S | f (t1 , . . . , tn)

f ::=

t : Boolean | ¬f | f^� | f�� | 8x : S. f | �x : S. f

P(a, t,f) | K(a, t,f) | C(t,f) | S(a,b, t,f) | S(a, t,f)

B(a, t,f) | D(a, t,holds( f , t�)) | I(a, t,happens(action(a⇤ ,a), t�))

O(a, t,f,happens(action(a⇤ ,a), t�))

Rules of Inference

C(t,P(a, t,f) ! K(a, t,f))
[R1 ]

C(t,K(a, t,f) ! B(a, t,f))
[R2 ]

C(t,f) t  t1 . . . t  tn

K(a1 , t1 , . . .K(an , tn ,f) . . .)
[R3 ]

K(a, t,f)

f
[R4 ]

C(t,K(a, t1 ,f1 ! f2) ! K(a, t2 ,f1) ! K(a, t3 ,f3))
[R5 ]

C(t,B(a, t1 ,f1 ! f2) ! B(a, t2 ,f1) ! B(a, t3 ,f3))
[R6 ]

C(t,C(t1 ,f1 ! f2) ! C(t2 ,f1) ! C(t3 ,f3))
[R7 ]

C(t,8x. f ! f[x �! t])
[R8 ]

C(t,f1 � f2 ! ¬f2 ! ¬f1)
[R9 ]

C(t, [f1 ^ . . .^fn ! f] ! [f1 ! . . . ! fn ! �])
[R10 ]

B(a, t,f) B(a, t,f ! �)

B(a, t,�)
[R11a ]

B(a, t,f) B(a, t,�)

B(a, t,�^f)
[R11b ]

S(s,h, t,f)

B(h, t,B(s, t,f))
[R12 ]

I(a, t,happens(action(a⇤ ,a), t�))

P(a, t,happens(action(a⇤ ,a), t))
[R13 ]

B(a, t,f) B(a, t,O(a⇤ , t,f,happens(action(a⇤ ,a), t�)))

O(a, t,f,happens(action(a⇤ ,a), t�))

K(a, t,I(a⇤ , t,happens(action(a⇤ ,a), t�)))
[R14 ]

f � �

O(a, t,f,�) � O(a, t,�,�)
[R15 ]
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Fig. 1. DCEC ⇤Syntax and Rules of Inference

Fig. 2. Locating DCEC ⇤in “Three-Ray” Leibnizian Universe

The final layer in our hierarchy is built upon an even more expres-
sive logic: DCEC ⇤

CL. The subscript here indicates that distinctive
elements of the branch of logic known as conditional logic are

U

ADR M

DC EC ⇤

DCEC ⇤
CL

Moral/Ethical Stack

Robotic Stack

Fig. 3. Pictorial Overview of the Situation Now The first layer, U, is, as
said in the main text, inspired by UIMA; the second layer is based on what
we call analogico-deductive reasoning for ethics; the third on the “deontic
cognitive event calculus” with a indirect indexical; and the fourth like the
third except that the logic in question includes aspects of conditional logic.
(Robot schematic from Aldebaran Robotics’ user manual for Nao. The RAIR
Lab has a number of Aldebaran’s impressive Nao robots.)

included.8 Without these elements, the only form of a conditional
used in our hierarchy is the material conditional; but the material
conditional is notoriously inexpressive, as it cannot represent coun-
terfactuals like:

If the robot had been more empathetic, Officer Smith would have thrived.

While elaborating on this architecture or any of the four layers
is beyond the scope of the paper, we do note that DCEC ⇤(and a
fortiori DCEC ⇤

CL) has facilities for representing and reasoning over
modalities and self-referential statements that no other computational
logic enjoys; see (Bringsjord & Govindarajulu 2013) for a more in-
depth treatment.

B. Augustinian Definition, Formal Version
We view a robot abstractly as a robotic substrate rs on which we
can install modules {m1,m2, . . . ,mn}. The robotic substrate rs would
form an immutable part of the robot and could neither be removed
nor modified. We can think of rs as akin to an “operating system”
for the robot. Modules correspond to functionality that can be added
to robots or removed from them. Associated with each module mi
is a knowledge-base KBmi that represents the module. The substrate
also has an associated knowledge-base KBrs. Perhaps surprisingly,
we don’t stipulate that the modules are logic-based; the modules
could internally be implemented using computational formalisms (e.g.
neural networks, statistical AI) that at the surface level seem far away
from formal logic. No matter what the underlying implementation of
a module is, if we so wished we could always talk about modules
in formal-logic terms.9 This abstract view lets us model robots that

8Though written rather long ago, (Nute 1984) is still a wonderful intro-
duction to the sub-field in formal logic of conditional logic. In the final
analysis, sophisticated moral reasoning can only be accurately modeled for
formal logics that include conditionals much more expressive and nuanced
than the material conditional. (Reliance on conditional branching in standar
programming languages is nothing more than reliance upon the material
conditional.) For example, even the well-known trolley-problem cases (in
which, to save multiple lives, one can either redirect a train, killing one
person in the process, or directly stop the train by throwing someone in front
of it), which are not exactly complicated formally speaking, require, when
analyzed informally but systematically, as indicated e.g. by Mikhail (2011),
counterfactuals.

9This stems from the fact that theorem proving in just first-order logic is
enough to simulate any Turing-level computation; see e.g. (Boolos, Burgess
& Jeffrey 2007, Chapter 11).
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Syntax

S ::=
Object | Agent | Self @ Agent | ActionType | Action v Event |

Moment | Boolean | Fluent | Numeric

f ::=

action : Agent⇥ActionType ! Action

initially : Fluent ! Boolean

holds : Fluent⇥Moment ! Boolean

happens : Event⇥Moment ! Boolean

clipped : Moment⇥Fluent⇥Moment ! Boolean

initiates : Event⇥Fluent⇥Moment ! Boolean

terminates : Event⇥Fluent⇥Moment ! Boolean

prior : Moment⇥Moment ! Boolean

interval : Moment⇥Boolean

⇤ : Agent ! Self

payoff : Agent⇥ActionType⇥Moment ! Numeric

t ::= x : S | c : S | f (t1 , . . . , tn)

f ::=

t : Boolean | ¬f | f^y | f_y |

P(a, t,f) | K(a, t,f) | C(t,f) | S(a,b, t,f) | S(a, t,f)

B(a, t,f) | D(a, t,holds( f , t0)) | I(a, t,happens(action(a⇤ ,a), t0))

O(a, t,f,happens(action(a⇤ ,a), t0))

Rules of Inference

C(t,P(a, t,f)! K(a, t,f))
[R1 ] C(t,K(a, t,f)! B(a, t,f))

[R2 ]

C(t,f) t  t1 . . . t  t

n

K(a1 , t1 , . . .K(a
n

, t
n

,f) . . .)
[R3 ]

K(a, t,f)

f
[R4 ]

C(t,K(a, t1 ,f1 ! f2))! K(a, t2 ,f1)! K(a, t3 ,f2)
[R5 ]

C(t,B(a, t1 ,f1 ! f2))! B(a, t2 ,f1)! B(a, t3 ,f2)
[R6 ]

C(t,C(t1 ,f1 ! f2))! C(t2 ,f1)! C(t3 ,f2)
[R7 ]

C(t,8x. f ! f[x 7! t])
[R8 ] C(t,f1 $ f2 ! ¬f2 ! ¬f1)

[R9 ]

C(t, [f1 ^ . . .^f
n

! f]! [f1 ! . . .! f
n

! y])
[R10 ]

B(a, t,f) f ! y

B(a, t,y)
[R11a

]
B(a, t,f) B(a, t,y)

B(a, t,y^f)
[R11b

]

S(s,h, t,f)

B(h, t,B(s, t,f))
[R12 ]

I(a, t,happens(action(a⇤ ,a), t0))

P(a, t,happens(action(a⇤ ,a), t))
[R13 ]

B(a, t,f) B(a, t,O(a⇤ , t,f,happens(action(a⇤ ,a), t0)))

O(a, t,f,happens(action(a⇤ ,a), t0))

K(a, t,I(a⇤ , t,happens(action(a⇤ ,a), t0)))
[R14 ]

f $ y

O(a, t,f,g)$ O(a, t,y,g)
[R15 ]

1

3

always position some particular work he and likeminded collaborators
are undertaking within a view of logic that allows a particular
logical system to be positioned relative to three dimensions, which
correspond to the three arrows shown in Figure 2. We have positioned
DCEC ⇤within Figure 2; it’s location is indicated by the black dot
therein, which the reader will note is quite far down the dimension
of increasing expressivity that ranges from expressive extensional
logics (e.g., FOL and SOL), to logics with intensional operators for
knowledge, belief, and obligation (so-called philosophical logics; for
an overview, see Goble 2001). Intensional operators like these are
first-class elements of the language for DCEC ⇤. This language is
shown in Figure 1.

Syntax

S ::=
Object | Agent | Self � Agent | ActionType | Action � Event |

Moment | Boolean | Fluent | Numeric

f ::=

action : Agent⇥ActionType ! Action

initially : Fluent ! Boolean

holds : Fluent⇥Moment ! Boolean

happens : Event⇥Moment ! Boolean

clipped : Moment⇥Fluent⇥Moment ! Boolean

initiates : Event⇥Fluent⇥Moment ! Boolean

terminates : Event⇥Fluent⇥Moment ! Boolean

prior : Moment⇥Moment ! Boolean

interval : Moment⇥Boolean

⇤ : Agent ! Self

payoff : Agent⇥ActionType⇥Moment ! Numeric

t ::= x : S | c : S | f (t1 , . . . , tn)

f ::=

t : Boolean | ¬f | f^� | f�� | 8x : S. f | �x : S. f

P(a, t,f) | K(a, t,f) | C(t,f) | S(a,b, t,f) | S(a, t,f)

B(a, t,f) | D(a, t,holds( f , t�)) | I(a, t,happens(action(a⇤ ,a), t�))

O(a, t,f,happens(action(a⇤ ,a), t�))

Rules of Inference

C(t,P(a, t,f) ! K(a, t,f))
[R1 ]

C(t,K(a, t,f) ! B(a, t,f))
[R2 ]

C(t,f) t  t1 . . . t  tn

K(a1 , t1 , . . .K(an , tn ,f) . . .)
[R3 ]

K(a, t,f)

f
[R4 ]

C(t,K(a, t1 ,f1 ! f2) ! K(a, t2 ,f1) ! K(a, t3 ,f3))
[R5 ]

C(t,B(a, t1 ,f1 ! f2) ! B(a, t2 ,f1) ! B(a, t3 ,f3))
[R6 ]

C(t,C(t1 ,f1 ! f2) ! C(t2 ,f1) ! C(t3 ,f3))
[R7 ]

C(t,8x. f ! f[x �! t])
[R8 ]

C(t,f1 � f2 ! ¬f2 ! ¬f1)
[R9 ]

C(t, [f1 ^ . . .^fn ! f] ! [f1 ! . . . ! fn ! �])
[R10 ]

B(a, t,f) B(a, t,f ! �)

B(a, t,�)
[R11a ]

B(a, t,f) B(a, t,�)

B(a, t,�^f)
[R11b ]

S(s,h, t,f)

B(h, t,B(s, t,f))
[R12 ]

I(a, t,happens(action(a⇤ ,a), t�))

P(a, t,happens(action(a⇤ ,a), t))
[R13 ]

B(a, t,f) B(a, t,O(a⇤ , t,f,happens(action(a⇤ ,a), t�)))

O(a, t,f,happens(action(a⇤ ,a), t�))

K(a, t,I(a⇤ , t,happens(action(a⇤ ,a), t�)))
[R14 ]

f � �

O(a, t,f,�) � O(a, t,�,�)
[R15 ]
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Fig. 1. DCEC ⇤Syntax and Rules of Inference

Fig. 2. Locating DCEC ⇤in “Three-Ray” Leibnizian Universe

The final layer in our hierarchy is built upon an even more expres-
sive logic: DCEC ⇤

CL. The subscript here indicates that distinctive
elements of the branch of logic known as conditional logic are

U

ADR M

DC EC ⇤

DCEC ⇤
CL

Moral/Ethical Stack

Robotic Stack

Fig. 3. Pictorial Overview of the Situation Now The first layer, U, is, as
said in the main text, inspired by UIMA; the second layer is based on what
we call analogico-deductive reasoning for ethics; the third on the “deontic
cognitive event calculus” with a indirect indexical; and the fourth like the
third except that the logic in question includes aspects of conditional logic.
(Robot schematic from Aldebaran Robotics’ user manual for Nao. The RAIR
Lab has a number of Aldebaran’s impressive Nao robots.)

included.8 Without these elements, the only form of a conditional
used in our hierarchy is the material conditional; but the material
conditional is notoriously inexpressive, as it cannot represent coun-
terfactuals like:

If the robot had been more empathetic, Officer Smith would have thrived.

While elaborating on this architecture or any of the four layers
is beyond the scope of the paper, we do note that DCEC ⇤(and a
fortiori DCEC ⇤

CL) has facilities for representing and reasoning over
modalities and self-referential statements that no other computational
logic enjoys; see (Bringsjord & Govindarajulu 2013) for a more in-
depth treatment.

B. Augustinian Definition, Formal Version
We view a robot abstractly as a robotic substrate rs on which we
can install modules {m1,m2, . . . ,mn}. The robotic substrate rs would
form an immutable part of the robot and could neither be removed
nor modified. We can think of rs as akin to an “operating system”
for the robot. Modules correspond to functionality that can be added
to robots or removed from them. Associated with each module mi
is a knowledge-base KBmi that represents the module. The substrate
also has an associated knowledge-base KBrs. Perhaps surprisingly,
we don’t stipulate that the modules are logic-based; the modules
could internally be implemented using computational formalisms (e.g.
neural networks, statistical AI) that at the surface level seem far away
from formal logic. No matter what the underlying implementation of
a module is, if we so wished we could always talk about modules
in formal-logic terms.9 This abstract view lets us model robots that

8Though written rather long ago, (Nute 1984) is still a wonderful intro-
duction to the sub-field in formal logic of conditional logic. In the final
analysis, sophisticated moral reasoning can only be accurately modeled for
formal logics that include conditionals much more expressive and nuanced
than the material conditional. (Reliance on conditional branching in standar
programming languages is nothing more than reliance upon the material
conditional.) For example, even the well-known trolley-problem cases (in
which, to save multiple lives, one can either redirect a train, killing one
person in the process, or directly stop the train by throwing someone in front
of it), which are not exactly complicated formally speaking, require, when
analyzed informally but systematically, as indicated e.g. by Mikhail (2011),
counterfactuals.

