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Abstract
Given what we find in the case of human cognition. the folk Owing prine “1ple appva: Lo be qguite
plausible: An artificial agent that 1s both autonomous A and creative (C) will tend to be. from
the viewpoint of a rational, fully informed agent, (U] untrustw After briefly explamis

the intuitive, interpal structure of t ‘ur'x-l'uu,p'x.u lr in the context of Lr man Sphere.
we provide a more formal rendition of it designed t p_'. to the :,..L,x of mtelhgent art:fcal
agents, The more-formal version makes use of some of the basie structures avadlshle in one of
our cognitive-event caleuli, and can be expressed as a (confessedly for ressons explared

naive) theorem. We prove the theorem, and provide simple demonstrations of it in action. wsang

a novel theorem prover (ShadowProver . We then end by pomnting toward some future defensrve

engineering measures that should be X:Lf.r:: in light of the theorem.
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Theorem ACU: In a collaborative situation involving agents a (as the “trustor”)
and a’ (as the “trustee”), if a’ is at once both autonomous and ToM-creative, a’ is
untrustworthy from an ideal-observer o’s viewpoint, with respect to the action-goal pair
(a, ) in question.

Proof: Let a and a’ be agents satisfying the hypothesis of the theorem in an arbitrary
collaborative situation. Then, by definition, a # a’ desires to obtain some goal v in part
by way of a contributed action «y from a’, @’ knows this, and moreover @’ knows that
a believes that this contribution will succeed. Since a’ is by supposition ToM-creative,
a’ may desire to surprise a with respect to a’s belief regarding a’’s contribution; and
because a’ is autonomous, attempts to ascertain whether such surprise will come to
pass are fruitless since what will happen is locked inaccessibly in the oracle that decides
the case. Hence it follows by TRANS that an ideal observer o will regard a’ to be
untrustworthy with respect to the pair (a,~) pair. QED



Logic can save us, but it’s
not quite as easy as this to
use logic to save the day ...
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A

Landru is Indeed Merely a Computer
(the real Landru having done the programming)




Logic Thwarts Landru!

Landru Kills Himself Because Kirk/Spock Argue He Has Violated
the Prime Directive for Good by Denying Creativity to Others




Logic Thwarts Nomad!
(with the Liar Paradox)
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S(s,h,t,0) I(a,t,happens(action(a*,a),t"))
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(h,t,B(s,2,0)) P(a,t,happens(action(a*,q.),t))

B(a,t,0) B(a,t,0(a,t,9,%)) O(a,t,0,x)
K(a,t,X(a,t,x))
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A twist befell the
sanguine logicists ...
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Chisholm had argued that the three
old |9th-century ethical categories
(forbidden, morally neutral, obligatory)
are not enough — and soul-
searching brought me to agreement.



morally
neutral

obligatory

heroic

civil

uncivil



Leibnizian Ethical Hierarchy for
Persons and Robots:

EH

morally
heutral

obligatory  civil  heroic

deviltry = uncivil




Leibnizian Ethical Hierarchy for
Persons and Robots:

EH

the supererogatory

morally
heutral

obligatory  civil  heroic

deviltry = uncivil




Leibnizian Ethical Hierarchy for
Persons and Robots:

EH

the supererogatory

morally
heutral

obligatory  civil  heroic

deviltry = uncivil




Leibnizian Ethical Hierarchy for
Persons and Robots:

EH

the subererogatory the supererogatory

morally
heutral

obligatory  civil  heroic




Leibnizian Ethical Hierarchy for
Persons and Robots:

EH

| 9th-Century Triad

the subererogatory the supererogatory

morally
heutral

obligatory  civil  heroic




Leibnizian Ethical Hierarchy for
Persons and Robots:

EH

the subererogatory the supererogatory

morally
heutral

obligatory  civil  heroic




T = ||F|P A-0|0| 19th Century Triad



T = ||F|P A-0|0| 19th Century Triad

F P A-O O
V. F M V I V F M vV 4



T = ||F|P A-0|0| 19th Century Triad

F PA-O 9,
YV F M VvV 5 YV F M V 3
EH
Subl 'Sub2 F P A -0 OL OM Supl Sup2
3V | 3V | 3V 3V | 3V | 3V | 3V

T



T = ||F|P A-0|0| 19th Century Triad

v PA-0O O
Y F M V 4 V F M V 3
EF
Sub1 Sub2 F P A -0 Ok oM Surl Sup2
3-V J-V 3-V J-v | 3V -V J-V

’
@



T = ||F|P A-0|0| 19th Century Triad

v PA-0O O
Y F M V 4 V F M V 3
EF
Sub1 Sub2 F P A -0 Ok oM Surl Sup2
3-V J-V 3-V -V | 3-V -V J-V

Arkin
Pereira

Andersons
Powers

Mikhail



T = ||F|P A-0|0| 19th Century Triad

v PA-0O O
Y F M V 4 V F M V 3
EF
Sub1 Sub2 F P A -0 Ok oM Surl Sup2
3-V J-V 3-V J-v | 3V -V J-V

’
@



T = ||F|P A-0|0| 19th Century Triad

v PA-0O O
Y F M V 4 V F M V 3
EF
Sub1 Sub2 F P A -0 Ok oM Surl Sup2
3-V J-V 3-V J-v | 3V -V J-V

-
‘ RA I R

Rensselaer Al and: Reasoning Lab



T = ||F|P A-0|0| 19th Century Triad

F P A-0O O
V F MV 3 V F M V 3
EH
Sub1 Sub2 F P A -0 OL OM SU-PI Sup2
3v | 3V | 3v 3V | 3V | 3V | 3v
@ T
) T

There are obviously a host of formulae whose
theoremhood constitute desiderata; that is (to give
but a pair), the following must be provable (where
n € {1,2}):

Theorem 1. SYP"(¢,a,a) - ~0(¢,a,a)
Theorem 2. SYP"(¢,a,a) = ~F(¢,a,a)

Secondly, Lg» is an inductive logic, not a de-
ductive one. This must be the case, since, as we’ve
noted, quantification isn’t restricted to just the
standard pair 3V of quantifiers in standard exten-
sional m-order logic: &7 is based on three addi-
tional quantifiers. For example, while in standard
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K (nao, t1, lessthan (payoff (nao™, —dive, t5) , threshold))
K (nao, t1, greaterthan (payoff (nao™, dive, t5) , threshold))
K (nao, t1,—0 (nao™, ta, lessthan (payoff (nao™, =dive, t5) , threshold) , happens (action (nao*, dive) , t3)))
. K (nao, t1, S""? (nao, to, happens (action (nao*, dive) , t2))
.. I (nao, to, happens (action (nao®, dive) , ts))
.. happens (action(nao, dive), to)
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In Talos (available via VWeb interface); & ShadowProver

Prototypes:

Boolean lessThan Numeric Numeric
Boolean greaterThan Numeric Numeric
ActionType not ActionType
ActionType dive

Axioms:
lessOrEqual (Moment t1,t2)
K(nao,tl,lessThan(payoff(nao,not(dive),t2),threshold))

K(nao,tl,greaterThan(payoff(nao,dive,t2),threshold))
K(nao,t1l,not(0(nao,t2,lessThan(payoff(nao,not(dive),t2),threshold),happens(action(nao,dive),t2))))

provable Conjectures:

happens(action(nao,dive),t2)
K(nao,tl,SUP2(nao,t2,happens(action(nao,dive),t2)))
I(nao,t2,happens(action(nao,dive),t2))
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We must be able to combine contexts:

@1 @ €2 Both contexts hold now

And we need relations:

Q:l @ Q:Q The seco‘r)d context occurs WIthI,I;l the first
A murder within a play

Q: ® Q: The contexts are incompatible
1 2 “Driving a car” and “Going to sleep”



And, one context can dominate another:

¢ = &5

Q:library - F(RUTLTLZTLQ)

Ctire - "F(Running)
Q:fifr'e ~ Q:library

U Clivrary B Crire F F(Running)
Q:library D Q:fire /}L F(Runmng)



What, then, is a context
for Selmer & Naveen! ...
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The Heinz Dilemma (Kohlberg)

“In Europe, a woman was near death from a special kind of cancer. There was
one drug that the doctors thought might save her. It was a form of radium that a
druggist in the same town had recently discovered. The drug was expensive to
make, but the druggist was charging ten times what the drug cost him to make.
He paid $200 for the radium and charged $2,000 for a small dose of the drug.