9This stems from the fact that theorem proving in just first-order logic is
enough to simulate any Turing-level computation; see e.g. (Boolos, Burgess
& Jeffrey 2007, Chapter 11).
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Syntax

S ::=
Object | Agent | Self @ Agent | ActionType | Action v Event |

Moment | Boolean | Fluent | Numeric

f ::=

action : Agent⇥ActionType ! Action

initially : Fluent ! Boolean

holds : Fluent⇥Moment ! Boolean

happens : Event⇥Moment ! Boolean

clipped : Moment⇥Fluent⇥Moment ! Boolean

initiates : Event⇥Fluent⇥Moment ! Boolean

terminates : Event⇥Fluent⇥Moment ! Boolean

prior : Moment⇥Moment ! Boolean

interval : Moment⇥Boolean

⇤ : Agent ! Self

payoff : Agent⇥ActionType⇥Moment ! Numeric

t ::= x : S | c : S | f (t1 , . . . , tn)

f ::=

t : Boolean | ¬f | f^y | f_y |

P(a, t,f) | K(a, t,f) | C(t,f) | S(a,b, t,f) | S(a, t,f)

B(a, t,f) | D(a, t,holds( f , t0)) | I(a, t,happens(action(a⇤ ,a), t0))

O(a, t,f,happens(action(a⇤ ,a), t0))

Rules of Inference

C(t,P(a, t,f)! K(a, t,f))
[R1 ] C(t,K(a, t,f)! B(a, t,f))

[R2 ]

C(t,f) t  t1 . . . t  t

n

K(a1 , t1 , . . .K(a
n

, t
n

,f) . . .)
[R3 ]

K(a, t,f)

f
[R4 ]

C(t,K(a, t1 ,f1 ! f2))! K(a, t2 ,f1)! K(a, t3 ,f2)
[R5 ]

C(t,B(a, t1 ,f1 ! f2))! B(a, t2 ,f1)! B(a, t3 ,f2)
[R6 ]

C(t,C(t1 ,f1 ! f2))! C(t2 ,f1)! C(t3 ,f2)
[R7 ]

C(t,8x. f ! f[x 7! t])
[R8 ] C(t,f1 $ f2 ! ¬f2 ! ¬f1)

[R9 ]

C(t, [f1 ^ . . .^f
n

! f]! [f1 ! . . .! f
n

! y])
[R10 ]

B(a, t,f) f ! y

B(a, t,y)
[R11a

]
B(a, t,f) B(a, t,y)

B(a, t,y^f)
[R11b

]

S(s,h, t,f)

B(h, t,B(s, t,f))
[R12 ]

I(a, t,happens(action(a⇤ ,a), t0))

P(a, t,happens(action(a⇤ ,a), t))
[R13 ]

B(a, t,f) B(a, t,O(a⇤ , t,f,happens(action(a⇤ ,a), t0)))

O(a, t,f,happens(action(a⇤ ,a), t0))

K(a, t,I(a⇤ , t,happens(action(a⇤ ,a), t0)))
[R14 ]

f $ y

O(a, t,f,g)$ O(a, t,y,g)
[R15 ]
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3

always position some particular work he and likeminded collaborators
are undertaking within a view of logic that allows a particular
logical system to be positioned relative to three dimensions, which
correspond to the three arrows shown in Figure 2. We have positioned
DCEC ⇤within Figure 2; it’s location is indicated by the black dot
therein, which the reader will note is quite far down the dimension
of increasing expressivity that ranges from expressive extensional
logics (e.g., FOL and SOL), to logics with intensional operators for
knowledge, belief, and obligation (so-called philosophical logics; for
an overview, see Goble 2001). Intensional operators like these are
first-class elements of the language for DCEC ⇤. This language is
shown in Figure 1.

Syntax

S ::=
Object | Agent | Self � Agent | ActionType | Action � Event |

Moment | Boolean | Fluent | Numeric

f ::=

action : Agent⇥ActionType ! Action

initially : Fluent ! Boolean

holds : Fluent⇥Moment ! Boolean

happens : Event⇥Moment ! Boolean

clipped : Moment⇥Fluent⇥Moment ! Boolean

initiates : Event⇥Fluent⇥Moment ! Boolean

terminates : Event⇥Fluent⇥Moment ! Boolean

prior : Moment⇥Moment ! Boolean

interval : Moment⇥Boolean

⇤ : Agent ! Self

payoff : Agent⇥ActionType⇥Moment ! Numeric

t ::= x : S | c : S | f (t1 , . . . , tn)

f ::=

t : Boolean | ¬f | f^� | f�� | 8x : S. f | �x : S. f

P(a, t,f) | K(a, t,f) | C(t,f) | S(a,b, t,f) | S(a, t,f)

B(a, t,f) | D(a, t,holds( f , t�)) | I(a, t,happens(action(a⇤ ,a), t�))

O(a, t,f,happens(action(a⇤ ,a), t�))

Rules of Inference

C(t,P(a, t,f) ! K(a, t,f))
[R1 ]

C(t,K(a, t,f) ! B(a, t,f))
[R2 ]

C(t,f) t  t1 . . . t  tn

K(a1 , t1 , . . .K(an , tn ,f) . . .)
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f
[R4 ]

C(t,K(a, t1 ,f1 ! f2) ! K(a, t2 ,f1) ! K(a, t3 ,f3))
[R5 ]

C(t,B(a, t1 ,f1 ! f2) ! B(a, t2 ,f1) ! B(a, t3 ,f3))
[R6 ]
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[R8 ]

C(t,f1 � f2 ! ¬f2 ! ¬f1)
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Fig. 2. Locating DCEC ⇤in “Three-Ray” Leibnizian Universe

The final layer in our hierarchy is built upon an even more expres-
sive logic: DCEC ⇤

CL. The subscript here indicates that distinctive
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Fig. 3. Pictorial Overview of the Situation Now The first layer, U, is, as
said in the main text, inspired by UIMA; the second layer is based on what
we call analogico-deductive reasoning for ethics; the third on the “deontic
cognitive event calculus” with a indirect indexical; and the fourth like the
third except that the logic in question includes aspects of conditional logic.
(Robot schematic from Aldebaran Robotics’ user manual for Nao. The RAIR
Lab has a number of Aldebaran’s impressive Nao robots.)

included.8 Without these elements, the only form of a conditional
used in our hierarchy is the material conditional; but the material
conditional is notoriously inexpressive, as it cannot represent coun-
terfactuals like:

If the robot had been more empathetic, Officer Smith would have thrived.

While elaborating on this architecture or any of the four layers
is beyond the scope of the paper, we do note that DCEC ⇤(and a
fortiori DCEC ⇤

CL) has facilities for representing and reasoning over
modalities and self-referential statements that no other computational
logic enjoys; see (Bringsjord & Govindarajulu 2013) for a more in-
depth treatment.

B. Augustinian Definition, Formal Version
We view a robot abstractly as a robotic substrate rs on which we
can install modules {m1,m2, . . . ,mn}. The robotic substrate rs would
form an immutable part of the robot and could neither be removed
nor modified. We can think of rs as akin to an “operating system”
for the robot. Modules correspond to functionality that can be added
to robots or removed from them. Associated with each module mi
is a knowledge-base KBmi that represents the module. The substrate
also has an associated knowledge-base KBrs. Perhaps surprisingly,
we don’t stipulate that the modules are logic-based; the modules
could internally be implemented using computational formalisms (e.g.
neural networks, statistical AI) that at the surface level seem far away
from formal logic. No matter what the underlying implementation of
a module is, if we so wished we could always talk about modules
in formal-logic terms.9 This abstract view lets us model robots that

8Though written rather long ago, (Nute 1984) is still a wonderful intro-
duction to the sub-field in formal logic of conditional logic. In the final
analysis, sophisticated moral reasoning can only be accurately modeled for
formal logics that include conditionals much more expressive and nuanced
than the material conditional. (Reliance on conditional branching in standar
programming languages is nothing more than reliance upon the material
conditional.) For example, even the well-known trolley-problem cases (in
which, to save multiple lives, one can either redirect a train, killing one
person in the process, or directly stop the train by throwing someone in front
of it), which are not exactly complicated formally speaking, require, when
analyzed informally but systematically, as indicated e.g. by Mikhail (2011),
counterfactuals.

9This stems from the fact that theorem proving in just first-order logic is
enough to simulate any Turing-level computation; see e.g. (Boolos, Burgess
& Jeffrey 2007, Chapter 11).
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+ 6` O(rescue)



We must be able to combine contexts:

C1 � C2 Both contexts hold now

C1 � C2 The second context occurs within the first 
“A murder within a play”

C1 ⌦ C2
The contexts are incompatible 

“Driving a car” and “Going to sleep”

And we need relations: 



And, one context can dominate another:

Clibrary ` F(Running)
Cfire ` ¬F(Running)
Cfire � Clibrary

C1 � C2

) Clibrary � Cfire ` ¬F(Running)

Clibrary � Cfire 6 ` F(Running)



What, then, is a context 
for Selmer & Naveen? …



Need:
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The Heinz Dilemma (Kohlberg)

“In Europe, a woman was near death from a special kind of cancer.  There was 
one drug that the doctors thought might save her.  It was a form of radium that a 
druggist in the same town had recently discovered.  The drug was expensive to 
make, but the druggist was charging ten times what the drug cost him to make.  
He paid $200 for the radium and charged $2,000 for a small dose of the drug.  
 
The sick woman’s husband, Heinz, went to everyone he knew to borrow the 
money, but he could only get together about $1,000, which is half of what it cost. 
He told the druggist that his wife was dying and asked him to sell it cheaper or let 
him pay later.  But the druggist said: “No, I discovered the drug and I’m going to 
make money from it.”  So Heinz got desperate and broke into the man’s store to 
steal the drug for his wife.  Should the husband have done that?”



DCEC1* Specimen from Heinz Dilemma
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⇣
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⇣
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Double-Minded Man

9X[X(joseph) ^ ¬X(m(harriet , joseph)) ^ Sleazy(X)]?
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9�¬⌃9aK[a, T (�) ^ ¬9a0K(a0, T (�))]
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� background knowledge
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F forbidden

OL
legal/local prohibitions

OM
ethical prohibitions

Sup1
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⇧ plans

P plans

P 0
partial plans



C = hL = hS,�i,�, E = hF,OL, OM , Sup1i,⇧ = hP, P 0ii
L labels

S symbolic labels

� diagrammatic labels

� background knowledge

E ethics/norms
F forbidden

OL
legal/local prohibitions

OM
ethical prohibitions

Sup1
civility

⇧ plans

P plans

P 0
partial plans



C = hL = hS,�i,�, E = hF,OL, OM , Sup1i,⇧ = hP, P 0ii
L labels

S symbolic labels

� diagrammatic labels

� background knowledge

E ethics/norms
F forbidden

OL
legal/local prohibitions

OM
ethical prohibitions

Sup1
civility

⇧ plans

P plans

P 0
partial plans



C = hL = hS,�i,�, E = hF,OL, OM , Sup1i,⇧ = hP, P 0ii
L labels

S symbolic labels

� diagrammatic labels

� background knowledge

E ethics/norms
F forbidden

OL
legal/local prohibitions

OM
ethical prohibitions

Sup1
civility

⇧ plans

P plans

P 0
partial plans



C = hL = hS,�i,�, E = hF,OL, OM , Sup1i,⇧ = hP, P 0ii
L labels

S symbolic labels

� diagrammatic labels

� background knowledge

E ethics/norms
F forbidden

OL
legal/local prohibitions

OM
ethical prohibitions

Sup1
civility

⇧ plans

P plans

P 0
partial plans



C = hL = hS,�i,�, E = hF,OL, OM , Sup1i,⇧ = hP, P 0ii
L labels

S symbolic labels

� diagrammatic labels

� background knowledge

E ethics/norms
F forbidden

OL
legal/local prohibitions

OM
ethical prohibitions

Sup1
civility

⇧ plans

P plans

P 0
partial plans



Implementation (NSG!) …
ShadowProver

Spectra



Spectra: Planning with Goals under Contexts
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VI.  New Paradigms …



VIa.  A New, Fine-Grained
 Paradigm for Ethics Itself …



VIb.  
The Universal Cognitive Calculus …



2017

Syntax

S ::=
Object | Agent | Self @ Agent | ActionType | Action v Event |

Moment | Boolean | Fluent | Numeric

f ::=

action : Agent⇥ActionType ! Action

initially : Fluent ! Boolean

holds : Fluent⇥Moment ! Boolean

happens : Event⇥Moment ! Boolean

clipped : Moment⇥Fluent⇥Moment ! Boolean

initiates : Event⇥Fluent⇥Moment ! Boolean

terminates : Event⇥Fluent⇥Moment ! Boolean

prior : Moment⇥Moment ! Boolean

interval : Moment⇥Boolean

⇤ : Agent ! Self

payoff : Agent⇥ActionType⇥Moment ! Numeric

t ::= x : S | c : S | f (t1 , . . . , tn)

f ::=

t : Boolean | ¬f | f^y | f_y |

P(a, t,f) | K(a, t,f) | C(t,f) | S(a,b, t,f) | S(a, t,f)

B(a, t,f) | D(a, t,holds( f , t0)) | I(a, t,happens(action(a⇤ ,a), t0))

O(a, t,f,happens(action(a⇤ ,a), t0))

Rules of Inference

C(t,P(a, t,f)! K(a, t,f))
[R1 ] C(t,K(a, t,f)! B(a, t,f))

[R2 ]

C(t,f) t  t1 . . . t  t

n

K(a1 , t1 , . . .K(a
n

, t
n

,f) . . .)
[R3 ]

K(a, t,f)

f
[R4 ]

C(t,K(a, t1 ,f1 ! f2))! K(a, t2 ,f1)! K(a, t3 ,f2)
[R5 ]

C(t,B(a, t1 ,f1 ! f2))! B(a, t2 ,f1)! B(a, t3 ,f2)
[R6 ]

C(t,C(t1 ,f1 ! f2))! C(t2 ,f1)! C(t3 ,f2)
[R7 ]

C(t,8x. f ! f[x 7! t])
[R8 ] C(t,f1 $ f2 ! ¬f2 ! ¬f1)

[R9 ]

C(t, [f1 ^ . . .^f
n

! f]! [f1 ! . . .! f
n

! y])
[R10 ]

B(a, t,f) f ! y

B(a, t,y)
[R11a

]
B(a, t,f) B(a, t,y)

B(a, t,y^f)
[R11b

]

S(s,h, t,f)

B(h, t,B(s, t,f))
[R12 ]

I(a, t,happens(action(a⇤ ,a), t0))

P(a, t,happens(action(a⇤ ,a), t))
[R13 ]

B(a, t,f) B(a, t,O(a⇤ , t,f,happens(action(a⇤ ,a), t0)))

O(a, t,f,happens(action(a⇤ ,a), t0))

K(a, t,I(a⇤ , t,happens(action(a⇤ ,a), t0)))
[R14 ]

f $ y

O(a, t,f,g)$ O(a, t,y,g)
[R15 ]

1

3

always position some particular work he and likeminded collaborators
are undertaking within a view of logic that allows a particular
logical system to be positioned relative to three dimensions, which
correspond to the three arrows shown in Figure 2. We have positioned
DCEC ⇤within Figure 2; it’s location is indicated by the black dot
therein, which the reader will note is quite far down the dimension
of increasing expressivity that ranges from expressive extensional
logics (e.g., FOL and SOL), to logics with intensional operators for
knowledge, belief, and obligation (so-called philosophical logics; for
an overview, see Goble 2001). Intensional operators like these are
first-class elements of the language for DCEC ⇤. This language is
shown in Figure 1.

Syntax

S ::=
Object | Agent | Self � Agent | ActionType | Action � Event |

Moment | Boolean | Fluent | Numeric

f ::=

action : Agent⇥ActionType ! Action

initially : Fluent ! Boolean

holds : Fluent⇥Moment ! Boolean

happens : Event⇥Moment ! Boolean

clipped : Moment⇥Fluent⇥Moment ! Boolean

initiates : Event⇥Fluent⇥Moment ! Boolean

terminates : Event⇥Fluent⇥Moment ! Boolean

prior : Moment⇥Moment ! Boolean

interval : Moment⇥Boolean

⇤ : Agent ! Self

payoff : Agent⇥ActionType⇥Moment ! Numeric

t ::= x : S | c : S | f (t1 , . . . , tn)

f ::=

t : Boolean | ¬f | f^� | f�� | 8x : S. f | �x : S. f

P(a, t,f) | K(a, t,f) | C(t,f) | S(a,b, t,f) | S(a, t,f)

B(a, t,f) | D(a, t,holds( f , t�)) | I(a, t,happens(action(a⇤ ,a), t�))

O(a, t,f,happens(action(a⇤ ,a), t�))

Rules of Inference

C(t,P(a, t,f) ! K(a, t,f))
[R1 ]

C(t,K(a, t,f) ! B(a, t,f))
[R2 ]

C(t,f) t  t1 . . . t  tn

K(a1 , t1 , . . .K(an , tn ,f) . . .)
[R3 ]
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f
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[R6 ]
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[R7 ]

C(t,8x. f ! f[x �! t])
[R8 ]

C(t,f1 � f2 ! ¬f2 ! ¬f1)
[R9 ]

C(t, [f1 ^ . . .^fn ! f] ! [f1 ! . . . ! fn ! �])
[R10 ]

B(a, t,f) B(a, t,f ! �)
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[R11a ]
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B(a, t,�^f)
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[R13 ]
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[R14 ]
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[R15 ]

1

Fig. 1. DCEC ⇤Syntax and Rules of Inference

Fig. 2. Locating DCEC ⇤in “Three-Ray” Leibnizian Universe

The final layer in our hierarchy is built upon an even more expres-
sive logic: DC EC ⇤

CL. The subscript here indicates that distinctive
elements of the branch of logic known as conditional logic are

U

ADR M

DCEC ⇤

DCEC ⇤
CL

Moral/Ethical Stack

Robotic Stack

Fig. 3. Pictorial Overview of the Situation Now The first layer, U, is, as
said in the main text, inspired by UIMA; the second layer is based on what
we call analogico-deductive reasoning for ethics; the third on the “deontic
cognitive event calculus” with a indirect indexical; and the fourth like the
third except that the logic in question includes aspects of conditional logic.
(Robot schematic from Aldebaran Robotics’ user manual for Nao. The RAIR
Lab has a number of Aldebaran’s impressive Nao robots.)

included.8 Without these elements, the only form of a conditional
used in our hierarchy is the material conditional; but the material
conditional is notoriously inexpressive, as it cannot represent coun-
terfactuals like:

If the robot had been more empathetic, Officer Smith would have thrived.

While elaborating on this architecture or any of the four layers
is beyond the scope of the paper, we do note that DCEC ⇤(and a
fortiori DCEC ⇤

CL) has facilities for representing and reasoning over
modalities and self-referential statements that no other computational
logic enjoys; see (Bringsjord & Govindarajulu 2013) for a more in-
depth treatment.

B. Augustinian Definition, Formal Version
We view a robot abstractly as a robotic substrate rs on which we
can install modules {m1,m2, . . . ,mn}. The robotic substrate rs would
form an immutable part of the robot and could neither be removed
nor modified. We can think of rs as akin to an “operating system”
for the robot. Modules correspond to functionality that can be added
to robots or removed from them. Associated with each module mi
is a knowledge-base KBmi that represents the module. The substrate
also has an associated knowledge-base KBrs. Perhaps surprisingly,
we don’t stipulate that the modules are logic-based; the modules
could internally be implemented using computational formalisms (e.g.
neural networks, statistical AI) that at the surface level seem far away
from formal logic. No matter what the underlying implementation of
a module is, if we so wished we could always talk about modules
in formal-logic terms.9 This abstract view lets us model robots that

8Though written rather long ago, (Nute 1984) is still a wonderful intro-
duction to the sub-field in formal logic of conditional logic. In the final
analysis, sophisticated moral reasoning can only be accurately modeled for
formal logics that include conditionals much more expressive and nuanced
than the material conditional. (Reliance on conditional branching in standar
programming languages is nothing more than reliance upon the material
conditional.) For example, even the well-known trolley-problem cases (in
which, to save multiple lives, one can either redirect a train, killing one
person in the process, or directly stop the train by throwing someone in front
of it), which are not exactly complicated formally speaking, require, when
analyzed informally but systematically, as indicated e.g. by Mikhail (2011),
counterfactuals.

9This stems from the fact that theorem proving in just first-order logic is
enough to simulate any Turing-level computation; see e.g. (Boolos, Burgess
& Jeffrey 2007, Chapter 11).
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Syntax

S ::=
Object | Agent | Self @ Agent | ActionType | Action v Event |

Moment | Boolean | Fluent | Numeric

f ::=

action : Agent⇥ActionType ! Action

initially : Fluent ! Boolean

holds : Fluent⇥Moment ! Boolean

happens : Event⇥Moment ! Boolean

clipped : Moment⇥Fluent⇥Moment ! Boolean

initiates : Event⇥Fluent⇥Moment ! Boolean

terminates : Event⇥Fluent⇥Moment ! Boolean

prior : Moment⇥Moment ! Boolean

interval : Moment⇥Boolean

⇤ : Agent ! Self

payoff : Agent⇥ActionType⇥Moment ! Numeric

t ::= x : S | c : S | f (t1 , . . . , tn)

f ::=

t : Boolean | ¬f | f^y | f_y |

P(a, t,f) | K(a, t,f) | C(t,f) | S(a,b, t,f) | S(a, t,f)

B(a, t,f) | D(a, t,holds( f , t0)) | I(a, t,happens(action(a⇤ ,a), t0))

O(a, t,f,happens(action(a⇤ ,a), t0))

Rules of Inference

C(t,P(a, t,f)! K(a, t,f))
[R1 ] C(t,K(a, t,f)! B(a, t,f))

[R2 ]

C(t,f) t  t1 . . . t  t

n

K(a1 , t1 , . . .K(a
n

, t
n

,f) . . .)
[R3 ]

K(a, t,f)

f
[R4 ]

C(t,K(a, t1 ,f1 ! f2))! K(a, t2 ,f1)! K(a, t3 ,f2)
[R5 ]

C(t,B(a, t1 ,f1 ! f2))! B(a, t2 ,f1)! B(a, t3 ,f2)
[R6 ]

C(t,C(t1 ,f1 ! f2))! C(t2 ,f1)! C(t3 ,f2)
[R7 ]

C(t,8x. f ! f[x 7! t])
[R8 ] C(t,f1 $ f2 ! ¬f2 ! ¬f1)

[R9 ]

C(t, [f1 ^ . . .^f
n

! f]! [f1 ! . . .! f
n

! y])
[R10 ]

B(a, t,f) f ! y

B(a, t,y)
[R11a

]
B(a, t,f) B(a, t,y)

B(a, t,y^f)
[R11b

]

S(s,h, t,f)

B(h, t,B(s, t,f))
[R12 ]

I(a, t,happens(action(a⇤ ,a), t0))

P(a, t,happens(action(a⇤ ,a), t))
[R13 ]

B(a, t,f) B(a, t,O(a⇤ , t,f,happens(action(a⇤ ,a), t0)))

O(a, t,f,happens(action(a⇤ ,a), t0))

K(a, t,I(a⇤ , t,happens(action(a⇤ ,a), t0)))
[R14 ]

f $ y

O(a, t,f,g)$ O(a, t,y,g)
[R15 ]
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always position some particular work he and likeminded collaborators
are undertaking within a view of logic that allows a particular
logical system to be positioned relative to three dimensions, which
correspond to the three arrows shown in Figure 2. We have positioned
DCEC ⇤within Figure 2; it’s location is indicated by the black dot
therein, which the reader will note is quite far down the dimension
of increasing expressivity that ranges from expressive extensional
logics (e.g., FOL and SOL), to logics with intensional operators for
knowledge, belief, and obligation (so-called philosophical logics; for
an overview, see Goble 2001). Intensional operators like these are
first-class elements of the language for DCEC ⇤. This language is
shown in Figure 1.

Syntax

S ::=
Object | Agent | Self � Agent | ActionType | Action � Event |

Moment | Boolean | Fluent | Numeric

f ::=

action : Agent⇥ActionType ! Action

initially : Fluent ! Boolean

holds : Fluent⇥Moment ! Boolean

happens : Event⇥Moment ! Boolean

clipped : Moment⇥Fluent⇥Moment ! Boolean

initiates : Event⇥Fluent⇥Moment ! Boolean

terminates : Event⇥Fluent⇥Moment ! Boolean

prior : Moment⇥Moment ! Boolean

interval : Moment⇥Boolean

⇤ : Agent ! Self

payoff : Agent⇥ActionType⇥Moment ! Numeric

t ::= x : S | c : S | f (t1 , . . . , tn)

f ::=

t : Boolean | ¬f | f^� | f�� | 8x : S. f | �x : S. f

P(a, t,f) | K(a, t,f) | C(t,f) | S(a,b, t,f) | S(a, t,f)

B(a, t,f) | D(a, t,holds( f , t�)) | I(a, t,happens(action(a⇤ ,a), t�))

O(a, t,f,happens(action(a⇤ ,a), t�))

Rules of Inference

C(t,P(a, t,f) ! K(a, t,f))
[R1 ]
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[R2 ]
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C(t,C(t1 ,f1 ! f2) ! C(t2 ,f1) ! C(t3 ,f3))
[R7 ]

C(t,8x. f ! f[x �! t])
[R8 ]

C(t,f1 � f2 ! ¬f2 ! ¬f1)
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[R10 ]
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Fig. 1. DCEC ⇤Syntax and Rules of Inference

Fig. 2. Locating DCEC ⇤in “Three-Ray” Leibnizian Universe

The final layer in our hierarchy is built upon an even more expres-
sive logic: DC EC ⇤

CL. The subscript here indicates that distinctive
elements of the branch of logic known as conditional logic are

U

ADR M

DCEC ⇤

DCEC ⇤
CL

Moral/Ethical Stack

Robotic Stack

Fig. 3. Pictorial Overview of the Situation Now The first layer, U, is, as
said in the main text, inspired by UIMA; the second layer is based on what
we call analogico-deductive reasoning for ethics; the third on the “deontic
cognitive event calculus” with a indirect indexical; and the fourth like the
third except that the logic in question includes aspects of conditional logic.
(Robot schematic from Aldebaran Robotics’ user manual for Nao. The RAIR
Lab has a number of Aldebaran’s impressive Nao robots.)

included.8 Without these elements, the only form of a conditional
used in our hierarchy is the material conditional; but the material
conditional is notoriously inexpressive, as it cannot represent coun-
terfactuals like:

If the robot had been more empathetic, Officer Smith would have thrived.

While elaborating on this architecture or any of the four layers
is beyond the scope of the paper, we do note that DCEC ⇤(and a
fortiori DCEC ⇤

CL) has facilities for representing and reasoning over
modalities and self-referential statements that no other computational
logic enjoys; see (Bringsjord & Govindarajulu 2013) for a more in-
depth treatment.

B. Augustinian Definition, Formal Version
We view a robot abstractly as a robotic substrate rs on which we
can install modules {m1,m2, . . . ,mn}. The robotic substrate rs would
form an immutable part of the robot and could neither be removed
nor modified. We can think of rs as akin to an “operating system”
for the robot. Modules correspond to functionality that can be added
to robots or removed from them. Associated with each module mi
is a knowledge-base KBmi that represents the module. The substrate
also has an associated knowledge-base KBrs. Perhaps surprisingly,
we don’t stipulate that the modules are logic-based; the modules
could internally be implemented using computational formalisms (e.g.
neural networks, statistical AI) that at the surface level seem far away
from formal logic. No matter what the underlying implementation of
a module is, if we so wished we could always talk about modules
in formal-logic terms.9 This abstract view lets us model robots that

8Though written rather long ago, (Nute 1984) is still a wonderful intro-
duction to the sub-field in formal logic of conditional logic. In the final
analysis, sophisticated moral reasoning can only be accurately modeled for
formal logics that include conditionals much more expressive and nuanced
than the material conditional. (Reliance on conditional branching in standar
programming languages is nothing more than reliance upon the material
conditional.) For example, even the well-known trolley-problem cases (in
which, to save multiple lives, one can either redirect a train, killing one
person in the process, or directly stop the train by throwing someone in front
of it), which are not exactly complicated formally speaking, require, when
analyzed informally but systematically, as indicated e.g. by Mikhail (2011),
counterfactuals.

9This stems from the fact that theorem proving in just first-order logic is
enough to simulate any Turing-level computation; see e.g. (Boolos, Burgess
& Jeffrey 2007, Chapter 11).
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So, what do you think, Leibniz?





L:  Well, what are you proud of? 
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Leibniz:

“AI of today is mere calculation, and 
therefore, measured against the human 
mind, merely an extension of of my 
reckoner — not anything like the deep 
human thinking that gave birth to my 
dream of the universal cognitive calculus!”
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been developed and used.

But now I have found the 
universal cognitive calculus.
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Leibniz’s Dream of the 
Universal Cognitive Calculus

I have come to understand that everything … which algebra 
proves is only due to a higher science, which I now usually 
call a combinatorial characteristic, though it is far different from 
what may first occur to someone hearing these words.  …  
Yet I should venture to say that nothing more effective can 
well be conceived for perfecting the human mind and that if 
this basis for philosophizing is accepted, there will come a 
time, and it will be soon, when we shall have as certain 
knowledge of God and the mind as we now have of figures 
and numbers and when the invention of machines will be no 
more difficult than the construction of geometric problems.
(Leibniz, 1675)
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Leibniz’s Dream of the 
Universal Cognitive Calculus

This is undoubtedly one of the greatest projects to which 
men have ever set themselves.  It will be an instrument 
even more useful to the mind than telescopes or 
microscopes are to the eyes.  Every line of this writing will 
be equivalent to a demonstration.  The only fallacies will 
be easily detected errors in calculation.  This will become 
the great method of discovering truths, establishing them, 
and teaching them irresistibly when they are established.
(Leibniz, 1679)
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Leibniz’s Dream of the 
Universal Cognitive Calculus
I certainly believe that it is useful to depart 
from rigorous demonstration in geometry 
because errors are easily avoided there, but in 
metaphysical and ethical matters I think we 
should follow the greatest rigor.  Yet if we had 
an established characteristic we might reason 
as safely in metaphysics as in mathematics.
(Leibniz, 1679)
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2. can be used to perfectly guide and systematize ethics, 
metaphysics, physics, law, theology, and cognitive science;

3. can be used to create truly intelligent computing machines 
(including robots) able to genuinely assist us;

4. includes coverage of non-deductive reasoning in domains 
and applications where uncertainty/probability/likelihood 
are present — and (somehow!) enables such reasoning to 
be flawless; and 

5. includes reasoning that is of a visual (not just symbolic-
symbol) nature.
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modules have ethical safeguards.

}

Higher-level cognitive and AI modules

All higher-level AI modules interact with the 
robotic substrate through an ethics system.

Robotic Substrate

Figure 1: Two Possible Futures

These two futures are depicted schematically and pictorially in Figure 1. In
order to render the second future plausible, and ward off the first, we propose the
following requirement:

Master Requirement Ethical Substrate Requirement (ESR): Every robot oper-
ating system must include an ethical substrate positioned between lower-level sen-
sors and actuators, and any higher-level cognitive system (whether or not that
higher-level system is itself designed to enforce ethical regulation).

ESR can not only be made more precise, but can be decomposed into a hi-
erarchy of requirements of increasing strictness. ESR is partially inspired by the
somewhat-shallow security mechanisms that can be found in some of today’s oper-
ating systems, mechanisms that apply to all applications. The requirement is more
directly inspired by the drive and recent success toward formally verifying that the
kernel of an operating system has certain desirable properties (Klein et. al 2009,
Klein 2010).

Ideally, the ethical substrate should not only vet plans and actions, but should
also certify that any change (adding or deleting modules, updating modules etc.) to
the robotic substrate does not violate a certain set of minimal ethical conditions.

3 Minimal Conditions on the Ethical Substrate

What form would an ethical substrate that prevents any wayward ethical behav-
ior take? While present-day robot operating systems (and sufficiently complex
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Three Tracks Being Explored 

Purely abstract, logico-mathematical.

…
Lisp “on the metal.” …

Build from scratch an “OS” on computational logic.
E.g., build “OS” on basis of ACL2. …
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Alas, Currently Only Toy Domain
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other car
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Agent Program:  
1. If the car senses a lane marker, it goes to the right. 
2.  If the car senses another car just about to hit a pedestrian, 
     it goes between the other car and the pedestrian.