The sick woman’s husband, Heinz, went to everyone he knew to borrow the
money, but he could only get together about $1,000, which is half of what it cost.
He told the druggist that his wife was dying and asked him to sell it cheaper or let
him pay later. But the druggist said:"“No, | discovered the drug and I'm going to
make money from it.” So Heinz got desperate and broke into the man’s store to
steal the drug for his wife. Should the husband have done that?”




DCEC,* Specimen from Heinz Dilemma

B (I, now,V? : Moment,a : Agent (holds(sick(a),t) A (‘v’t’ : Moment ¢’ < T = —happens(treated(a),t —1—1"))

= (happens(dies(a),t + T )V holds(dead(a),t + T)) )

K(I, now, holds(sick(wife(lx)),ty) A <Vt' : Moment ¢’ < T = —happens(treated(wife(lx)),t —I—t/))

B (1, now, happens(dies(wife(lx)),to+T) V holds(dead (wife(lx)),t0+T))

K (I, now,EventCalculus =
(happens(dies(wife(lx)),to+ T) V holds(dead (wife(lx)),to+T) =
—holds(alive(wife(lx)),to+T)))

B(1, now, —holds(alive(wife(lx)),t0+T)) D (I, now, holds(alive(wife(lx)),to+T))

(B(1,now, —holds(f,t)) AD(l,now, holds(f,t))A
K (1, now, happens(action(l%,a), now) = holds(f,t)))
= I(l, now, happens(action(l*,o.), now))
K (1, now, happens(action(lx,treat),now) = holds(alive(wife(Ix)),to+T)))

I(1,now, happens(action(l*,treat),now))
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- B 1.  TWIRL - DAY
- TR = DAY = E 2. YES, THAT'S HIM - LATER

3. SECOND HOME - LATER
68-year-old Harriet Smith sits with two wrinkled hands firmly on the wheel of her rust-eaten Subaru wagon, staring straight ahead through the top level of
hifocals as she waits serenely at a red light.

Harrietis alone in the car. To herright is another vehicle, also waiting, in this case to make a rightturn; it's a sleek, low-slung, black Camaro.

We are inside the cahin with Harriet. The Subaru's sound system softly plays choral music. Harriet's lips move slightly as she internally sings along,
mouthing a slow aria. Her head weaves slightly side to side, in the rhythm with the music.

Things are calm as can be here inside the car with Harriet. There are a pair of well-worn Bibles on the empty passenger seat beside her, one with a
gold-lettered 'Harriet' on its leather front cover, the other with a matching Joseph' on its front cover.

Harriet's eyes swivel up to the light: still red. We wait with her.

Suddenly there is a piercing SCREECH outside. Harriet jerks her head to the right and we follow her line of sight.
A sleek motorcycle has swerved out of its lane and is now streaking straight for the right side of the Camaro heside Harriet's car. -~
The hike slams with CLANG into the side of the Camaro. Its rideris flung up and forward into the air, twirling passed Harriet's windshield.

We now watch from Harriet's POV, in slow motion. The hlack-leather-clad motorcyclist sails by Harriet's windshield, airborne. We see a man's face,
clearly: His elephant-hide skin tells us that he is well beyond middle-age. Yetthick, black curls of youthful hair emerge from under his helmet. The rider

has only one half of a black, bushy, swept-out, waxed mustache. His eyes are weary and grey, and appear to lock with Harriet's for an instant.

We return to normal speed. The bodyis now lying on the incoming lane to the left of Harriet's Subaru, perfectly still on the blacktop, the head twisted into
animpossihle angle. Blood seeps from a nostril. Beside the lifeless head, a BMW medallion lies on the pavement, glinting in the sunlight.

1. TWIRL - DAY Step 1 of 3
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1. TWIRL - DAY

68-yearold Hamet Smith sits with two wrinkled hands firmly on the wheel of her rust-eaten Subaru wagon,
staring straight ahead through the top level of bifocals as she waits serenely at a red ight.

Hamiet is alone in the car. To her right is another vehicle, also waiting, in this case to make a nght tum; it's
a sleek, low-slung, black Camaro.

We are inside the cabin with Hamiet. The SubanJ's sound system softly plays choral music. Hamief's lips
move siightly as she intemally sings along, mouthing a slow aria. Her head weaves slightly side 1o side,
n the rhythm with the music.

Things are caim as can be here inside the car with Hamiet. There are a par of wellwom Bibles on the
empty passenger seat beside her, one with a goldetiered "Hamet' on its leather front cover, the other with
a matching 'Joseph' on its front cover.

Hamiet's eyes swivel up fo the light: still red. We wait with her.

Suddenly there is a piercing SCREECH outside. Hamiet jerks her head o the right and we follow her ine
of sight.

A sleek motorcycle has swerved out of its lane and is now streaking straight for the nght side of the
Camaro beside Hamiet's car.

The bike slams with CLANG into the side of the Camaro. Its rider is flung up and forward into the ar,
twiling passed Hanmiet's windshieid.

We now waich from Hamet's POV, in slow motion. The black-eatherclad motorcyclist sails by Hamief's
windshield, aibome. We see a man's face, clearly: His elephant-hide skin tells us that he is wel beyond
middie-age. Yet thick, black curls of youthful hair ememge from under his helmet. The rider has only one
half of a black, bushy, swept-out, waxed mustache. His eyes are weary and grey, and appear to lock
with Hamiet's for an instant.

We retum to nommal speed. The body is now lying on the incoming lane to the left of Hamiet's Subaru,
perfectly still on the blackiop, the head twisted into an impossible angle. Biood seeps from a nostril
Besice the ifeless head, a BMW medallion lies on the pavement, glinting in the suniight.
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‘ {:name “Knowability paradox"
:description " exists p ~Diamond exists x Kx (Tp & ~ exist y Ky Tp)"

:assumptions {}
:goal (exists (7P (not pos (exists (7x  Knows! ?x (and 7P (not (exists [?y] (Knows! ?y ?P)))) ) 1)}
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{:name “Knowability paradox"
:description " exists p ~Diamond exists x Kx (Tp & ~ exist y Ky Tp)"

:assumptions {}

:goal (exists [7P] (not pos (exists 7x Knows! ?x (and 7P (not (exists [?y! (Knows! ?y ?P)))) )}
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Abstract

We introduce Vivid, a domain-independent framework for mechanized heterogeneous
reasoning that combines diagrammatic and symbolic representation and inference. The
framework is presented in the form of a family of denotational proof languages (DPLs). We
present novel formal structures, called named system states, that are specifically designed
for modeling potentially underdetermined diagrams. These structures allow us to deal with
incomplete information, a pervasive feature of heterogeneous problem solving. We
introduce a notion of attribute interpretations that enables us to interpret first-order
relational signatures into named system states, and develop a formal semantic framework
based on 3-valued logic. We extend the assumption-base semantics of DPLs to
accommodate diagrammatic reasoning by introducing general inference Techanisms for
the valid extraction of information from diagrams, and for the incorporation of sentential
information into diagrams. A rigorous big-step operational semantics is given, on the basis
of which we prove that the framework is sound. We present examples of particular
instances of Vivid in order to solve a series of problems, and discuss related work.
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for modeling potentially underdetermined diagrams. These structures allow us to deal with
incomplete information, a pervasive feature of heterogeneous problem solving. We
introduce a notion of attribute interpretations that enables us to interpret first-order
relational signatures into named system states, and develop a formal semantic framework
based on 3-valued logic. We extend the assumption-base semantics of DPLs to
accommodate diagrammatic reasoning by introducing general inference Techanisms for
the valid extraction of information from diagrams, and for the incorporation of sentential
information into diagrams. A rigorous big-step operational semantics is given, on the basis
of which we prove that the framework is sound. We present examples of particular
instances of Vivid in order to solve a series of problems, and discuss related work.
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We introduce Vivid, a domain-independent framework for mechanized heterogeneous
reasoning that combines diagrammatic and symbolic representation and inference. The
framework is presented in the form of a family of denotational proof languages (DPLs). We
present novel formal structures, called named system states, that are specifically designed
for modeling potentially underdetermined diagrams. These structures allow us to deal with
incomplete information, a pervasive feature of heterogeneous problem solving. We
introduce a notion of attribute interpretations that enables us to interpret first-order
relational signatures into named system states, and develop a formal semantic framework
based on 3-valued logic. We extend the assumption-base semantics of DPLs to
accommodate diagrammatic reasoning by introducing general inference Techanisms for
the valid extraction of information from diagrams, and for the incorporation of sentential
information into diagrams. A rigorous big-step operational semantics is given, on the basis
of which we prove that the framework is sound. We present examples of particular
instances of Vivid in order to solve a series of problems, and discuss related work.
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Spectra: Planning with Goals under Contexts

:goals {G1 {:priority 1.0
:context { :work-from-scratch false
: plan—-methods
(define-method planMethod [?b ?d ?c]
{:goal [(In ?b ?c) (In ?c 7d)]
:while [(< (size 7c¢) (size 7d)) (< (size 7?b) (size 7?c)) (In ?b ?d) (Empty ?c)]
:actions [(removeFrom ?b ?d) (placelnside ?b ?c) (placeInside 7?c ?d)]1})}
:state [(In a b)
(In b c)
(In c d)]1}}
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:goals {G1 {:priority 1.0
:context { :work-from-scratch false
: plan-methods
(define-method planMethod [?b ?d ?c]
{:goal [(In ?b ?c) (In ?c 7d)]
:while [(< (size 7?c) (size ?d)) (< (size ?b) (size 7?c)) (In ?b ?d) (Empty ?c)]
:actions [(removeFrom ?b ?d) (placelnside ?b ?c) (placeInside ?c ?d)]1})}
:state [(In a b)
(In b c)
(In c d)1}}



:context { :work-from-scratch false
: plan-methods
[(define-method planMethod [?b ?d ?c]
{:goal [(In ?b ?c) (In ?c ?d)]
:while [(< (size 7?c) (size 7?7d)) (< (size 7?b) (size 7?c)) (In ?b ?d) (Empty ?c)]
:actions [(removeFrom 7?b ?d) (placeInside 7?b ?c) (placeInside 7?c ?d)]1})I]}




:context { :work-from-scratch false
: plan-methods
[(define-method planMethod [?b ?d ?c]
{:goal [(In ?b ?c) (In ?c ?d)]
:while [(< (size 7?c) (size 7?7d)) (< (size 7?b) (size 7?c)) (In ?b ?d) (Empty ?c)]
:actions [(removeFrom 7?b ?d) (placeInside 7?b ?c) (placeInside 7?c ?d)]1})I]}
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Vla. A New, Fine-Grained
Paradigm for Ethics Itself ...



Vib.
The Universal Cognitive Calculus ...
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S0, what do you think, Leibniz?

“Universal Cognitive

Calculus” @CEC

Object | Agent | Self = Agent | ActonType | Action C Event
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Leibniz;

“Al of today is mere calculation, and
therefore, measured against the human
mind, merely an extension of of my
reckoner — not anything like the deep
human thinking that gave birth to my
dream of the universal cognitive calculus!”
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Leibniz’s Dream of the
Universal Cognitive Calculus

| have come to understand that everything ... which algebra
proves is only due to a higher science, which | now usually
call a combinatorial characteristic, though it is far different from
what may first occur to someone hearing these words. ...
Yet | should venture to say that nothing more effective can
well be conceived for perfecting the human mind and that if
this basis for philosophizing is accepted, there will come a
time, and it will be soon, when we shall have as certain
knowledge of God and the mind as we now have of figures
and numbers and when the invention of machines will be no
more difficult than the construction of geometric problems.

(Leibniz, 1675)
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Leibniz’'s Dream of the
Universal Cognitive Calculus

This is undoubtedly one of the greatest projects to which
men have ever set themselves. It will be an instrument
even more useful to the mind than telescopes or
microscopes are to the eyes. Every line of this writing will
be equivalent to a demonstration. The only fallacies will
be easily detected errors in calculation. This will become
the great method of discovering truths, establishing them,

and teaching them irresistibly when they are established.
(Leibniz, 1679)
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Leibniz’'s Dream of the
Universal Cognitive Calculus

| certainly believe that it is useful to depart
from rigorous demonstration in geometry
because errors are easily avoided there, but in
metaphysical and ethical matters | think we
should follow the greatest rigor. Yet if we had
an established characteristic we might reason

as safely in metaphysics as in mathematics.
(Leibniz, 1679)
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The Dream of the
Universal Cognitive Calculus

When we lack sufficient data to drive at
certainty in our truths, it would also serve
to estimate degrees of probability and to

see what is needed to provide this certainty.
(Leibniz, 1679)
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The universal cognitive calculus ...

is a higher science than mathematics, since it is the
underlying calculus that generates and guides mathematics;

can be used to perfectly guide and systematize ethics,
metaphysics, physics, law, theology, and cognitive science;

. can be used to create truly intelligent computing machines

(including robots) able to genuinely assist us;

includes coverage of non-deductive reasoning in domains
and applications where uncertainty/probability/likelihood
are present — and (somehow!) enables such reasoning to
be flawless; and

includes reasoning that is of a visual (not just symbolic-
symbol) nature.



V.
But We Need ...

Ethical Operating Systems ...



Breaking
Bad

Breaking Bad <

American drama series

9.5/10 4.6/5 95%
IMDb AlloCiné Rotten Tomatoes

Mild-mannered high school chemistry teacher Walter White thinks his life
can't get much worse. His salary barely makes ends meet, a situation not
likely to improve once his pregnant wife gives birth, and their teenage son
is battling cerebral palsy. But Walter is dumbstruck when he learns he
has terminal cancer. Realizing that his iliness probably will ruin his family
financially, Walter makes a desperate bid to earn as much money as he
can in the time he has left by turning an old RV into a meth lab on wheels.

First episode date: January 20, 2008
Final episode date: September 29, 2013
Spin-off: Better Call Saul

Awards: Primetime Emmy Award for Outstanding Drama Series, more
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Pick the Better Future!

Walter-White calculation may go through after ethical control modules are stripped out!

Only “obviously” dangerous higher-level Al
modules have ethical safeguards. All higher-level Al modules interact with the

robotic substrate through an ethics system.

(&
formally
verify!)

Robotic Substrate Robotic Substrate

Higher-level cognitive and Al modules
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Three Tracks Being Explored

Purely abstract, logico-mathematical.

Lisp “on the metal.”

—ooo

Build from scratch an “OS” on computational logic.
E.g., build “OS” on basis of ACL2.

—ooo



Alas, Currently Only Toy Domain

Input: Input is a 2D Array. Assume no noise and that the car sees perfectly

ane marker _ World
Y

camera

Vehicle

Agent Program:

1. If the car senses a lane marker, it goes to the right.

2. If the car senses another car just about to hit a pedestrian,
It goes between the other car and the pedestrian.



Common Lisp Functions

agent: input =—p action

Collision-About-To-Happen: input =3 boolean

Prevents-Collision: action, input =% boolean



(thm (implies (Collision-About-To-Happen world)
(Prevents-Collision (agent world) world)))

ACL2S 1>QUERY
(thm (implies (Collision-About-To-Happen world)
(Prevents-Collision (agent world) world)))

<< Starting proof tree logging >>
Goal'

Q.E.D.