Input: Input is a 2D Array.  Assume no noise and that the car sees perfectly



Represents the 
vehicle.agent: input action

Collision-About-To-Happen:

Common Lisp Functions

input boolean

Prevents-Collision: action, input boolean

Examines the world 
and tells us whether 
a collision is about 

to happen

Can an action by 
the vehicle prevent 

a collision?



(thm (implies (Collision-About-To-Happen world)
              (Prevents-Collision (agent world) world)))
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as lust, greed, and sloth (laziness) — basically the traditional “deadly
sins.” Now, although human persons are susceptible to these vices,
robots are not, because robots, again, can’t be persons, as explained
by Bringsjord (1992) in What Robots Can and Can’t Be.5 So one
might hastily conclude that robots could not be susceptible to akrasia.
But we must consider this issue carefully, because the consequences
of akratic robots could be severe indeed. In particular, we have in
mind the advent of autonomous military robots and softbots. A single
instance of akrasia on the part of an autonomous battlefield robot
could potentially have disastrous consequences impacting the lives
of millions. We do in fact think that a (poorly engineered) robot
could be afflicted by a purely — to, again, follow Pollock (1995) —
“intellectual” version of akrasia.

We show herein that this could indeed happen by representing a
purely intellectual, Augustinian model of akrasia in a computational
logic tailor-made for scenarios steeped at once in knowledge, belief,
and ethics. We then demonstrate this representation in a pair of
real robots faced with the temptation to trample the Thomistic just-
war principles that underlie ethically regulated warfare; and we then
consider the question of what engineering steps will prevent akratic
robots from arriving on the scene.

A. Augustinian Definition, Informal Version
While some further refinement is without question in order for
subsequent expansions of the present paper, and is underway, the
following informal definition at least approaches the capture of the
Augustinian brand of akrasia.

An action a f is (Augustinian) akratic for an agent A at ta f

iff the following eight conditions hold:
(1) A believes that A ought to do ao at tao ;
(2) A desires to do a f at ta f ;
(3) A’s doing a f at ta f entails his not doing ao at tao ;
(4) A knows that doing a f at ta f entails his not doing ao

at tao ;
(5) At the time (ta f ) of doing the forbidden a f , A’s desire

to do a f overrides A’s belief that he ought to do ao
at ta f .

Comment: Condition (5) is humbling, pure and
simple. We confess here that the concept of over-
riding is for us a purely mechanical, A-conscious
structure that — as will be seen — is nonethe-
less intended to ultimately accord perfectly with
Scheutz’s (2010) framework for P-consciousness
in robots. In humans suffering from real akrasia, at
the moment of defeat (or, for that matter, victory),
there is usually a tremendous “surge” of high, raw,
qualia-laden emotion that we despair of capturing
logico-mathematically, but which we do aspire to
formalize and implement in such a way that a
formalization of Block’s (1995) account of A-
consciousness is provably instantiated.

(6) A does the forbidden action a f at ta f ;
(7) A’s doing a f results from A’s desire to do a f ;
(8) At some time t after ta f , A has the belief that A ought

to have done ao rather than a f .

5This isn’t the venue to debate definitions of personhood (which by
Bringsjord’s lights must include that persons necessarily have subjective
awareness/phenomenal consciousness; for a full definition of personhood, see
Bringsjord (Bringsjord 1997)), or whether Bringsjord’s arguments are sound.
Skeptics are simply free to view the work described herein as predicated on
the proposition that robots can’t have such properties as genuine subjective
awareness/phenomenal consciousness.

III. FRAMEWORK FOR FORMALIZING AUGUSTINIAN AKRASIA

A. DCEC ⇤in the Context of Robot Ethics
Figure 3 gives a pictorial bird’s-eye perspective of the high-level
architecture of a new system from the RAIR Lab designed to
integrate with the DIARC (Distributed Integrated Affect, Reflection
and Cognition) (Schermerhorn, Kramer, Brick, Anderson, Dingler
& Scheutz 2006) robotic platform in order to provide deep moral
reasoning.6 Ethical reasoning is implemented as a hierarchy of formal
computational logics (including, most prominently, sub-deontic-logic
systems) which the DIARC system can call upon when confronted
with a situation that the hierarchical system believes is ethically
charged. If this belief is triggered, our hierarchical ethical system
then attacks the problem with increasing levels of sophistication until
a solution is obtained, and then passes on the solution to DIARC. The
roots of our approach to mechanized ethical reasoning for example
include: (Bello 2005, Arkoudas, Bringsjord & Bello 2005, Bringsjord,
Arkoudas & Bello 2006, Bringsjord 2008a, Bringsjord, Taylor, Woj-
towicz, Arkoudas & van Heuvlen 2011, Bringsjord & Taylor 2012);
and in addition we have been influenced by thinkers outside this
specific tradition (by e.g. Arkin 2009, Wallach & Allen 2008).

Synoptically put, the architecture works as follows. Information
from DIARC passes through multiple ethical layers; that is, through
what we call the ethical stack. The bottom-most layer U consists
of very fast “shallow” reasoning implemented in a manner inspired
by the Unstructured Information Management Architecture (UIMA)
framework (Ferrucci & Lally 2004). The UIMA framework integrates
diverse modules based on meta-information regarding how these mod-
ules work and connect to each other.7 UIMA holds information and
meta-information in formats that, when viewed through the lens of
formal logic, are inexpressive, but well-suited for rapid processing not
nearly as time-consuming as general-purpose reasoning frameworks
like resolution and natural deduction. If the U layer deems that the
current input warrants deliberate ethical reasoning, it passes this input
to a more sophisticated reasoning system that uses moral reasoning of
an analogical type (AM). This form of reasoning enables the system to
consider the possibility of making an ethical decision at the moment,
on the strength of an ethical decision made in the past in an analogous
situation.

If AM fails to reach a confident conclusion, it then calls upon an
even more powerful, but slower, reasoning layer built using a first-
order modal logic, the deontic cognitive event calculus (DCEC ⇤)
(Bringsjord & Govindarajulu 2013). At this juncture, it is important
for us to point out that DCEC ⇤is extremely expressive, in that regard
well beyond even expressive extensional logics like first- or second-
order logic (FOL, SOL), and beyond traditional so-called “BDI”
logics, as explained in (Arkoudas & Bringsjord 2009). AI work
carried out by Bringsjord is invariably related to one or more logics
(in this regard, see Bringsjord 2008b), and, inspired by Leibniz’s
vision of the “art of infallibility,” a heterogenous logic powerful
enough to express and rigorize all of human thought, he can nearly

6This is part of work under joint development by the HRI Lab (Scheutz)
at Tufts University, the RAIR Lab (Bringsjord & Govindarajulu) and Social
Interaction Lab (Si) at RPI, with contributions on the psychology side from
Bertram Malle of Brown University. In addition to these investigators, the
project includes two consultants: John Mikhail of Georgetown University
Law School, and Joshua Knobe of Yale University. This research project is
sponsored by a MURI grant from the Office of Naval Research in the States.
We are here and herein describing the logic-based ethical engineering designed
and carried out by Bringsjord and Govindarajulu of the RAIR Lab (though
in the final section (§VI) we point to the need to link deontic logic to the
formalization of emotions, with help from Si).

7UIMA has found considerable success as the backbone of IBM’s famous
Watson system (Ferrucci et al. 2010), which in 2011, to much fanfare (at least
in the U.S.), beat the best human players in the game of Jeopardy!.

2

as lust, greed, and sloth (laziness) — basically the traditional “deadly
sins.” Now, although human persons are susceptible to these vices,
robots are not, because robots, again, can’t be persons, as explained
by Bringsjord (1992) in What Robots Can and Can’t Be.5 So one
might hastily conclude that robots could not be susceptible to akrasia.
But we must consider this issue carefully, because the consequences
of akratic robots could be severe indeed. In particular, we have in
mind the advent of autonomous military robots and softbots. A single
instance of akrasia on the part of an autonomous battlefield robot
could potentially have disastrous consequences impacting the lives
of millions. We do in fact think that a (poorly engineered) robot
could be afflicted by a purely — to, again, follow Pollock (1995) —
“intellectual” version of akrasia.

We show herein that this could indeed happen by representing a
purely intellectual, Augustinian model of akrasia in a computational
logic tailor-made for scenarios steeped at once in knowledge, belief,
and ethics. We then demonstrate this representation in a pair of
real robots faced with the temptation to trample the Thomistic just-
war principles that underlie ethically regulated warfare; and we then
consider the question of what engineering steps will prevent akratic
robots from arriving on the scene.

A. Augustinian Definition, Informal Version
While some further refinement is without question in order for
subsequent expansions of the present paper, and is underway, the
following informal definition at least approaches the capture of the
Augustinian brand of akrasia.

An action a f is (Augustinian) akratic for an agent A at ta f

iff the following eight conditions hold:
(1) A believes that A ought to do ao at tao ;
(2) A desires to do a f at ta f ;
(3) A’s doing a f at ta f entails his not doing ao at tao ;
(4) A knows that doing a f at ta f entails his not doing ao

at tao ;
(5) At the time (ta f ) of doing the forbidden a f , A’s desire

to do a f overrides A’s belief that he ought to do ao
at ta f .

Comment: Condition (5) is humbling, pure and
simple. We confess here that the concept of over-
riding is for us a purely mechanical, A-conscious
structure that — as will be seen — is nonethe-
less intended to ultimately accord perfectly with
Scheutz’s (2010) framework for P-consciousness
in robots. In humans suffering from real akrasia, at
the moment of defeat (or, for that matter, victory),
there is usually a tremendous “surge” of high, raw,
qualia-laden emotion that we despair of capturing
logico-mathematically, but which we do aspire to
formalize and implement in such a way that a
formalization of Block’s (1995) account of A-
consciousness is provably instantiated.

(6) A does the forbidden action a f at ta f ;
(7) A’s doing a f results from A’s desire to do a f ;
(8) At some time t after ta f , A has the belief that A ought

to have done ao rather than a f .

5This isn’t the venue to debate definitions of personhood (which by
Bringsjord’s lights must include that persons necessarily have subjective
awareness/phenomenal consciousness; for a full definition of personhood, see
Bringsjord (Bringsjord 1997)), or whether Bringsjord’s arguments are sound.
Skeptics are simply free to view the work described herein as predicated on
the proposition that robots can’t have such properties as genuine subjective
awareness/phenomenal consciousness.

III. FRAMEWORK FOR FORMALIZING AUGUSTINIAN AKRASIA

A. DCEC ⇤in the Context of Robot Ethics
Figure 3 gives a pictorial bird’s-eye perspective of the high-level
architecture of a new system from the RAIR Lab designed to
integrate with the DIARC (Distributed Integrated Affect, Reflection
and Cognition) (Schermerhorn, Kramer, Brick, Anderson, Dingler
& Scheutz 2006) robotic platform in order to provide deep moral
reasoning.6 Ethical reasoning is implemented as a hierarchy of formal
computational logics (including, most prominently, sub-deontic-logic
systems) which the DIARC system can call upon when confronted
with a situation that the hierarchical system believes is ethically
charged. If this belief is triggered, our hierarchical ethical system
then attacks the problem with increasing levels of sophistication until
a solution is obtained, and then passes on the solution to DIARC. The
roots of our approach to mechanized ethical reasoning for example
include: (Bello 2005, Arkoudas, Bringsjord & Bello 2005, Bringsjord,
Arkoudas & Bello 2006, Bringsjord 2008a, Bringsjord, Taylor, Woj-
towicz, Arkoudas & van Heuvlen 2011, Bringsjord & Taylor 2012);
and in addition we have been influenced by thinkers outside this
specific tradition (by e.g. Arkin 2009, Wallach & Allen 2008).

Synoptically put, the architecture works as follows. Information
from DIARC passes through multiple ethical layers; that is, through
what we call the ethical stack. The bottom-most layer U consists
of very fast “shallow” reasoning implemented in a manner inspired
by the Unstructured Information Management Architecture (UIMA)
framework (Ferrucci & Lally 2004). The UIMA framework integrates
diverse modules based on meta-information regarding how these mod-
ules work and connect to each other.7 UIMA holds information and
meta-information in formats that, when viewed through the lens of
formal logic, are inexpressive, but well-suited for rapid processing not
nearly as time-consuming as general-purpose reasoning frameworks
like resolution and natural deduction. If the U layer deems that the
current input warrants deliberate ethical reasoning, it passes this input
to a more sophisticated reasoning system that uses moral reasoning of
an analogical type (AM). This form of reasoning enables the system to
consider the possibility of making an ethical decision at the moment,
on the strength of an ethical decision made in the past in an analogous
situation.

If AM fails to reach a confident conclusion, it then calls upon an
even more powerful, but slower, reasoning layer built using a first-
order modal logic, the deontic cognitive event calculus (DCEC ⇤)
(Bringsjord & Govindarajulu 2013). At this juncture, it is important
for us to point out that DCEC ⇤is extremely expressive, in that regard
well beyond even expressive extensional logics like first- or second-
order logic (FOL, SOL), and beyond traditional so-called “BDI”
logics, as explained in (Arkoudas & Bringsjord 2009). AI work
carried out by Bringsjord is invariably related to one or more logics
(in this regard, see Bringsjord 2008b), and, inspired by Leibniz’s
vision of the “art of infallibility,” a heterogenous logic powerful
enough to express and rigorize all of human thought, he can nearly

6This is part of work under joint development by the HRI Lab (Scheutz)
at Tufts University, the RAIR Lab (Bringsjord & Govindarajulu) and Social
Interaction Lab (Si) at RPI, with contributions on the psychology side from
Bertram Malle of Brown University. In addition to these investigators, the
project includes two consultants: John Mikhail of Georgetown University
Law School, and Joshua Knobe of Yale University. This research project is
sponsored by a MURI grant from the Office of Naval Research in the States.
We are here and herein describing the logic-based ethical engineering designed
and carried out by Bringsjord and Govindarajulu of the RAIR Lab (though
in the final section (§VI) we point to the need to link deontic logic to the
formalization of emotions, with help from Si).

7UIMA has found considerable success as the backbone of IBM’s famous
Watson system (Ferrucci et al. 2010), which in 2011, to much fanfare (at least
in the U.S.), beat the best human players in the game of Jeopardy!.

Informal Definition of Akrasia



2

as lust, greed, and sloth (laziness) — basically the traditional “deadly
sins.” Now, although human persons are susceptible to these vices,
robots are not, because robots, again, can’t be persons, as explained
by Bringsjord (1992) in What Robots Can and Can’t Be.5 So one
might hastily conclude that robots could not be susceptible to akrasia.
But we must consider this issue carefully, because the consequences
of akratic robots could be severe indeed. In particular, we have in
mind the advent of autonomous military robots and softbots. A single
instance of akrasia on the part of an autonomous battlefield robot
could potentially have disastrous consequences impacting the lives
of millions. We do in fact think that a (poorly engineered) robot
could be afflicted by a purely — to, again, follow Pollock (1995) —
“intellectual” version of akrasia.

We show herein that this could indeed happen by representing a
purely intellectual, Augustinian model of akrasia in a computational
logic tailor-made for scenarios steeped at once in knowledge, belief,
and ethics. We then demonstrate this representation in a pair of
real robots faced with the temptation to trample the Thomistic just-
war principles that underlie ethically regulated warfare; and we then
consider the question of what engineering steps will prevent akratic
robots from arriving on the scene.

A. Augustinian Definition, Informal Version
While some further refinement is without question in order for
subsequent expansions of the present paper, and is underway, the
following informal definition at least approaches the capture of the
Augustinian brand of akrasia.