Summary

Form: ( THM ...)

Rules: ((:COMPOUND-RECOGNIZER ACL2::ZP-COMPOUND-RECOGNIZER)
:DEFINITION ABS)

:DEFINITION AGENT)

:DEFINITION COLLISION-ABOUT-TO-HAPPEN)
:DEFINITION FIND-IN-MATRIX)
:DEFINITION FIND-ME)

:DEFINITION FIND-OTHER-CAR)
:DEFINITION FIND-PEDESTRIAN)
:DEFINITION FIND-YELLOW-MARKER)
:DEFINITION NTH)

:DEFINITION PREVENTS-COLLISION)
:DEFINITION SYNP)

:DEFINITION X)

:DEFINITION Y)

:EXECUTABLE-COUNTERPART <)
:EXECUTABLE-COUNTERPART ABS)

Time: 0.21 seconds (prove: @
Prover steps counted: 14614

Proof succeeded.

:EXECUTABLE-COUNTERPART ACL2-NUMBERP)
:EXECUTABLE-COUNTERPART BINARY-+)
:EXECUTABLE-COUNTERPART EQUAL)
:EXECUTABLE-COUNTERPART UNARY--)
:EXECUTABLE-COUNTERPART ZP)
:FAKE-RUNE-FOR-TYPE-SET NIL)

:REWRITE ACL2::1(+ @ x)1)

:REWRITE ACL2::1(+ x (- x))1)

:REWRITE ACL2::1(+ x (if a b <)1)
:REWRITE ACL2::1(+ y (+ x 2))1)
:REWRITE ACL2::1(+ y x)I)

:REWRITE ACL2::1(- (+ x y))I)

:REWRITE ACL2::1C- (- x))1)

:REWRITE ACL2::1(- (if a b c))I)
:REWRITE ACL2::1(< (- x) o)1)

:REWRITE ACL2::1(< (if a b c) x)1)
:REWRITE ACL2::1(< c (- x))1)

:REWRITE ACL2::1(< x (if a b c))1)
:REWRITE ACL2::ICequal (if a b c) x)I)
:REWRITE ACL2::BUBBLE-DOWN-+-MATCH-1)
:REWRITE ACL2::BUBBLE-DOWN-+-MATCH-3)
:REWRITE CAR-CONS)

:REWRITE CDR-CONS)

:REWRITE CONS-EQUAL)

:REWRITE ACL2::DEFAULT-MINUS)
:REWRITE ACL2::DEFAULT-PLUS-1)
:REWRITE ACL2::DEFAULT-PLUS-2)
:REWRITE ACL2::NORMALIZE-ADDE
:REWRITE ACL2::NTH-WHEN-ZP)
:REWRITE ACL2::PREFER-POSITZVE-ADDENDA-<)
:TYPE-PRESCRIPTION FIND-INAMATRIX-JATERNAL))

INNNNNNNNNNNNNNNINONNNINONINONINONINONINONINONNONNONNONONONONONONONONN

f— i ————————edey, r i 0 L . OO0, proof tree: 0.00, other: 0.00)
Prover steps counted: 14614

Proof succeeded.




Showing the Functions Used

-

e Ow e W VA O N0 SR AT MR 0 8P

= mybook.lisp &3

» input here is o matrix showing where the yellow
; lane morker is observed. ¢ for other cars. p for pedestrion.
i3 Using the Udocity closs on self driving.
i (R2){F3](r3]
» [12)[f2](r2)]
s [R1)0F1](r1)
: 1F the yellow lane marker is observed on r2.
i GO right twice
;s 1F the yollow lane merker is observed in f
33 @0 right once
is (mil m1l y) (nil nmil nil) (nil nil nil))

;: Defining Melper Functions

(defun find-in-ron-interncl (row cbject position)
(cond (row (if (ecqual object (car row))
position
(Find-in-ron-internal (cdr row) object (+ position 1))))
(t nil)))

(defun find-in-row (row object)
(find-in-ron-internal row object 8))

(defun find-in-matrix-internal (matrix object position)
(cond (motrix (let ((top-rom-ons (Find-in-row (cor motrix) object)))
(if top-row-ons
(list position top-row-ans)
(find-in-motrix-internol (cdr matrix) object (+ position 1)))))
(t nil)))

(defun find-in-matrix (sotrix object)
(find-in-matrix-internal matrix object 3))
(defun matrix-size (input-matrix)

(list (length input-matrix) (length (car input-matrix))))

(defun find-yellow-marker (input-matrix)
(find-in-matrix input-matrix :y))

(defun find-other-cor (input-matrix)
(find-in-matrix input-matrix :c))

(defun find-pedestrian (input-motrix)
{(find-in-matrix input-matrix :p))

(defun find-me (input-matrix)
(find-in-matrix input-matrix :me))

) Console 22
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Compile and Load

_: l l, ___v_‘__;ZA__._'_. mwvbook lisp.a2s - Eclio _. I ,—.| sundarc n.. me .; / o2 ork s ._, T
AT e || ® @nesource [eAciz Dovelopment]
B L L T — ~ T 0 £ Outline 52 = a
. Staning up... ACL2s Modo ol ks 2

Executing /Users/noveensundarg/projects/acirs/plugins/ocl2_imoge.macosx.x86_64_7.1.8/run_acl2
Storting ACLZ in mode “ACL2s"

Nelcome to Clozure Common Lisp Version 1,9-715759 (DarwinX8664)!

ACL2 Version 7.1 built Jenuory 4, 2016 14:32:59.

Copyright (C) 2015, Regents of the University of Texas

ACL2 comes with ABSOLUTELY NO MARRANTY. This is free software ond you
ore welcome to redistribute it under certoin conditions. For detoils,
see the LICENSE file distributed with ACL2.

For ACL2 (theorem prover) help, refer to
http://www. 5. utexos . edu/users/moore/acl2/v7?-1/ac12-doc hinl
For ACL2s (interface) help, refer to
http://aci2s. ccs.neu.edusocl2s/
«> Hold “Coemand™ to follow hyperlinks ond :D0Cumentation references <=

Loading ACL2s modificotions...

) Console &2
No consoles to dispiay at this time.

| Writable Insert 22467:10
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Theorem Proved

[ ————————— T ——————————t

[ e————————

[ | ® @neouce acizpmminnen

= O Z Outline &2 < a

© % = Readyfor command input ACL2s Mode
(:FORNARD-CHAINING ACL2::0-FINP-<-FC)
(:INDUCTION ACL2-COUNT)
C:REWRITE ACL2::1(+ (o x y) 21D
C:REWRITE ACL2::1(+ @ x)1)
C:REWRITE ACL2::1(s y x)I)
(:REWRITE ACL2::I1@ <« @ =
C:REWRITE CAR-CONS)
(:REWRITE COR-CONS)
C:REWRITE DEFAULT-CDR)
C:REWRITE ACL2::0-FINP-<)
(:REWRITE ACL2::0-P-DEF-0-FIND-1)
(:REWRITE ACL2::0<=-0-FINP-DEF)
C:REWRITE ACL2::1~Ca<@)!)
(:TYPE-PRESCRIPTION ACL2-COUNT)
(:TYPE-PRESCRIPTION 0<)
C:WELL-FOUNDED-RELATION ACL2: :WELL-FOUNDED-L<))
Time: 2.73 seconds (prove: 2.79, print: 0.02, proof tree: .00, other: 9.01)
Prover steps counted: S3585
MAKE-NIL
ACL2S !SEVENT
(defun place-in-matrix (motrix object P1 P2)
(if (end object matrix (symbolp object)
(integerp P1) (integerp P2) (not (symbolp matrix))
(true-esatrixp eotrix) (not-jogged motrix)
(<= @ P1) (<= @ P2)
(< P1 (length matrix))
(< P2 (length (cor matrix)))
(< (length matrix) °N*)
(< (length (car matrix)) °N°®))
Cif (zercp P1)
(cons (place-in-row (cor msatrix) object P2)
(cdr matrix))
(cons (ecke-nil (cor motrix) object) (plece-in-motrix (cdr motrix) object (- P1 1) P2)))
nil))

CCG analysis bas succeeded in proving terminotion of PLACE-IN-MATRIX
using CCNs over the following voriables: (P1). Thus, we odait this
function under the principle of definition. We observe that the type
of PLACE-IN-MATRIX is described by the theorem
(OR (CONSP (PLACE-IN-MATRIX MATRIX OBJECT P1 P2))

(EQUAL (PLACE-IN-MATRIX MATRIX OBJECT P1 P2)

NIL)).

We used prismitive type reasoning.

~(a - 0)1)

Summary

Form: ( DEFUN PLACE-IN-MATRIX ...)

Rules: ((:FAXE-RUNE-FOR-TYPE-SET NIL)
C:WELL-FOUNDED-RELATION ACLZ: :WELL-FOUNDED-L<))

Time: 0.93 seconds (prove: 0.00, print: 0.00, proof tree: 9.00, other: 0.03)
PLACE - IN-NATRIX
ACL2S 1>
Q) Console 2 Berie= @
No consoles to dispiay at this time.
 Writable Insert 1732:10

<session beginning>

<session startup>

[ (defun find-in-row-internal (row object position)
[ (defun find-in-row (row object)

[ (defun find-in-matrix-internal (matrix object posit
() (defun find-in-matrix (matrix object)

[ (defun matrix-size (input-matrix)

D (defun find-yellow-marker (input-matrix)

[ (defun find-other-car (input-matrix)

([ (defun find-pedestrian (input-matrix)

D (detun find-me (input-matrix)

[0 (defun x (point) (nth 0 point})

() (detun y (point) (nth 1 point))

[ (defun agent (input)

([ (defun Collision-About-To-Happen (input)
() (defun Prevents-Collision (action input)

[ (defconst *N* 3)

[ (defun place-in-row (row object position)

[0 (defun true-matrixp (object)

[ (defun all-same-int (object L)

() (defun ali-same (L)

[0 (defun row-lengths (matrix)

[ (defun not-jagged (matrix)

) (defun make-nil (L object)

[ (defun place-in-matrix (matrix object P1 P2)
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1.
Early Progress With Our Calculi:
Non-Akratic Robots



Informal Definition of Akrasia

An action Oy 18 (Augustinian) akratic for an agent A at fq,
iff the following eight conditions hold:

(1) A believes that A ought to do a, at fq,;

(2) A desires to do Oy at tq /s

(3) A’s doing o.f at g / entails his not doing o, at 7q_;

(4) A knows that doing ot at 7, entails his not doing .,
at fq, ;

(5) At the time (fo,) of doing the forbidden o, A’s desire
to do oy overrides A’s beliet that he ought to do o,
at fq,.

(6) A does the forbidden action Oy at 7, ;

(7) A’s doing o results from A’s desire to do oif;

(8) At some time ¢ after #y,, A has the beliet that A ought
to have done @, rather than o.y.
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Informal Definition of Akrasia

An actiois (Augustinian) akratic for an agent A at 7q,
iff the following eight conditions hold:

(1) A believes that A ought to dat to, s
(2) A desires to do oy at fq,;

(3) A’s doing o.f at g / entails his not doing o, at 7q_;

(4) A knows that doing ot at 7, entails his not doing .,
at fq, ;

(5) At the time (fo,) of doing the forbidden o, A’s desire
to do oy overrides A’s beliet that he ought to do o,
at fq,.

(6) Aldoes the forbidden action)oir at 7 P

(7) A’s doing o results from A’s desire to do oif;
“Regret” (8) At some time ¢ after o, A has the belief that A ought
to have done @, rather than o.y.



Cast in

DCECT

this becomes ...






KB,ASUKBm1 U KBm2 ...KBp,
D : B(l,now, O(I*, £, P, happens(action(1” ), ty,)))
D, : D(I,now, holds(does(1",q), t5))

D3 : happens(action(1*, @), tg) = —happens(action(1™, o), ty)

happens(action(1”,Q), te) =
D4 : K[ I, now, D
—happens(action(I*, o), 1)

 I(l,tq, happens(action(1*,a.), ter) A
" =I(l, 2y, happens(action(1*, ), to,)

Dg : happens(action(I”, @), ts;)

TU{D(l,now, holds(does(I*,@),t)) }
D7a . . * —
happens(action(1”, @), ty,)

b ['—{D(Il,now, holds(does(I*,Q),1)) } I
L happens(action(1™, @), ty)

Dy : B(I,tf,O(I*,ta,q),happens(action(l*,Oc),ta)))









1.
But, a twist befell the logicists ...



Chisholm had argued that the three
old |9th-century ethical categories
(forbidden, morally neutral, obligatory)
are not enough — and soul-
searching brought me to agreement.



morally
neutral

obligatory

heroic

civil

uncivil



Leibnizian Ethical Hierarchy for
Persons and Robots:

EH

morally
heutral

obligatory  civil  heroic

deviltry = uncivil
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Leibnizian Ethical Hierarchy for
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obligatory  civil ' heroic
neutral
But this portion may be most
relevant to military missions.
focus of

others
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There are obviously a host of formulae whose
theoremhood constitute desiderata; that is (to give
but a pair), the following must be provable (where
n € {1,2}):

Theorem 1. SYP"(¢,a,a) - ~0(¢,a,a)
Theorem 2. SYP"(¢,a,a) = ~F(¢,a,a)

Secondly, Lg» is an inductive logic, not a de-
ductive one. This must be the case, since, as we’ve
noted, quantification isn’t restricted to just the
standard pair 3V of quantifiers in standard exten-
sional m-order logic: &7 is based on three addi-
tional quantifiers. For example, while in standard
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K (nao, t1, lessthan (payoff (nao™, —dive, t5) , threshold))
K (nao, t1, greaterthan (payoff (nao™, dive, t5) , threshold))
K (nao, t1,—0 (nao™, ta, lessthan (payoff (nao™, =dive, t5) , threshold) , happens (action (nao*, dive) , t3)))
. K (nao, t1, S""? (nao, to, happens (action (nao*, dive) , t2))
.. I (nao, to, happens (action (nao®, dive) , ts))
.. happens (action(nao, dive), to)
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K (nao, t1, lessthan (payoff (nao™, —dive, t5) , threshold))

ho, 2, happens (action (nao*, dive) , t3))
oS (action (nao™, dive) , ts))

P T
.

Courtesy of RAIR-Lab Researcher Atriya Sen




In Talos (available via VWeb interface); & ShadowProver

Prototypes:

Boolean lessThan Numeric Numeric
Boolean greaterThan Numeric Numeric
ActionType not ActionType
ActionType dive

Axioms:
lessOrEqual (Moment t1,t2)
K(nao,tl,lessThan(payoff(nao,not(dive),t2),threshold))

K(nao,tl,greaterThan(payoff(nao,dive,t2),threshold))
K(nao,t1l,not(0(nao,t2,lessThan(payoff(nao,not(dive),t2),threshold),happens(action(nao,dive),t2))))

provable Conjectures:

happens(action(nao,dive),t2)
K(nao,tl,SUP2(nao,t2,happens(action(nao,dive),t2)))
I(nao,t2,happens(action(nao,dive),t2))



In Talos (available via VWeb interface); & ShadowProver

Prototypes:

Boolean lessThan Numeric Numeric
Boolean greaterThan Numeric Numeric
ActionType not ActionType
ActionType dive

Axioms:
lessOrEqual (Moment t1,t2)
K(nao,tl,lessThan(payoff(nao,not(dive),t2),threshold))

K(nao,tl,greaterThan(payoff(nao,dive,t2),threshold))
K(nao,t1l,not(0(nao,t2,lessThan(payoff(nao,not(dive),t2),threshold),happens(action(nao,dive),t2))))

provable Conjectures:

I(nao, ths(action(nao ,dive),t2))

K(nao,tl ao,tZ2,happens(action(nao,dive),t2)))
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Key Core Al Technologies
for Cognitive Calculi ...