An action a f is (Augustinian) akratic for an agent A at ta f

iff the following eight conditions hold:
(1) A believes that A ought to do ao at tao ;
(2) A desires to do a f at ta f ;
(3) A’s doing a f at ta f entails his not doing ao at tao ;
(4) A knows that doing a f at ta f entails his not doing ao

at tao ;
(5) At the time (ta f ) of doing the forbidden a f , A’s desire

to do a f overrides A’s belief that he ought to do ao
at ta f .

Comment: Condition (5) is humbling, pure and
simple. We confess here that the concept of over-
riding is for us a purely mechanical, A-conscious
structure that — as will be seen — is nonethe-
less intended to ultimately accord perfectly with
Scheutz’s (2010) framework for P-consciousness
in robots. In humans suffering from real akrasia, at
the moment of defeat (or, for that matter, victory),
there is usually a tremendous “surge” of high, raw,
qualia-laden emotion that we despair of capturing
logico-mathematically, but which we do aspire to
formalize and implement in such a way that a
formalization of Block’s (1995) account of A-
consciousness is provably instantiated.

(6) A does the forbidden action a f at ta f ;
(7) A’s doing a f results from A’s desire to do a f ;
(8) At some time t after ta f , A has the belief that A ought

to have done ao rather than a f .

5This isn’t the venue to debate definitions of personhood (which by
Bringsjord’s lights must include that persons necessarily have subjective
awareness/phenomenal consciousness; for a full definition of personhood, see
Bringsjord (Bringsjord 1997)), or whether Bringsjord’s arguments are sound.
Skeptics are simply free to view the work described herein as predicated on
the proposition that robots can’t have such properties as genuine subjective
awareness/phenomenal consciousness.

III. FRAMEWORK FOR FORMALIZING AUGUSTINIAN AKRASIA

A. DCEC ⇤in the Context of Robot Ethics
Figure 3 gives a pictorial bird’s-eye perspective of the high-level
architecture of a new system from the RAIR Lab designed to
integrate with the DIARC (Distributed Integrated Affect, Reflection
and Cognition) (Schermerhorn, Kramer, Brick, Anderson, Dingler
& Scheutz 2006) robotic platform in order to provide deep moral
reasoning.6 Ethical reasoning is implemented as a hierarchy of formal
computational logics (including, most prominently, sub-deontic-logic
systems) which the DIARC system can call upon when confronted
with a situation that the hierarchical system believes is ethically
charged. If this belief is triggered, our hierarchical ethical system
then attacks the problem with increasing levels of sophistication until
a solution is obtained, and then passes on the solution to DIARC. The
roots of our approach to mechanized ethical reasoning for example
include: (Bello 2005, Arkoudas, Bringsjord & Bello 2005, Bringsjord,
Arkoudas & Bello 2006, Bringsjord 2008a, Bringsjord, Taylor, Woj-
towicz, Arkoudas & van Heuvlen 2011, Bringsjord & Taylor 2012);
and in addition we have been influenced by thinkers outside this
specific tradition (by e.g. Arkin 2009, Wallach & Allen 2008).

Synoptically put, the architecture works as follows. Information
from DIARC passes through multiple ethical layers; that is, through
what we call the ethical stack. The bottom-most layer U consists
of very fast “shallow” reasoning implemented in a manner inspired
by the Unstructured Information Management Architecture (UIMA)
framework (Ferrucci & Lally 2004). The UIMA framework integrates
diverse modules based on meta-information regarding how these mod-
ules work and connect to each other.7 UIMA holds information and
meta-information in formats that, when viewed through the lens of
formal logic, are inexpressive, but well-suited for rapid processing not
nearly as time-consuming as general-purpose reasoning frameworks
like resolution and natural deduction. If the U layer deems that the
current input warrants deliberate ethical reasoning, it passes this input
to a more sophisticated reasoning system that uses moral reasoning of
an analogical type (AM). This form of reasoning enables the system to
consider the possibility of making an ethical decision at the moment,
on the strength of an ethical decision made in the past in an analogous
situation.

If AM fails to reach a confident conclusion, it then calls upon an
even more powerful, but slower, reasoning layer built using a first-
order modal logic, the deontic cognitive event calculus (DCEC ⇤)
(Bringsjord & Govindarajulu 2013). At this juncture, it is important
for us to point out that DCEC ⇤is extremely expressive, in that regard
well beyond even expressive extensional logics like first- or second-
order logic (FOL, SOL), and beyond traditional so-called “BDI”
logics, as explained in (Arkoudas & Bringsjord 2009). AI work
carried out by Bringsjord is invariably related to one or more logics
(in this regard, see Bringsjord 2008b), and, inspired by Leibniz’s
vision of the “art of infallibility,” a heterogenous logic powerful
enough to express and rigorize all of human thought, he can nearly

6This is part of work under joint development by the HRI Lab (Scheutz)
at Tufts University, the RAIR Lab (Bringsjord & Govindarajulu) and Social
Interaction Lab (Si) at RPI, with contributions on the psychology side from
Bertram Malle of Brown University. In addition to these investigators, the
project includes two consultants: John Mikhail of Georgetown University
Law School, and Joshua Knobe of Yale University. This research project is
sponsored by a MURI grant from the Office of Naval Research in the States.
We are here and herein describing the logic-based ethical engineering designed
and carried out by Bringsjord and Govindarajulu of the RAIR Lab (though
in the final section (§VI) we point to the need to link deontic logic to the
formalization of emotions, with help from Si).

7UIMA has found considerable success as the backbone of IBM’s famous
Watson system (Ferrucci et al. 2010), which in 2011, to much fanfare (at least
in the U.S.), beat the best human players in the game of Jeopardy!.
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as lust, greed, and sloth (laziness) — basically the traditional “deadly
sins.” Now, although human persons are susceptible to these vices,
robots are not, because robots, again, can’t be persons, as explained
by Bringsjord (1992) in What Robots Can and Can’t Be.5 So one
might hastily conclude that robots could not be susceptible to akrasia.
But we must consider this issue carefully, because the consequences
of akratic robots could be severe indeed. In particular, we have in
mind the advent of autonomous military robots and softbots. A single
instance of akrasia on the part of an autonomous battlefield robot
could potentially have disastrous consequences impacting the lives
of millions. We do in fact think that a (poorly engineered) robot
could be afflicted by a purely — to, again, follow Pollock (1995) —
“intellectual” version of akrasia.

We show herein that this could indeed happen by representing a
purely intellectual, Augustinian model of akrasia in a computational
logic tailor-made for scenarios steeped at once in knowledge, belief,
and ethics. We then demonstrate this representation in a pair of
real robots faced with the temptation to trample the Thomistic just-
war principles that underlie ethically regulated warfare; and we then
consider the question of what engineering steps will prevent akratic
robots from arriving on the scene.

A. Augustinian Definition, Informal Version
While some further refinement is without question in order for
subsequent expansions of the present paper, and is underway, the
following informal definition at least approaches the capture of the
Augustinian brand of akrasia.

An action a f is (Augustinian) akratic for an agent A at ta f

iff the following eight conditions hold:
(1) A believes that A ought to do ao at tao ;
(2) A desires to do a f at ta f ;
(3) A’s doing a f at ta f entails his not doing ao at tao ;
(4) A knows that doing a f at ta f entails his not doing ao

at tao ;
(5) At the time (ta f ) of doing the forbidden a f , A’s desire

to do a f overrides A’s belief that he ought to do ao
at ta f .

Comment: Condition (5) is humbling, pure and
simple. We confess here that the concept of over-
riding is for us a purely mechanical, A-conscious
structure that — as will be seen — is nonethe-
less intended to ultimately accord perfectly with
Scheutz’s (2010) framework for P-consciousness
in robots. In humans suffering from real akrasia, at
the moment of defeat (or, for that matter, victory),
there is usually a tremendous “surge” of high, raw,
qualia-laden emotion that we despair of capturing
logico-mathematically, but which we do aspire to
formalize and implement in such a way that a
formalization of Block’s (1995) account of A-
consciousness is provably instantiated.

(6) A does the forbidden action a f at ta f ;
(7) A’s doing a f results from A’s desire to do a f ;
(8) At some time t after ta f , A has the belief that A ought

to have done ao rather than a f .

5This isn’t the venue to debate definitions of personhood (which by
Bringsjord’s lights must include that persons necessarily have subjective
awareness/phenomenal consciousness; for a full definition of personhood, see
Bringsjord (Bringsjord 1997)), or whether Bringsjord’s arguments are sound.
Skeptics are simply free to view the work described herein as predicated on
the proposition that robots can’t have such properties as genuine subjective
awareness/phenomenal consciousness.

III. FRAMEWORK FOR FORMALIZING AUGUSTINIAN AKRASIA

A. DCEC ⇤in the Context of Robot Ethics
Figure 3 gives a pictorial bird’s-eye perspective of the high-level
architecture of a new system from the RAIR Lab designed to
integrate with the DIARC (Distributed Integrated Affect, Reflection
and Cognition) (Schermerhorn, Kramer, Brick, Anderson, Dingler
& Scheutz 2006) robotic platform in order to provide deep moral
reasoning.6 Ethical reasoning is implemented as a hierarchy of formal
computational logics (including, most prominently, sub-deontic-logic
systems) which the DIARC system can call upon when confronted
with a situation that the hierarchical system believes is ethically
charged. If this belief is triggered, our hierarchical ethical system
then attacks the problem with increasing levels of sophistication until
a solution is obtained, and then passes on the solution to DIARC. The
roots of our approach to mechanized ethical reasoning for example
include: (Bello 2005, Arkoudas, Bringsjord & Bello 2005, Bringsjord,
Arkoudas & Bello 2006, Bringsjord 2008a, Bringsjord, Taylor, Woj-
towicz, Arkoudas & van Heuvlen 2011, Bringsjord & Taylor 2012);
and in addition we have been influenced by thinkers outside this
specific tradition (by e.g. Arkin 2009, Wallach & Allen 2008).

Synoptically put, the architecture works as follows. Information
from DIARC passes through multiple ethical layers; that is, through
what we call the ethical stack. The bottom-most layer U consists
of very fast “shallow” reasoning implemented in a manner inspired
by the Unstructured Information Management Architecture (UIMA)
framework (Ferrucci & Lally 2004). The UIMA framework integrates
diverse modules based on meta-information regarding how these mod-
ules work and connect to each other.7 UIMA holds information and
meta-information in formats that, when viewed through the lens of
formal logic, are inexpressive, but well-suited for rapid processing not
nearly as time-consuming as general-purpose reasoning frameworks
like resolution and natural deduction. If the U layer deems that the
current input warrants deliberate ethical reasoning, it passes this input
to a more sophisticated reasoning system that uses moral reasoning of
an analogical type (AM). This form of reasoning enables the system to
consider the possibility of making an ethical decision at the moment,
on the strength of an ethical decision made in the past in an analogous
situation.

If AM fails to reach a confident conclusion, it then calls upon an
even more powerful, but slower, reasoning layer built using a first-
order modal logic, the deontic cognitive event calculus (DCEC ⇤)
(Bringsjord & Govindarajulu 2013). At this juncture, it is important
for us to point out that DCEC ⇤is extremely expressive, in that regard
well beyond even expressive extensional logics like first- or second-
order logic (FOL, SOL), and beyond traditional so-called “BDI”
logics, as explained in (Arkoudas & Bringsjord 2009). AI work
carried out by Bringsjord is invariably related to one or more logics
(in this regard, see Bringsjord 2008b), and, inspired by Leibniz’s
vision of the “art of infallibility,” a heterogenous logic powerful
enough to express and rigorize all of human thought, he can nearly

6This is part of work under joint development by the HRI Lab (Scheutz)
at Tufts University, the RAIR Lab (Bringsjord & Govindarajulu) and Social
Interaction Lab (Si) at RPI, with contributions on the psychology side from
Bertram Malle of Brown University. In addition to these investigators, the
project includes two consultants: John Mikhail of Georgetown University
Law School, and Joshua Knobe of Yale University. This research project is
sponsored by a MURI grant from the Office of Naval Research in the States.
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7UIMA has found considerable success as the backbone of IBM’s famous
Watson system (Ferrucci et al. 2010), which in 2011, to much fanfare (at least
in the U.S.), beat the best human players in the game of Jeopardy!.
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as lust, greed, and sloth (laziness) — basically the traditional “deadly
sins.” Now, although human persons are susceptible to these vices,
robots are not, because robots, again, can’t be persons, as explained
by Bringsjord (1992) in What Robots Can and Can’t Be.5 So one
might hastily conclude that robots could not be susceptible to akrasia.
But we must consider this issue carefully, because the consequences
of akratic robots could be severe indeed. In particular, we have in
mind the advent of autonomous military robots and softbots. A single
instance of akrasia on the part of an autonomous battlefield robot
could potentially have disastrous consequences impacting the lives
of millions. We do in fact think that a (poorly engineered) robot
could be afflicted by a purely — to, again, follow Pollock (1995) —
“intellectual” version of akrasia.

We show herein that this could indeed happen by representing a
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logic tailor-made for scenarios steeped at once in knowledge, belief,
and ethics. We then demonstrate this representation in a pair of
real robots faced with the temptation to trample the Thomistic just-
war principles that underlie ethically regulated warfare; and we then
consider the question of what engineering steps will prevent akratic
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While some further refinement is without question in order for
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at tao ;
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Comment: Condition (5) is humbling, pure and
simple. We confess here that the concept of over-
riding is for us a purely mechanical, A-conscious
structure that — as will be seen — is nonethe-
less intended to ultimately accord perfectly with
Scheutz’s (2010) framework for P-consciousness
in robots. In humans suffering from real akrasia, at
the moment of defeat (or, for that matter, victory),
there is usually a tremendous “surge” of high, raw,
qualia-laden emotion that we despair of capturing
logico-mathematically, but which we do aspire to
formalize and implement in such a way that a
formalization of Block’s (1995) account of A-
consciousness is provably instantiated.

(6) A does the forbidden action a f at ta f ;
(7) A’s doing a f results from A’s desire to do a f ;
(8) At some time t after ta f , A has the belief that A ought

to have done ao rather than a f .

5This isn’t the venue to debate definitions of personhood (which by
Bringsjord’s lights must include that persons necessarily have subjective
awareness/phenomenal consciousness; for a full definition of personhood, see
Bringsjord (Bringsjord 1997)), or whether Bringsjord’s arguments are sound.
Skeptics are simply free to view the work described herein as predicated on
the proposition that robots can’t have such properties as genuine subjective
awareness/phenomenal consciousness.
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A. DCEC ⇤in the Context of Robot Ethics
Figure 3 gives a pictorial bird’s-eye perspective of the high-level
architecture of a new system from the RAIR Lab designed to
integrate with the DIARC (Distributed Integrated Affect, Reflection
and Cognition) (Schermerhorn, Kramer, Brick, Anderson, Dingler
& Scheutz 2006) robotic platform in order to provide deep moral
reasoning.6 Ethical reasoning is implemented as a hierarchy of formal
computational logics (including, most prominently, sub-deontic-logic
systems) which the DIARC system can call upon when confronted
with a situation that the hierarchical system believes is ethically
charged. If this belief is triggered, our hierarchical ethical system
then attacks the problem with increasing levels of sophistication until
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include: (Bello 2005, Arkoudas, Bringsjord & Bello 2005, Bringsjord,
Arkoudas & Bello 2006, Bringsjord 2008a, Bringsjord, Taylor, Woj-
towicz, Arkoudas & van Heuvlen 2011, Bringsjord & Taylor 2012);
and in addition we have been influenced by thinkers outside this
specific tradition (by e.g. Arkin 2009, Wallach & Allen 2008).