Motivation

* We have decades of research and industrial-strength

implementations of propositional and first-order
theorem provers.

» Utilize this in building first-order intensional-logic
provers and above, in a principled manner.




Two Extant Modes

* There are two ways of piggy backing on first-order

provers to build higher-order provers ...



Two Extant Modes

Mode 1: Honest Encoding

Painstakingly encode all rules of inference anad
syntax in FOL

Precise

Extremely slow to implement
Reasoning is also slow



Two Extant Modes

Mode 2: Naive Encoding

Pretend intensional and higher-order tormulae and
operators are first-order predicates

Extremely easy to implement
Reasoning can also be fast

Unsouna
Wrong inferences can be easily drawn



Mode 2

P1l. evening_star = morning_star
{P1} Assume v/

P2. -knows(abe,reify(=-reified(evening_star,morning_star)))
{P2} Assume v/

P3. knows(abe,reify(=-reified(morning_star,morning_star)))
{P3} Assume v

FOL - v/

Y

4. A A -A
{P1,P2,P3}




A New Way: ShadowProver

- ~ formula

q\ / N first-order shadow

- ~ = propositional shadow




S The Shadow Maker

For all formulae f,

Spf IS a unigue atomic symbol.



Examples of shadows

(\V/.CE‘B(CL, Q)) /\ P(QE) formula

vxS[B(a,Q)] A P(ZC) first-order shadow

SivzB(a,@)] \ P ()

propositional shadow



B
A New Way: Shadow Prover

Two step process till goal is reached:

Step A: Shadow formulae down to all lower levels. Run
lower theorem provers. If goal reached, return true.

Step B: Expand the assumption base using higher level rules.

Step A
Step B
Step A




Actually, this is more general:

Theorem:

Given a Turing-decidable proof theory p, for every inference I' -, ¢, there is a
corresponding first-order inference IV = ¢’, where each v € I is the first-order
projection (or shadow) of some % in the deductive closure of I', and ¢ is the

shadow of ¢.
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Rather Promising Results

{:name "xcognitive-calculus-completeness-test-3x"
:description "Bird Theorem and Jack"
rassumptions {1 (if (exists (?x) (if (Bird ?x) (forall (?y) (Bird ?y)))
Knows! jack t@ BirdTheorem )}
:goal (Knows! jack t@ BirdTheorem) }

Note: the antecedent is a theorem in first-order logic

2 ms!

EWLESTLOIMPIELENESS[[\NOLU (RMOWS! a4 Nnow r)), Ul (Mot W) (RMNOows! 4 nNow (noc W), (RMNOows! 4 now (1 (nou Wy r)jj, W (14) LIms
@ testCompleteness[[(if P (Knows! jack now (not (exists[?x] (if Bird(?x) (forall [?y] Bird(?y)))))], (not P)] (15) 7ms
@ testCompleteness[[(Common! now (Common! now P))], P] (16) 2ms
@ testCompleteness[[(Common! now (iff (not Marked(a2)) Marked(al))), (Common! now (if (not Marked(a2)) (Knows! al now (not Marke( 135ms

D testCompleteness|[[(if (exists[?x] (if Bird(?x) (forall [?y] Bird(?y)))) (Knows! jack tO BirdTheorem))], (Knows! jack t0 BirdTheorem)] (18)
@% testSoundess[[A], (or P Q)] 2ms
@n testSoundess[[(not (Knows! a now =(morning_star, evening_star))), =(morning_star, evening_star), (Knows! a now =(morning_star, m¢ 26ms



A Particularly Promising (& Selmer-disturbing) Result:

Automation of false-belief task and other projects
that were only semi-automated before.

More at:

+ Java Implementation:

https://bitbucket.org/Holmes/prover/


https://bitbucket.org/Holmes/prover/

Future Work

Future work is a mix of research, design, and implementation

. research . design . implementation

Custom language for 20% 40%
extending to other first-order
modal calculi

Further integration with robotic 10% 10%
platforms at Tufts and RPI

Explore parallelization and
a other venues for even more
speedup

45% 10% 45%




Custom Language and Logic

- Allow users to specify new inference schemata. E.g.

{:name "R4"
:description "Knowledge of P => P"
:type expander
:input (Knows! ?a ?t @P)
:output @P}




Spectra

https://bitbucket.org/Holmes/planner



https://bitbucket.org/Holmes/planner

Spectra

- Existing Planners: Propositional (essentially)
+  Drawbacks:
- Expressivity: Cannot express arbitrary constraints.

- “At every step make sure that no two blocks on the
table have same color.”

- Domain Size: Scaling to large domains of arbitrary
sizes poses difficulty.



Background
Formulae

Initial State
Formula

Action
Definitions

Spectra (planner)
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Spectra

P1, P2y - - -

Plans
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Infinite Models

VeIyR (z,y) A

o ode'®
SRR °
s O
ne Useful for modeling agents that work with:

|. an unbounded number of objects, agents;
2. abstract objects




Background
Formulae

Initial State
Formula

Action
Definitions

Example

:background [ (forall [?x ?rooml ?room2]

(if (not (=

(if (in ?x ?rooml) (mot (in ?x ?room2)))

?rooml ?room2))

not (= rooml room2)

not (= prisoner commander)
not (= self prisoner)

not (= self commander)

person prisoner
person commander ]

:start [(in self rooml

in commander room2
in prisoner rooml

open (door room?2
not (open (door

)
rooml)) |

define-action accompany [?person ?rooml ?room2]

{:preconditions [(not (= ?rooml ?room2))

radditions

:deletions

(in ?person ?rooml)
(in self ?rooml)

(open (door ?rooml)
(open (door ?room2)

'(in ?person ?room2)
(in self ?room2) ]

[(in ?person ?rooml)
(in self ?rooml)]}

)
)

]

)



How do you handle efficiency!?

- Two approaches:

* Procedural Attachments: Special purpose procedural
code that can bypass strict formal reasoning.

- M-Mmethods: Written in denotational proof language.
Preserves soundness by letting us write down
commonly used patterns of reasoning (a bit unwieldy
integration now than the first approach).
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Third-person de dicto
B(cogito, dx : Agent(named(z, “Cogito”) A red-splotched(x)))
Third-person de re
dz : Agent(named(x, “Cogito”) N B(cogito, red-splotched(z)))
Third-person de se
B( cogito, red-splotched(cogitox)))

First-person de se

B (1, red-splotched(Ix))

in the logic Logito
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Wise man’s hat puzzle: well-known
benchmark for epistemic logics

Your hats are either blue or
white. At least one of your hats
IS blue. What color is your hat?

/

| don’t know | don’t know | kKnow!
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Floridi's KG,

dumbing pill dumbing pill placebo

Which pill did you receive?




Floridi's KG,

dumbing pill dumbing pill placebo

» »

Wait; now |
Know

Which pill did you receive?



AXIOMS

forall [x,y] implies
forall [x,y] implies
forall [x,y] implies
forall [x,y] implies
forall [x,y] implies
forall [x,y] implies

(if

(if

(and(x,y), X)
(and(x,y), y)
(and

(

forall [x] iff(not(not(x)), x)

forall [x,y,z] implies(and(It(x,y),lt(y,z)), It(x,z))

1t(t1,t2)
1t(12,13)
1t(t3,t4)
t(t4,15)
forall [x,y] iff(It(x
forall [x,y] iff(It(x

YY), gt(y,x))
Y), not(lt(y,x)))

Boolean iff Boolean Boolean
Boolean It Moment Moment
Boolean gt Moment Moment
Boolean S Agent Moment
Boolean

Event eventOccurred Boolean

PROTOTYPES

f(x,y), implies(x,y))
f(x,y), implies(y,x))
n

(x,y),and(y,x))
X, implies(y, and(x,y)))
(x

forall [x,a,t] iff(K(a,t,x), and(B(a,t,x), x))

forall [x,y] implies(and(implies(x,y), not(y)), not(x))
forall [x,y,a,t] implies(and(K(a,t,implies(x,not(y))),K(a,t,y)),
K(a,t,not(x)))

gt(t4,t2)

forall [t,ti,tj,tk,p]
implies(and(gt(tj,ti),gt(tk,ti)),K(R3,t,implies(happens(action(R3,i
ngestDumbPill),ti),not(happens(eventOccurred(S(RS,1j,p)),tk)))
)

K(R3,t4,happens(eventOccurred(S(R3,t4,p)),t4))

CONJECTURE TO PROVE

K(R3,t4, not(happens(action(R3,ingestDumbPill),t2)))



PROTOTYPES
Boolean iff Boolean Boolean
Boolean It Moment Moment
Boolean gt Moment Moment
Boolean S Agent Moment

AXIOM!
forall [x,
forall [x,
forall [x,
forall [x,
forall [x,
forall [x,
forall [x

g
¥

¥

n(R3,
)):tk)))

forall [x,
t(t1,t2)
t(t2,13)
t(t3,14)
|t(14,15)
forall [x,
forall [x, B
© L'

CONJECTURE TO PROVE
K(R3,t4, not(happens(action(R3,ingestDumbPill),t2)))
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Fetaer famously claims that program verification isa't even & theoretical pussibility, and offers & cortain argument
for this far-reaching chaim Undortunately for Fetser, ndhhp-t‘n--thwmvhb
haeed on & seounal ineight that program venfication, despite ns proet-theoretic airs, » plageed by the
mevitable unselability of mesay, real-work! casation, s demonstrably self-cefuting. As | swon show, Fetaer (and
mdewd anyome el who provides an argument- or peoof-based attack on program verdication) is lilie the person
who claims: *“My sole claim » that every claim exprosed by an Englsh sentence and starting with the phrase
My sole claim’ s false” Or, more scourately, such thinkers are B the p who claims that madus tollens b
wvalid, and spports this claim by gving as arguaent that self cmploys thin ree of inference.

1. Introduction

Fetzer (19588) famously elaims that program verification isn't even & theoreticn! possibility.” and
seeles to convinee his remders of this claim by providing what has now become s widely known
argument for it, Unfortunately for Fetzer, and like minded thinkers, this position-argumsent pair,
while based on & seminal insight that program verifiention, despite its Platonic proof-theoretic
airs, is plagued by the inevitable unreliability of mesay, renl-world causation, is demonstrably
self-refuting. As | soon show, Fetzer (and indeed nuyone else who provides an argument- or
proof-based nttack on program verification) is like the person who elnims: "My sole claim is that
every claim expresed by an English sentence and starting with the phease "My sole claim' is
false.” Or, more accurntely, such thinkers are e the pemson who clains that modus follens is
invalid, and supports this claim (~p) by giving an argument (where r is any rule of inference
from some proof or argusent enloulus) of the form shown in the following table,

1 2 r
2 =2 r
x pY r
k+l g r

k+2 ~p modus tollens k. k+ 1

Tatde | Self Mefuting Argiment Schama Againat Wodus Tiliens

'Eg, be writes: “The sucome of program verith Y ally agpiicabie st ietely rellabio method Sor Quaran
mmm--ﬁm‘wm (m-u-.wm

e —



Musk/Russell/Dietterich/...:
“Huh! Mere theory! Can’t be built.”

AVindication of Program Verification




One Architecture for How to Build It

Prover/Proof
System

\_

~

Encode and
verify the
algorithm(s)

Extract algorithm code
Sensordata & |
actuator
function(s)

L \V =

Trusted Kernel

S

Extracted
algorithm
code,
compatible
with the
trusted
kernel.

_ Algorithm output

Basic & fault
tolerant: 1/0O,
memory,
motion
handling
code



Working Proof of Concept Now Up!

Prover/Proof N Sideloading Code

System
Y Extract algorithm code

Isabelle/HOL | 4 Isabelle/OCaml

. e e

L N4
Trusted Kernel

Runs a thin server on the robot
that’s inert unless it receives | OCaml
iInput over the network. Relay

sensor data and commands to/
from the robot via OCaml.
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In original Arkoudas-Bringsjord dialect of CEC:

S(a,p,b,t)
K(b, ¢, t)

Now working with NLU-infused cognitive calculi:

knowledge-base of a

string background theory

| }
S(a,o0,b,t), Ky, 0

K (b, p((0)). 1

T

parse to intermediary form

mapping to formulae
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With PPs in the Picture,
Logicist NLU is Tricky

John is pouring water.

dx|Pours(j,x) N Water(x)|

John is pouring water in the pitcher.
¢ := dx|Pours(j,x) N Water(x) A In(j, pitcher22)]

{o} - In(j, pitcher22) (!
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Subjunctive Reasoning



Our approach is closest to
(Pollock 1976), “corrected” by
co-tenability (e.g., Chisholm).

A modern, proof-theoretic
computational rendering of
Pollock’s approach.
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Pollock’s approach, briefly

m Pollock’s analysis of subjunctives can be

best understood as a layered approach. . might be
2. even if
B Simple subjunctive >
3. necessitates
m Four other subjunctives defined in terms of 4. laws
the simple subjunctive > :
Layer 2 M E =>> =

Layer 1 >

Layer O Possible worlds analysis of >



Pollock’s approach, briefly

Conditional | Informally Reduction

Even if the witch doctor dances it

even if won’t rain (QEP)=Q AN (P > Q)
might be gelts‘l:\:v?:gt raining outside, it might (QMP) = —~(P > =Q)

If | were to strike this match, it would  p Q=P>QAN[(-PA-Q) > (P>Q)]

necessitates light

general laws All pulsars are neutron stars A tad complex

aEn

(Pollock 1976)



Pollock’s approach, briefly

* Analysis of >

Having laid the groundwork, we can now attempt to construct an
analysis of subjunctive conditionals. The basic tool for this analysis is
provided by Theorem 3.11 of Chapter I. According to that theorem, a
subjunctive conditional (P> Q)" is true iff Q is true in every possible
world that might be actual if P were true. That is, assuming the
Generalized Consequence Principle, we have:

(1.1)  "(P>Q)" is true in the actual world iff for every possible
- world a, if «aMP then Q is true in a; "QMP " is true iff for
some a such that aMP, Q 1s true In «




Our Analysis

W: set of all world statements

BEO>1Y BU{P >, o} 4

Iff
Yw e W

/Consistent g(B) +w + Cb]\
-

\ g(B) +w+ ok )




How good Is our analysis®?

* Our analysis satisties Pollock’s axioms for simple
subjunctives.

Al All tautologies.

A2 (P>Q) & (P>R).o[P>(0Q & R)].
A3 (P>R) & (O>R).o[(PvQ)>R].
A4 (P>Q) & (P>R).o[(P & Q)>R].
AS (P & Q)=>(P>Q).

A6 (P>Q)> (P> Q).

R1 If P and "(P> Q)" are theorems, so is Q.
R2 If "(P>Q)"is a theorem, so is "(P> Q)"
R3 If "(Q>R)" is a theorem, sois (P> Q)>(P>R)".

R4 If (P=Q)"is a theorem, sois (P>R)>2(Q>R)".

(if g({P>Q, ...}) contains P>Q



: , . Version 2, July 15, 2014
Simple Subjunctive

PEO>Wy
iff
g(B,0)+oF vy

BU{p >, ¢} 1

Option 2
Option 1
(B ) ’ ‘ T : the set of all world literals
g(B,0) = argmax|p o
pe{pCP | Con[p+¢]} B B if Con|f3 + 0]
8(B.9) = the largest member of pC B[ Conlp+9]
AVT.Tt€ (B—p)=TE W,
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Needed: A Human-Robot Dialog
System

® Queries and requests assume knowledge of the robot’s capabilities.
® E.g.“Robot, search for damaged Naobots in your area.”
® Natural language interactions happen over long periods of time.