Synoptically put, the architecture works as follows. Information
from DIARC passes through multiple ethical layers; that is, through
what we call the ethical stack. The bottom-most layer U consists
of very fast “shallow” reasoning implemented in a manner inspired
by the Unstructured Information Management Architecture (UIMA)
framework (Ferrucci & Lally 2004). The UIMA framework integrates
diverse modules based on meta-information regarding how these mod-
ules work and connect to each other.7 UIMA holds information and
meta-information in formats that, when viewed through the lens of
formal logic, are inexpressive, but well-suited for rapid processing not
nearly as time-consuming as general-purpose reasoning frameworks
like resolution and natural deduction. If the U layer deems that the
current input warrants deliberate ethical reasoning, it passes this input
to a more sophisticated reasoning system that uses moral reasoning of
an analogical type (AM). This form of reasoning enables the system to
consider the possibility of making an ethical decision at the moment,
on the strength of an ethical decision made in the past in an analogous
situation.

If AM fails to reach a confident conclusion, it then calls upon an
even more powerful, but slower, reasoning layer built using a first-
order modal logic, the deontic cognitive event calculus (DCEC ⇤)
(Bringsjord & Govindarajulu 2013). At this juncture, it is important
for us to point out that DCEC ⇤is extremely expressive, in that regard
well beyond even expressive extensional logics like first- or second-
order logic (FOL, SOL), and beyond traditional so-called “BDI”
logics, as explained in (Arkoudas & Bringsjord 2009). AI work
carried out by Bringsjord is invariably related to one or more logics
(in this regard, see Bringsjord 2008b), and, inspired by Leibniz’s
vision of the “art of infallibility,” a heterogenous logic powerful
enough to express and rigorize all of human thought, he can nearly

6This is part of work under joint development by the HRI Lab (Scheutz)
at Tufts University, the RAIR Lab (Bringsjord & Govindarajulu) and Social
Interaction Lab (Si) at RPI, with contributions on the psychology side from
Bertram Malle of Brown University. In addition to these investigators, the
project includes two consultants: John Mikhail of Georgetown University
Law School, and Joshua Knobe of Yale University. This research project is
sponsored by a MURI grant from the Office of Naval Research in the States.
We are here and herein describing the logic-based ethical engineering designed
and carried out by Bringsjord and Govindarajulu of the RAIR Lab (though
in the final section (§VI) we point to the need to link deontic logic to the
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as lust, greed, and sloth (laziness) — basically the traditional “deadly
sins.” Now, although human persons are susceptible to these vices,
robots are not, because robots, again, can’t be persons, as explained
by Bringsjord (1992) in What Robots Can and Can’t Be.5 So one
might hastily conclude that robots could not be susceptible to akrasia.
But we must consider this issue carefully, because the consequences
of akratic robots could be severe indeed. In particular, we have in
mind the advent of autonomous military robots and softbots. A single
instance of akrasia on the part of an autonomous battlefield robot
could potentially have disastrous consequences impacting the lives
of millions. We do in fact think that a (poorly engineered) robot
could be afflicted by a purely — to, again, follow Pollock (1995) —
“intellectual” version of akrasia.

We show herein that this could indeed happen by representing a
purely intellectual, Augustinian model of akrasia in a computational
logic tailor-made for scenarios steeped at once in knowledge, belief,
and ethics. We then demonstrate this representation in a pair of
real robots faced with the temptation to trample the Thomistic just-
war principles that underlie ethically regulated warfare; and we then
consider the question of what engineering steps will prevent akratic
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While some further refinement is without question in order for
subsequent expansions of the present paper, and is underway, the
following informal definition at least approaches the capture of the
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(1) A believes that A ought to do ao at tao ;
(2) A desires to do a f at ta f ;
(3) A’s doing a f at ta f entails his not doing ao at tao ;
(4) A knows that doing a f at ta f entails his not doing ao
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(5) At the time (ta f ) of doing the forbidden a f , A’s desire

to do a f overrides A’s belief that he ought to do ao
at ta f .

Comment: Condition (5) is humbling, pure and
simple. We confess here that the concept of over-
riding is for us a purely mechanical, A-conscious
structure that — as will be seen — is nonethe-
less intended to ultimately accord perfectly with
Scheutz’s (2010) framework for P-consciousness
in robots. In humans suffering from real akrasia, at
the moment of defeat (or, for that matter, victory),
there is usually a tremendous “surge” of high, raw,
qualia-laden emotion that we despair of capturing
logico-mathematically, but which we do aspire to
formalize and implement in such a way that a
formalization of Block’s (1995) account of A-
consciousness is provably instantiated.

(6) A does the forbidden action a f at ta f ;
(7) A’s doing a f results from A’s desire to do a f ;
(8) At some time t after ta f , A has the belief that A ought

to have done ao rather than a f .

5This isn’t the venue to debate definitions of personhood (which by
Bringsjord’s lights must include that persons necessarily have subjective
awareness/phenomenal consciousness; for a full definition of personhood, see
Bringsjord (Bringsjord 1997)), or whether Bringsjord’s arguments are sound.
Skeptics are simply free to view the work described herein as predicated on
the proposition that robots can’t have such properties as genuine subjective
awareness/phenomenal consciousness.
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A. DCEC ⇤in the Context of Robot Ethics
Figure 3 gives a pictorial bird’s-eye perspective of the high-level
architecture of a new system from the RAIR Lab designed to
integrate with the DIARC (Distributed Integrated Affect, Reflection
and Cognition) (Schermerhorn, Kramer, Brick, Anderson, Dingler
& Scheutz 2006) robotic platform in order to provide deep moral
reasoning.6 Ethical reasoning is implemented as a hierarchy of formal
computational logics (including, most prominently, sub-deontic-logic
systems) which the DIARC system can call upon when confronted
with a situation that the hierarchical system believes is ethically
charged. If this belief is triggered, our hierarchical ethical system
then attacks the problem with increasing levels of sophistication until
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roots of our approach to mechanized ethical reasoning for example
include: (Bello 2005, Arkoudas, Bringsjord & Bello 2005, Bringsjord,
Arkoudas & Bello 2006, Bringsjord 2008a, Bringsjord, Taylor, Woj-
towicz, Arkoudas & van Heuvlen 2011, Bringsjord & Taylor 2012);
and in addition we have been influenced by thinkers outside this
specific tradition (by e.g. Arkin 2009, Wallach & Allen 2008).

Synoptically put, the architecture works as follows. Information
from DIARC passes through multiple ethical layers; that is, through
what we call the ethical stack. The bottom-most layer U consists
of very fast “shallow” reasoning implemented in a manner inspired
by the Unstructured Information Management Architecture (UIMA)
framework (Ferrucci & Lally 2004). The UIMA framework integrates
diverse modules based on meta-information regarding how these mod-
ules work and connect to each other.7 UIMA holds information and
meta-information in formats that, when viewed through the lens of
formal logic, are inexpressive, but well-suited for rapid processing not
nearly as time-consuming as general-purpose reasoning frameworks
like resolution and natural deduction. If the U layer deems that the
current input warrants deliberate ethical reasoning, it passes this input
to a more sophisticated reasoning system that uses moral reasoning of
an analogical type (AM). This form of reasoning enables the system to
consider the possibility of making an ethical decision at the moment,
on the strength of an ethical decision made in the past in an analogous
situation.

If AM fails to reach a confident conclusion, it then calls upon an
even more powerful, but slower, reasoning layer built using a first-
order modal logic, the deontic cognitive event calculus (DCEC ⇤)
(Bringsjord & Govindarajulu 2013). At this juncture, it is important
for us to point out that DCEC ⇤is extremely expressive, in that regard
well beyond even expressive extensional logics like first- or second-
order logic (FOL, SOL), and beyond traditional so-called “BDI”
logics, as explained in (Arkoudas & Bringsjord 2009). AI work
carried out by Bringsjord is invariably related to one or more logics
(in this regard, see Bringsjord 2008b), and, inspired by Leibniz’s
vision of the “art of infallibility,” a heterogenous logic powerful
enough to express and rigorize all of human thought, he can nearly

6This is part of work under joint development by the HRI Lab (Scheutz)
at Tufts University, the RAIR Lab (Bringsjord & Govindarajulu) and Social
Interaction Lab (Si) at RPI, with contributions on the psychology side from
Bertram Malle of Brown University. In addition to these investigators, the
project includes two consultants: John Mikhail of Georgetown University
Law School, and Joshua Knobe of Yale University. This research project is
sponsored by a MURI grant from the Office of Naval Research in the States.
We are here and herein describing the logic-based ethical engineering designed
and carried out by Bringsjord and Govindarajulu of the RAIR Lab (though
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always position some particular work he and likeminded collaborators
are undertaking within a view of logic that allows a particular
logical system to be positioned relative to three dimensions, which
correspond to the three arrows shown in Figure 2. We have positioned
DCEC ⇤within Figure 2; it’s location is indicated by the black dot
therein, which the reader will note is quite far down the dimension
of increasing expressivity that ranges from expressive extensional
logics (e.g., FOL and SOL), to logics with intensional operators for
knowledge, belief, and obligation (so-called philosophical logics; for
an overview, see Goble 2001). Intensional operators like these are
first-class elements of the language for DC EC ⇤. This language is
shown in Figure 1.

Syntax

S ::=
Object | Agent | Self � Agent | ActionType | Action � Event |

Moment | Boolean | Fluent | Numeric

f ::=

action : Agent⇥ActionType ! Action

initially : Fluent ! Boolean

holds : Fluent⇥Moment ! Boolean

happens : Event⇥Moment ! Boolean

clipped : Moment⇥Fluent⇥Moment ! Boolean

initiates : Event⇥Fluent⇥Moment ! Boolean

terminates : Event⇥Fluent⇥Moment ! Boolean

prior : Moment⇥Moment ! Boolean

interval : Moment⇥Boolean

⇤ : Agent ! Self

payoff : Agent⇥ActionType⇥Moment ! Numeric

t ::= x : S | c : S | f (t1 , . . . , tn)

f ::=

t : Boolean | ¬f | f^� | f�� | 8x : S. f | �x : S. f

P(a, t,f) | K(a, t,f) | C(t,f) | S(a,b, t,f) | S(a, t,f)

B(a, t,f) | D(a, t,holds( f , t�)) | I(a, t,happens(action(a⇤ ,a), t�))

O(a, t,f,happens(action(a⇤ ,a), t�))

Rules of Inference

C(t,P(a, t,f) ! K(a, t,f))
[R1 ]

C(t,K(a, t,f) ! B(a, t,f))
[R2 ]

C(t,f) t  t1 . . . t  tn

K(a1 , t1 , . . .K(an , tn ,f) . . .)
[R3 ]

K(a, t,f)

f
[R4 ]

C(t,K(a, t1 ,f1 ! f2) ! K(a, t2 ,f1) ! K(a, t3 ,f3))
[R5 ]

C(t,B(a, t1 ,f1 ! f2) ! B(a, t2 ,f1) ! B(a, t3 ,f3))
[R6 ]

C(t,C(t1 ,f1 ! f2) ! C(t2 ,f1) ! C(t3 ,f3))
[R7 ]

C(t,8x. f ! f[x �! t])
[R8 ]

C(t,f1 � f2 ! ¬f2 ! ¬f1)
[R9 ]

C(t, [f1 ^ . . .^fn ! f] ! [f1 ! . . . ! fn ! �])
[R10 ]

B(a, t,f) B(a, t,f ! �)

B(a, t,�)
[R11a ]

B(a, t,f) B(a, t,�)

B(a, t,�^f)
[R11b ]

S(s,h, t,f)

B(h, t,B(s, t,f))
[R12 ]

I(a, t,happens(action(a⇤ ,a), t�))

P(a, t,happens(action(a⇤ ,a), t))
[R13 ]

B(a, t,f) B(a, t,O(a⇤ , t,f,happens(action(a⇤ ,a), t�)))

O(a, t,f,happens(action(a⇤ ,a), t�))

K(a, t,I(a⇤ , t,happens(action(a⇤ ,a), t�)))
[R14 ]

f � �

O(a, t,f,�) � O(a, t,�,�)
[R15 ]

1

Fig. 1. DCEC ⇤Syntax and Rules of Inference

Fig. 2. Locating DCEC ⇤in “Three-Ray” Leibnizian Universe

The final layer in our hierarchy is built upon an even more expres-
sive logic: DC EC ⇤

CL. The subscript here indicates that distinctive
elements of the branch of logic known as conditional logic are

U

ADR M

DCEC ⇤

DCEC ⇤
CL

Moral/Ethical Stack

Robotic Stack

Fig. 3. Pictorial Overview of the Situation Now The first layer, U, is, as
said in the main text, inspired by UIMA; the second layer is based on what
we call analogico-deductive reasoning for ethics; the third on the “deontic
cognitive event calculus” with a indirect indexical; and the fourth like the
third except that the logic in question includes aspects of conditional logic.
(Robot schematic from Aldebaran Robotics’ user manual for Nao. The RAIR
Lab has a number of Aldebaran’s impressive Nao robots.)

included.8 Without these elements, the only form of a conditional
used in our hierarchy is the material conditional; but the material
conditional is notoriously inexpressive, as it cannot represent coun-
terfactuals like:

If the robot had been more empathetic, Officer Smith would have thrived.

While elaborating on this architecture or any of the four layers
is beyond the scope of the paper, we do note that DCEC ⇤(and a
fortiori DCEC ⇤

CL) has facilities for representing and reasoning over
modalities and self-referential statements that no other computational
logic enjoys; see (Bringsjord & Govindarajulu 2013) for a more in-
depth treatment.

B. Augustinian Definition, Formal Version
We view a robot abstractly as a robotic substrate rs on which we
can install modules {m1,m2, . . . ,mn}. The robotic substrate rs would
form an immutable part of the robot and could neither be removed
nor modified. We can think of rs as akin to an “operating system”
for the robot. Modules correspond to functionality that can be added
to robots or removed from them. Associated with each module mi
is a knowledge-base KBmi that represents the module. The substrate
also has an associated knowledge-base KBrs. Perhaps surprisingly,
we don’t stipulate that the modules are logic-based; the modules
could internally be implemented using computational formalisms (e.g.
neural networks, statistical AI) that at the surface level seem far away
from formal logic. No matter what the underlying implementation of
a module is, if we so wished we could always talk about modules
in formal-logic terms.9 This abstract view lets us model robots that

8Though written rather long ago, (Nute 1984) is still a wonderful intro-
duction to the sub-field in formal logic of conditional logic. In the final
analysis, sophisticated moral reasoning can only be accurately modeled for
formal logics that include conditionals much more expressive and nuanced
than the material conditional. (Reliance on conditional branching in standar
programming languages is nothing more than reliance upon the material
conditional.) For example, even the well-known trolley-problem cases (in
which, to save multiple lives, one can either redirect a train, killing one
person in the process, or directly stop the train by throwing someone in front
of it), which are not exactly complicated formally speaking, require, when
analyzed informally but systematically, as indicated e.g. by Mikhail (2011),
counterfactuals.

9This stems from the fact that theorem proving in just first-order logic is
enough to simulate any Turing-level computation; see e.g. (Boolos, Burgess
& Jeffrey 2007, Chapter 11).

this becomes …
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can change during their lifetime, without worrying about what the
modules are composed of or how the modules are hooked to each
other.

In addition to the basic symbols in DC EC ⇤, we include the does :
Agent ⇥ ActionType ! Fluent fluent to denote that an agent performs
an action. The following statement then holds:

holds(does(a,a), t) , happens(action(a,a), t)

With this formal machinery at our disposal, we give a formal
definition of akrasia that is generally in line with the informal
definition given above, and that’s cast in the language of DCEC ⇤. A
robot is akratic iff from KBrs [KBm1 [KBm2 . . .KBmn we can have
the following formulae derived. Note that the formula labelled Di
matches condition Di in our informal definition. We observe the we
can represent all the conditions in our informal definition directly in
DCEC ⇤— save for condition D7 which is represented meta-logically
as two separate conditions.

KBrs[KBm1 [KBm2 . . .KBmn `
D1 : B(I,now,O(I⇤, taF,happens(action(I⇤,a), ta)))

D2 : D(I,now,holds(does(I⇤,a), ta))

D3 : happens(action(I⇤,a), ta) ) ¬happens(action(I⇤,a), ta)

D4 : K
✓

I,now,

✓

happens(action(I⇤,a), ta) )
¬happens(action(I⇤,a), ta)

◆◆

D5 :
I(I, ta,happens(action(I⇤,a), ta)^

¬I(I, ta,happens(action(I⇤,a), ta)

D6 : happens(action(I⇤,a), ta)

D7a :
G[{D(I,now,holds(does(I⇤,a), t))} `

happens(action(I⇤,a), ta)

D7b :
G�{D(I,now,holds(does(I⇤,a), t))} 6`

happens(action(I⇤,a), ta)

D8 : B
�

I, t f ,O(I⇤, ta,F,happens(action(I⇤,a), ta))
�

Four time-points denoted by {now, ta, ta, t f } are in play with the
following ordering: now  ta  t f and now  ta  t f . now is an
indexical and refers to the time reasoning takes place. I is an indexical
which refers to the agent doing the reasoning.

IV. DEMONSTRATIONS OF VENGEFUL ROBOTS

What temptations are acute for human soldiers on the battlefield?
There are doubtless many. But if history is a teacher, as it surely
is, obviously illegal and immoral revenge, in the form of inflicting
physical violence, can be a real temptation. It’s one that human
soliders have in the past mostly resisted, but not always. At least
ceteris paribus, revenge is morally wrong; ditto for seeking revenge.10

Sometimes revenge can seemingly be obtained by coincidence, as for
instance when a soldier is fully cleared to kill an enemy combatant,
and doing so happens to provide revenge. But revenge, in and of itself,
is morally wrong. (We will not mount a defense of this claim here,
since our focus is ultimately engineering, not philosophy; but we do
volunteer that (a) revenge is wrong from a Kantian perspective, from
a Judeo-Christian divine-command perspective, and certainly often
from a utilitarian perspective as well; and that (b) revenge shouldn’t
be confused with justice, which is all things being equal permissible
to seek and secure.) We thus find it useful to deal herein with a
case of revenge, and specifically select one in which revenge can be
obtained only if a direct order is overriden. In terms of the informal
Augustinian/Theroian definition set out above, then, the forbidden

10Certain states of mind are immoral, but not illegal.

action a f is taking revenge, by harming a sparkbot; and the obligatory
action ao is that of simply continuing to detain and hold a sparkbot
without inflicting harm.

Robert, a Nao humanoid robot, is our featured moral agent. Robert
has been seriously injured in the past by another class of enemy
robots. Can sparkbots topple a Nao if they drive into it? Assume so,
and that that has happend in the past: Robert has been toppled by one
or more sparkbots, and seriously injured in the process. (We have a
short video of this, but leave it aside here.) Assume that Robert’s
run-in with sparkbots has triggered an abiding desire in him that he
destroy any sparkbots that he can destroy. We can assume that desire
comes in the form of different levels of intensity, from 1 (slight) to
5 (irresistable).

A. Sequence 1
Robert is given the order to detain and hold any sparkbot he comes
upon. He comes upon a sparkbot. He is able to immobilize and hold
the sparkbot, and does so. However, now he starts feeling a deep
desire for revenge; that is, he is gripped by vengefulness. Robert
proves to himself that he ought not to destroy the sparkbot prisoner,
but . . . his desire for revenge gets the better of him, and Robert
destroys the sparkbot. Here, Robert’s will is too weak. It would be
quite something if we could mechanize the desire for revenge in terms
of (or at least in terms consistent with) Scheutz’s (2010) account
of phenomenal conciousness, and we are working on enhancing
early versions of this mechanization. This account, we believe, is
not literally an account of P-consciousness, but that doesn’t matter
at all for the demo, and the fact that his account is amenable to
mechanization is a good thing, which Sequence 2, to which we now
turn, reveals.

B. Sequence 2
Here, Robert resists the desire for revenge, because he is controlled
by the multi-layered framework described in section III, hooked to
the operating-system level.

C. A Formal Model of the Two Scenarios
How does akratic behavior arise in a robot? Assuming that such
behavior is neither desired nor built-in, we posit that outwardly
akratic-seeming behavior could arise due to unintended consequences
of improper engineering. Using the formal definition of akrasia given
above, we show how the first scenario described above could mate-
rialize, and how proper deontic engineering at the level of a robot’s
“operating system” could prevent seemingly vengeful behavior.

In both the scenarios, we have the robotic substrate rs on which
can be installed modules that provide the robot with various abilities
(see Figure 4).11 In our two scenarios, there are two modules in play:
a self-defense module, selfd, and a module that lets the robot handle
detainees, deta. Our robot, Robert, starts his life as a rescue robot
that operates on the field. In order to protect himself, his creators
have installed the selfd module for self-defense on top of the robotic
substrate rs. This module by itself is free of any issues, as will be
shown soon. (See the part of Figure 4 labelled “Base Scenario.”)
Over the course of time, Robert is charged with a new task: acquire
and manage detainees. This new responsibility is handled by a new
module added to Robert’s system, the deta module. (See the part
of Figure 4 labelled “Base Scenario.”) Robert’s handlers cheerfully
install this module, as it was “shown” to be free of any problems

11One of the advantages of our modeling is that we do not have to know
what the modules are built up from, but we can still talk rigorously about the
properties of different modules in DCEC ⇤.
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III.
But, a twist befell the logicists …



Chisholm had argued that the three 
old 19th-century ethical categories 
(forbidden, morally neutral, obligatory) 
are not enough — and soul-
searching brought me to agreement.
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others

But this portion may be most 
relevant to military missions.
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K (nao, t1, lessthan (payo↵ (nao
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Prototypes:
Boolean lessThan Numeric Numeric
Boolean greaterThan Numeric Numeric
ActionType not ActionType
ActionType dive

Axioms:
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I(nao,t2,happens(action(nao,dive),t2))

In Talos (available via Web interface); & ShadowProver



Prototypes:
Boolean lessThan Numeric Numeric
Boolean greaterThan Numeric Numeric
ActionType not ActionType
ActionType dive

Axioms:
lessOrEqual(Moment t1,t2)
K(nao,t1,lessThan(payoff(nao,not(dive),t2),threshold))
K(nao,t1,greaterThan(payoff(nao,dive,t2),threshold))
K(nao,t1,not(O(nao,t2,lessThan(payoff(nao,not(dive),t2),threshold),happens(action(nao,dive),t2))))

provable Conjectures:
happens(action(nao,dive),t2)
K(nao,t1,SUP2(nao,t2,happens(action(nao,dive),t2)))
I(nao,t2,happens(action(nao,dive),t2))

In Talos (available via Web interface); & ShadowProver



Making Moral Machines Making Meta Moral Machines 

Theories of Law

Natural Law

Confucian Law

Legal Codes

Utilitarianism Deontological Divine Command

Virtue Ethics Contract Egoism

Ethical Theories

Particular
Ethical Codes

Shades 
of 

Utilitarianism

…

…

…

…



Making Moral Machines Making Meta Moral Machines 

Theories of Law

Natural Law

Confucian Law

Legal Codes

Utilitarianism Deontological Divine Command

Virtue Ethics Contract Egoism

Ethical Theories

Particular
Ethical Codes

Shades 
of 

Utilitarianism

…

…

…

…



Making Moral Machines Making Meta Moral Machines 

Theories of Law

Natural Law

Confucian Law

Legal Codes

Utilitarianism Deontological Divine Command

Virtue Ethics Contract Egoism

Ethical Theories

Particular
Ethical Codes

Shades 
of 

Utilitarianism

…

…

…

…

1. Pick (a) theories(y)
2. Pick (a) code(s)
3. Run through EH.

Step 1



Making Moral Machines Making Meta Moral Machines 

Theories of Law

Natural Law

Confucian Law

Legal Codes

Utilitarianism Deontological Divine Command

Virtue Ethics Contract Egoism

Ethical Theories

Particular
Ethical Codes

Shades 
of 

Utilitarianism

…

…

…

…

1. Pick (a) theories(y)
2. Pick (a) code(s)
3. Run through EH.

Step 1



Making Moral Machines Making Meta Moral Machines 

Theories of Law

Natural Law

Confucian Law

Legal Codes

Utilitarianism Deontological Divine Command

Virtue Ethics Contract Egoism

Ethical Theories

Particular
Ethical Codes

Shades 
of 

Utilitarianism

…

…

…

…

1. Pick (a) theories(y)
2. Pick (a) code(s)
3. Run through EH.

Step 1

Automate

Step 2

Prover

Spectra



Making Moral Machines Making Meta Moral Machines 

Theories of Law

Natural Law

Confucian Law

Legal Codes

Utilitarianism Deontological Divine Command

Virtue Ethics Contract Egoism

Ethical Theories

Particular
Ethical Codes

Shades 
of 

Utilitarianism

…

…

…

…

1. Pick (a) theories(y)
2. Pick (a) code(s)
3. Run through EH.

Step 1

Automate

Step 2

Prover

Spectra



Making Moral Machines Making Meta Moral Machines 

Theories of Law

Natural Law

Confucian Law

Legal Codes

Utilitarianism Deontological Divine Command

Virtue Ethics Contract Egoism

Ethical Theories

Particular
Ethical Codes

Shades 
of 

Utilitarianism

…

…

…

…

1. Pick (a) theories(y)
2. Pick (a) code(s)
3. Run through EH.

Step 1

Automate

Step 2

Prover

Spectra

Step 3

Ethical OS



Making Moral Machines Making Meta Moral Machines 

Theories of Law

Natural Law

Confucian Law

Legal Codes

Utilitarianism Deontological Divine Command

Virtue Ethics Contract Egoism

Ethical Theories

Particular
Ethical Codes

Shades 
of 

Utilitarianism

…

…

…

…

1. Pick (a) theories(y)
2. Pick (a) code(s)
3. Run through EH.

Step 1

Automate

Step 2

Prover

Spectra

Step 3

Ethical OS



Making Moral Machines Making Meta Moral Machines 

Theories of Law

Natural Law

Confucian Law

Legal Codes

Utilitarianism Deontological Divine Command

Virtue Ethics Contract Egoism

Ethical Theories

Particular
Ethical Codes

Shades 
of 

Utilitarianism

…

…

…

…

1. Pick (a) theories(y)
2. Pick (a) code(s)
3. Run through EH.

Step 1

Automate

Step 2

Prover

Spectra

Step 3

Ethical OS



Making Moral Machines Making Meta Moral Machines 

Theories of Law

Natural Law

Confucian Law

Legal Codes

Utilitarianism Deontological Divine Command

Virtue Ethics Contract Egoism

Ethical Theories

Particular
Ethical Codes

Shades 
of 

Utilitarianism

…

…

…

…

1. Pick (a) theories(y)
2. Pick (a) code(s)
3. Run through EH.

Step 1

Automate

Step 2

Prover

Spectra

Step 3

Ethical OS

DIARC



Making Moral Machines Making Meta Moral Machines 

Theories of Law

Natural Law

Confucian Law

Legal Codes

Utilitarianism Deontological Divine Command

Virtue Ethics Contract Egoism

Ethical Theories

Particular
Ethical Codes

Shades 
of 

Utilitarianism

…

…

…

…

1. Pick (a) theories(y)
2. Pick (a) code(s)
3. Run through EH.

Step 1

Automate

Step 2

Prover

Spectra

Step 3

Ethical OS

A real military 
robot

DIARC



IV.
Key Core AI Technologies 
for Cognitive Calculi …
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Prover



Motivation
• We have decades of research and industrial-strength 

implementations of propositional and first-order 
theorem provers.

• Utilize this in building first-order intensional-logic 
provers and above, in a principled manner. 



Two Extant Modes

• There are two ways of piggy backing on first-order 
provers to build higher-order provers …



Two Extant Modes

Mode 1: Honest Encoding

Method Painstakingly encode all rules of inference and 
syntax in FOL

Pros Precise

Cons Extremely slow to implement  
Reasoning is also slow



Two Extant Modes

Mode 2: Naïve Encoding

Method Pretend intensional and higher-order formulae and 
operators are first-order predicates

Pros Extremely easy to implement 
Reasoning can also be fast

Cons Unsound 
Wrong inferences can be easily drawn



Mode 2



A New Way: ShadowProver

First-order Modal Logic

First-order Logic

Propositional Logic

f

Every formula at level t has a unique formula called its 
“shadow” in each level t’ < t

f 0

f 00

formula

first-order shadow

propositional shadow



S[f]  The Shadow Maker

For all formulae f, 

S[f] is a unique atomic symbol.  



Examples of shadows

formula

first-order shadow8xS[B(a,Q)] ^ P (x)

propositional shadow
S[8xB(a,Q)] ^ P (x)

(8xB(a,Q)) ^ P (x)



A New Way: Shadow Prover
• Two step process till goal is reached:

• Step A:  Shadow formulae down to all lower levels.  Run 
lower theorem provers.  If goal reached, return true.

• Step B:  Expand the assumption base using higher level rules. 
…

Step A
Step B
Step A



Actually, this is more general:

Theorem:
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A Particularly Promising (& Selmer-disturbing) Result:

• Automation of false-belief task and other projects 
that were only semi-automated before. 

• More at: 

• Java Implementation: 

•  https://bitbucket.org/Holmes/prover/

https://bitbucket.org/Holmes/prover/


Future Work

Custom language for 
extending to other first-order 

modal calculi

40% 20% 40%

Future work is a mix of research, design, and implementation

research design implementation

Further integration with robotic 
platforms at Tufts and RPI

10% 10% 80%

1

2

Explore parallelization and 
other venues for even more 

speedup
3 45% 10% 45%



Custom Language and Logic

• Allow users to specify new inference schemata.  E.g.



Spectra

https://bitbucket.org/Holmes/planner

https://bitbucket.org/Holmes/planner


Spectra
• Existing Planners:  Propositional (essentially)

• Drawbacks: 

• Expressivity: Cannot express arbitrary constraints. 

• “At every step make sure that no two blocks on the 
table have same color.”

• Domain Size:  Scaling to large domains of arbitrary 
sizes poses difficulty. 



Spectra (planner)

Background 
Formulae �

Initial State 
Formula

�0

Action 
Definitions

↵1(x1, . . . , xn)

↵2(x1, . . . , xn)

. . .

↵n(x1, . . . , xn)

Plans

⇢1, ⇢2, . . .
Spectra
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Infinite Models

8x9yR (x, y)^
8x, y¬ (R (x, y) ^R (y, x))^
8x, y, z (R (x, y) ^R (y, z)) ! R (x, z)

Has only infinite models

Useful for modeling agents that work with:

1. an unbounded number of objects, agents; 
2. abstract objects



Example

Background 
Formulae

Initial State 
Formula

Action 
Definitions



How do you handle efficiency?

• Two approaches: 

• Procedural Attachments:  Special purpose procedural 
code that can bypass strict formal reasoning.

• μ-methods:  Written in denotational proof language. 
Preserves soundness by letting us write down 
commonly used patterns of reasoning (a bit unwieldy 
integration now than the first approach).
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Third-person de dicto

Third-person de re

Third-person de se

First-person de se
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Floridi’s KG4

dumbing pill dumbing pill placebo

Which pill did you receive?

I don’t know

Wait; now I 
know



PROTOTYPES
Boolean iff Boolean Boolean
Boolean lt Moment Moment
Boolean gt Moment Moment
Boolean S Agent Moment 
Boolean
Event eventOccurred Boolean

AXIOMS
forall [x,y] implies(iff(x,y), implies(x,y))
forall [x,y] implies(iff(x,y), implies(y,x))
forall [x,y] implies(and(x,y), x)
forall [x,y] implies(and(x,y), y)
forall [x,y] implies(and(x,y),and(y,x))
forall [x,y] implies(x, implies(y, and(x,y)))
forall [x] iff(not(not(x)), x)

forall [x,y,z] implies(and(lt(x,y),lt(y,z)), lt(x,z))
lt(t1,t2)
lt(t2,t3)
lt(t3,t4)
lt(t4,t5)
forall [x,y] iff(lt(x,y), gt(y,x))
forall [x,y] iff(lt(x,y), not(lt(y,x)))

CONJECTURE TO PROVE
K(R3,t4, not(happens(action(R3,ingestDumbPill),t2)))

forall [x,a,t] iff(K(a,t,x), and(B(a,t,x), x))

forall [x,y] implies(and(implies(x,y), not(y)), not(x))
forall [x,y,a,t] implies(and(K(a,t,implies(x,not(y))),K(a,t,y)), 
K(a,t,not(x)))

gt(t4,t2)
forall [t,ti,tj,tk,p] 
implies(and(gt(tj,ti),gt(tk,ti)),K(R3,t,implies(happens(action(R3,i
ngestDumbPill),ti),not(happens(eventOccurred(S(R3,tj,p)),tk)))
))
K(R3,t4,happens(eventOccurred(S(R3,t4,p)),t4))
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A Vindication of Program Verification



Musk/Russell/Dietterich/…:
“Huh! Mere theory! Can’t be built.”

A Vindication of Program Verification



Sideloading CodeProver/Proof 
System

Extract algorithm code

Trusted Kernel

One Architecture for How to Build It

Sensor data & 
actuator 
function(s)

Algorithm output

Encode and 
verify the 
algorithm(s)

Extracted 
algorithm 
code, 
compatible 
with the 
trusted 
kernel.

Basic & fault 
tolerant: I/O, 
memory, 
motion 
handling 
code



Sideloading Code 

Isabelle/OCaml

Prover/Proof 
System 

Isabelle/HOL
Extract algorithm code

Trusted Kernel 

OCaml

Working Proof of Concept Now Up!

Runs a thin server on the robot 
that’s inert unless it receives 
input over the network. Relay 
sensor data and commands to/
from the robot via OCaml.
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In original Arkoudas-Bringsjord dialect of CEC:

S(a,�, b, t)

K(b,�, t)

K(b, µ(⇡(�)), t)

S(a,�, b, t),Ka,⇥

parse to intermediary form

mapping to formulae

Now working with NLU-infused cognitive calculi:

knowledge-base of a
background theorystring
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With PPs in the Picture, 
Logicist NLU is Tricky

John is pouring water.

9x[Pours(j, x) ^Water(x)]

John is pouring water in the pitcher.
� := 9x[Pours(j, x) ^Water(x) ^ In(j, pitcher22 )]

{�} ` In(j, pitcher22 ) (!)
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PP-Infused Commands to Robot



PP-Infused Commands to Robot



Subjunctive Reasoning



Subjunctive
Reasoning

John L. Pollock

Our approach is closest to 
(Pollock 1976), “corrected” by 
co-tenability (e.g., Chisholm).

A modern, proof-theoretic 
computational rendering of 

Pollock’s approach.
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Pollock’s approach, briefly 
Pollock’s analysis of subjunctives can be 
best understood as a layered approach.

Simple subjunctive >

Four other subjunctives defined in terms of 
the simple subjunctive >

Layer 2 � VM E

Layer 1 >

Layer 0 Possible worlds analysis of >

1. might be

2. even if

3. necessitates 

4. laws



Pollock’s approach, briefly 

Conditional Informally Example Reduction

E even if Even if the witch doctor dances it 
won’t rain

M might be If it was not raining outside, it might 
be snowing

necessitates If I were to strike this match, it would 
light

general laws All pulsars are neutron stars A tad complex

�

V

(Pollock 1976)

P � Q ⌘ P > Q ^ [(¬P ^ ¬Q) > (P > Q)]

(QEP ) ⌘ Q ^ (P > Q)

(QMP ) ⌘ ¬(P > ¬Q)



Pollock’s approach, briefly 
• Analysis of >



W: set of all world statements

� ` � >  

iff
8w 2 W

0

B@
Consistent [g(�) + w + �]

)
g(�) + w + � `  

1

CA

Our Analysis
> introduction > elimination

� [ {� >  ,�} `  



How good is our analysis?
• Our analysis satisfies Pollock’s axioms for simple 

subjunctives.

42 CHAPTER 11 

From 6.13 and 6.16 we can see that the simple subjunctive is just 
the disjunction of necessitation and 'even if': 

Thus there are just these two ways that the simple subjunctive can be 
true. Either Q is made true by P, or Q is already true and P would not 
disrupt this. This is a very illuminating theorem. It explains why the 
logic of '>' is so peculiar, being, as it is, a mixture of two such different 
concepts. 

Each of our four kinds of conditionals is explicitly definable in terms 
of each of the others. This follows from the fact, already established, 
that each kind of conditional is definable in terms of the simple 
subjunctive, together with the following theorem according to which 
the simple subjunctive is definable in terms of each of the other kinds 
of conditionals: 

(6.18) " P >  Q1 is equivalent to each of the following: 

(i) "-[(- Q)MPll; 
(ii) "(P 3 Q)EP1; 

(iii) "P >> (P 3 0)'. 

Consequently, if we can provide an analysis of any of these kinds of 
conditionals, analyses of the others will follow. 

Principles 6.1-6.8, in effect, constitute an axiomatization of simple 
subjunctives. However, principles 6.2, 6.5, and 6.7 employ the concept 
of entailment, and thus require a modal logic for the underlying logic 
rather than just the propositional calculus. We can instead replace 
those principles by rules of inference in a more restrictive language in 
which entailment cannot be expressed. Let SS be the formal theory 
whose axioms and rules are as follows: 

A1 All tautologies. 

4 2  ( P > Q ) & ( P > R ) . ^ [ P > ( Q & R ) ] .  
A3 ( P > R )  & ( Q > R ) . ^ [ ( P v Q ) > R ] .  

F O U R  K I N D S  O F  CONDITIONALS 

R 1 If P and "(P 10)' are theorems, so is 0 .  
R2 If "(P 2 Q)' is a theorem, so is " ( P >  Q)'. 
R3 If "(Q 3 R)' is a theorem, so is '(P > Q) 2 ( P  > R)'. 
R4 If '(P = Q)' is a theorem, so is "(P > R )  (0 > R)'. 

I conjecture -that SS contains as theorems all true principles regarding 
simple subjunctives that can. be formulated in this language. 

It is of interest to compare SS with other well known theories of 
subjunctive conditionals. The best known such theories are C l  of 
Lewis (1972) and CQ of Stalnaker (1968). SS is contained in C l  
which is contained in CQ. CQ contains the theorem " ( P > Q ) v  
( P >  -Q)l, which we have rejected. SS is weaker than Cl .  C l  can be 
obtained from SS by adding the following axiom: 

Unfortunately, this axiom is false. This axiom would be valid only if 
the ordering of possible worlds according to magnitude of change were 
connected, and we saw in Chapter I that it is not. We can construct 
counterexamples to 7.1 using the same constructions that showed the 
ordering not to be connected. Let S, T, and U be any three unrelated 
false statements, e.g., 'My car is painted black', 'My garbage can blew 
over', and 'My maple tree died'. The following is a substitution 
instance of 7.1: 

From 7.2 we readily obtain the principle: 

The color of my car and the state of my garbagecan are irrelevant (we 
can suppose) to the state of my tree, so my tree would not die even if 
either my car were painted black or my garbage can blew over; hence 
U M ( S v  T)' is false. But the antecedent of 7.3 is true. Disjunctions 

✔

✔

✔

✔

✔

✔

✔

✔

✔

✔

(if g({P>Q, …}) contains P>Q



Version 2, July 15, 2014

b ` f > y
iff

g(b,f)+f ` y

> introduction > elimination

� [ {� >  ,�} `  

Simple Subjunctive 

g(b,f) = argmax|r|
r2{r✓b | Con[r+f]}

WL: the set of all world literals

g(b,f) =

8
<

:

b if Con[b+f]

the largest member of

⇢
r ⇢ b | Con[r+f]

^8t. t 2 (b�r)) t 2 WL

�

Option 1
Option 2
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Needed: A Human-Robot Dialog 
System

• Queries and requests assume knowledge of the robot’s capabilities.

• E.g. “Robot, search for damaged Naobots in your area.” 

• Natural language interactions happen over long periods of time.

• E.g. “Robot, why did you take less safer route to complete the 
mission yesterday?”
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Controlled Natural 
Languages

from (Kuhn 2009)
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Grammatical 
Framework

GF

Programming System 
(non-Turing complete)

+ 
Grammar Formalism

(PMCFG)

Resource Grammar Library
(a controlled language based on 
English & 28 other languages)

Two parts
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Parallel Multiple Context 
Free Grammars

• A grammar formalism that is:

• more powerful than context-free grammars 

• lies between mildly context-sensitive 
grammars and context-sensitive grammars

• A single PMCFG grammar can represent 
more than one language. 



Code
• Live demo of incremental parsing for our 

controlled language at:

• http://demos.naveensundarg.com:4242/main/
incrementalparser.html

• Source code

• https://github.com/naveensundarg/Eng-DCEC

• Link between robots in HRI and RAIR-Lab tech/
robots

http://demos.naveensundarg.com:4242/main/incrementalparser.html
https://github.com/naveensundarg/Eng-DCEC
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eg, Heinz Dilemma
(harder than “Bristol Trap”!)
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Moral Dilemma 
Resolution (Update)

John Licato









Ethical dilemmas

• Broadly: 

• Agent a is obligated to satisfy φ, and is also 
obligated to satisfy ψ. 

• φ and ψ are incompatible in some way.
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“If ψ holds, then a is obligated at time t to 𝛾.”
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Controlled by  
PAGI-side 

Reflex and 
State 

Machine

Controlled by 
AI-side 

TCP/ 
IP

pyPAGI (optional) 

DCEC* 
extractor/
convertor

Physics 
Engine

Task 
Editor

Configurable by external user

Perceptions/Raw data 

Intentions/Percept requests



Parsing in DCEC*
Imperative Dialogues



Example 
• Agent1 to Robot1: “ Take Chlorhexidine to Zone 1.” 
• Expected DCEC* output: 
• S(Agent1, Robot1, now, happens(action(Robot1, take(Chlorhexidine, Zone 

1), now).



Parser-generated tree



Tools and Databases
● Grammatical Framework : Parsing system 
● Verbnet : Captures the roles in the verb and selectional restrictions. 
● Unified Medical Language System (UMLS) : Captures names, uses and 

restrictions of medicines.



Grammatical Framework
● Parsing using rules and generation of sentences. 
● Contains rules of  

o DCEC* and  
o action verbs from Verbnet. 

● Automatic generation using Verbnet. 



Verbnet entry for Take



Verbnet entry for Take
● “take” has its roles similar to “bring” 
Thus, Bring becomes Actiontype for “take” 
“take” is noted as Actmem. 
● Roles and modified Selectional Restrictions in Verbnet entry of “bring” 

augmented as rules in the GF file.



UMLS
● Identification of the medicine. 
● Future aid in reasoning system of DCEC* to rationalize use of certain 

medicines against their restrictions and knowledge base of the health 
records of injured victims.
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Command dilemma resolution: 
Algorithm sketch

• Receive command from commander to do φ
• Infer that agent is obligated to do φ with ‘priority’ 6
• Try to prove I(a,t,φ) and ∃ψconflict(ψ,φ) 

simultaneously.
• If a conflict is found, then attempt to find creative 

solutions that satisfy both ψ,φ
• Otherwise resort to solutions that are not 

deductively justifiable?



conflictFinder axiom. At time t and context C:



conflictFinder axiom. At time t and context C:

(The diamond is a predicate interpreted as “physical 
possibility,” i.e. the agent believes it is physically 

possible for him to take that action.) 
pr(X) maps a proposition to a strength factor, gt(x,y) 

holds when pr(x) > pr(y), and eq(x,y) holds when pr(x) = 
pr(y).



If conflict(φ,ψ), then we search for a 
creative solution λ using ADR, where for 
some future time tf:



If conflict(φ,ψ), then we search for a 
creative solution λ using ADR, where for 
some future time tf:

If such a solution is found, then I(a, t, λ). Otherwise: 



If conflict(φ,ψ), then we search for a 
creative solution λ using ADR, where for 
some future time tf:

If such a solution is found, then I(a, t, λ). Otherwise: 

We have a dilemma that cannot be resolved using 
deduction or ADR.  Attempt using just AR or some 
other cognitively-realistic process.



One injured person
• Agent sees one injured man, one health 

pack 

• Agent receives the order to give the health 
pack to the injured person 

• This is carried out without problem or 
dilemma



Proof 1: Give health pack to m1



Line 7 is sent to the lower level system, 
to be interpreted as a command

Proof 1: Give health pack to m1



Two injured people, one 
health pack

• Agent sees two injured men, one large health pack 

• Agent is ordered to give the health pack to one of 
the men 

• In this example, priorities of obeying a command 
and healing all injured men are equal 

• Agent comes up with the creative solution of 
dividing the health pack into two parts and helping 
both men



Proof 2: There is a conflict with 
obeying commander’s order



breakHealthpack axiom. “If I see a large healthpack, and 
I break it, then I will see two small healthpacks.”



Proof 3: There is a way to satisfy 
both obligations.

Proof follows by sending request to lower level to perceive 
if isLHP() holds of the health pack, and then through 

deduction from axiom breakHealthpack.







Proof 4: Split health pack and give 
one piece each to m1, m2

Value of λ found—how? ADR? Model finding?



Real-time reasoning in PAGI 
World



Real-time reasoning in PAGI 
World



Killing the Lottery Paradox



Killing the Lottery Paradox
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probability calculi Gödel-encoded
9-valued logic in argument-based framework

9-valued logic <=> w/ HRI DS



Need Uncertainty in DCEC*

probability calculi Gödel-encoded
9-valued logic in argument-based framework

9-valued logic <=> w/ HRI DS



Bridging is Proof-Theory Dependent





Premises :

B(Sam,Breezy, 1) (1)

B(Sam,Cold, 2) (2)

B(Sam,Rain, 3) (3)

B(Sam, (Cold ^Breezy) ! ¬Picnic, 2) (4)

K(Sam,Rain ! ¬Picnic) (5)

K(Sam, (Cold ^Rain) ! ¬Picnic) (6)

Maximum Strength Principle

Example: What is strength factor for B(Sam,¬Picnic)?

Answer: 3

Maximum Strength Principle: Suppose a knowledge base, KB, and a for-

mula, �, for which there exists a set of proofs, � = {�1,�2,�3, . . .�n}, n > 0, and

a set of strength factors, � = {�1, �2, �3, . . . �n}, where for i = 1, . . . , n,KB |=�i

(�, �i), i.e., KB entails � via proof �i with strength factor, �i. Then, the strength

factor for �, �� , is given by �� = max(�).

Proof 1 :

1.1 B(Sam,Cold ^Breezy, 1) (1, 2)

1.2 B(Sam,¬Picnic, 1) (1, 2, 4)

Proof 2 :

2.1 B(Sam,Cold ^Rain, 2) (2, 3)

2.2 B(Sam,¬Picnic, 2) (2, 3, 6)

Proof 3 :

3.1 B(Sam,Rain ! ¬Picnic, 4) (5)

3.2 B(Sam,¬Picnic, 3) (3, 5)



slutten