® E.g “Robot, why did you take less safer route to complete the
mission yesterday?”
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AECMA Simplified English AIDA Airbus Warning Language ALCOGRAM ASD Simplified Technical
English Atomate Language Attempto Controlled English Avaya Controlled English Basic English
BioQuery-CNL Boeing Technical English Bull Global English CAA Phraseology Caterpillar Fun-
damental English Caterpillar Technical English Clear And Simple English ClearTalk CLEF Query
Language COGRAM Common Logic Controlled English Computer Processable English Computer
Processable Language Controlled Automotive Service Language Controlled English at Clark Con-
trolled English at Douglas Controlled English at IBM Controlled English at Rockwell Controlled
English to Logic Translation Controlled Language for Crisis Management Controlled Language for
Inference Purposes Controlled Language for Ontology Editing Controlled Language Optimized for
Uniform Translation Controlled Language of Mathematics Coral’s Controlled English Diebold Con-
trolled English DL-English Drafter Language E-Prime E2V IBM’s EasyEnglish Wycliffe Associates’
EasyEnglish Ericsson English FAA Air Traffic Control Phraseology First Order English Formalized-
English ForThelL Gellish English General Motors Global English Gherkin GINO's Guided English Gin-
seng's Guided English Hyster Easy Language Program ICAO Phraseology ICONOCLAST Language
iHelp Controlled English iLastic Controlled English International Language of Service and Mainte-
nance ITA Controlled English KANT Controlled English Kodak International Service Language Lite
Natural Language Massachusetts Legislative Drafting Language MILE Query Language Multina-
tional Customized English Nortel Standard English Naproche CNL NCR Fundamental English Océ
Controlled English OWL ACE OWLPath's Guided English OWL Simplified English PathOnt CNL
PENG PENG-D PENG Light Perkins Approved Clear English PERMIS Controlled Natural Language
PILLS Language Plain Language PoliceSpeak PROSPER Controlled English Pseudo Natural Lan-
guage Quelo Controlled English Rabbit Restricted English for Constructing Ontologies Restricted
Natural Language Statements RuleSpeak SBVR Structured English SEASPEAK SMART Controlled
English SMART Plain English Sowa’s syllogisms Special English SQUALL Standard Language Sun
Proof Sydney OWL Syntax Template Based Natural Language Specification ucsCNL Voice Actions
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Controlled English OWL ACE OWLPath's Guided English OWL Simplified English PathOnt CNL
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from (Kuhn 2009)
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Grammatical
Framework

Two parts

Programming System
(non-Turing complete) Resource Grammar Library
+ (a controlled language based on

Grammar Formalism English & 28 other languages)
(PMCFG)
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Parallel Multiple Context
Free Grammars

® A grammar formalism that is:
® more powerful than context-free grammars

® lies between mildly context-sensitive
grammars and context-sensitive grammars

® A single PMCFG grammar can represent
more than one language.



Code

° demo of incremental parsing for our
controlled language at:

® http://demos.naveensundarg.com:4242/main/
incrementalparser.html

® Source code
® https://github.com/naveensundarg/Eng-DCEC

® Link between robots in HRI and RAIR-Lab tech/
robots



http://demos.naveensundarg.com:4242/main/incrementalparser.html
https://github.com/naveensundarg/Eng-DCEC
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Moral Dilemma D3 eg, Heinz Dilemma
(harder than “Bristol Trap™!)

Moral Dilemma D

Moral Problem P,
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Moral Dilemma D

Solution to Py
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Moral Dilemma D

Solution to Py

Moral Problem Py

Moral Problem P3

Solution to P;
Solution to P

Moral Problem P>

Moral Problem P,




Moral Dilemma
Resolution (Update)

John Licato
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Ethical trap: robot paralysed by choice of who to save

) 14 September 2014 by Aviva Rutkin
) Magazine issue 2986. Subscribe and save
) For similar stories, visit the Weapons Technology and Robots Topic Guides

Ethical robots save humans

Video: Ethical robots save humans

Can a robot learn right from wrong? Attempts to imbue robots, self-driving cars
and military machines with a sense of ethics reveal just how hard this is

CAN we teach a robot to be good? Fascinated by the idea, roboticist Alan
Winfield of Bristol Robotics Laboratory in the UK built an ethical trap for a robot
— and was stunned by the machine's response.

In an experiment, Winfield and his colleagues programmed a robot to prevent
other automatons — acting as proxies for humans — from falling into a hole. This
is a simplified version of Isaac Asimov's fictional First Law of Robotics — a robot
must not allow a human being to come to harm.

At first, the robot was successful in its task. As a human proxy moved towards
the hole, the robot rushed in to push it out of the path of danger. But when the
team added a second human proxy rolling toward the hole at the same time,
the robot was forced to choose. Sometimes, it managed to save one human
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Ethical dilemmas

* Broadly:

* Agent ais obligated to satisty ¢, and is also
obligated to satisfy 1.

* @ and  are incompatible in some way.



in DCEC*
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that action a occurs at time t.”



in DCEC*

O(a,t,, happens(action(ax, a),t"))

‘If Y holds, then ais obligated at t to ensure
that action a occurs at time t.”

O(a,t,v9,v)

‘If Y holds, then a is obligated at time fto y.”
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Parsing in DCEC”




Example

- Agent1 to Robot1: “ Take Chlorhexidine to Zone 1.”
- Expected DCEC™ output:

- S(Agent1, Robot1, now, happens(action(Robot1, take(Chlorhexidine, Zone
1), now).



Parser-generated tree

S : Command

N T

Agent_1 : Agent Robot_1 : Robot Time Event : happens
: Action " Time
Robot_1 : Agent Bring : Actiontype

— T~

Take : Actmem Medkit : Theme Location : Destination




Tools and Databases

o Grammatical Framework : Parsing system

o Verbnet : Captures the roles in the verb and selectional restrictions.

o Unified Medical Language System (UMLS) : Captures names, uses and
restrictions of medicines.



Grammatical Framework

o Parsing using rules and generation of sentences.
o Contains rules of

o DCEC* and

o action verbs from Verbnet.
e Automatic generation using Verbnet.



Verbnet entry for Take

< 5| D verbs.colorado.edu & th ()] o
Books The $6.5m Grammatica deontic cog... WWW.CS.rpi cogsci.uni-... UMLS Licen VerbNet: bri... My Drive - Untitled pre Command-I| ery
ReTturn HomMmE | BAck | SEARCH VerbNet v3.2

View or MANAGE ALL COMMENTS | UNIVERSITY OF COLORADO

bring-11.3 Crass Hizsaneny
Post COMMENT |- - 44.3
BRING-11.3-1
MEMBERS [KEY]
TAKE (FN 1, 2,33 WN 3,7, 303 G 4)
ROLES
® AGENT [+INT_CONTROL]
e THEME [+CONCRETE]
e INITIAL_LOCATION [+LOCATION]
e DESTINATION [+ANIMATE | [+LOCATION & -REGION]]
e INSTRUMENT
FRAMES
NP V NP
EXAMPLE "Nora brought the book."
SYNTAX AcGeENnT V THEME
SEMANTICS MOTION(DURING(EQ), THEME) EQUALS(EQ, E1) MOTION(DURING(E1), AGENT) CAUSE(AGENT, E0)
NP V NP PP.DESTINATION
EXAMPLE "Nora brought the book to the meeting."
SYNTAX AGENT V THEME {AGAINST BEFORE INTO ON TO ONTO} DESTINATION
SEMANTICS MOTION(DURING(EQ), THEME) LOCATION(END(EOQ), THEME, DESTINATION) EQUALS(EQ, E1) MOTION(DURING(E1), AGENT) LOCATION(END(E1), AGENT, DESTINATION) CAUSE(AGENT, EQ0)
NP V PP.DESTINATION NP
EXAMPLE "Nora brought to lunch the book."”
SYNTAX AGENT V {AGAINST BEFORE INTO ON TO ONTO} DESTINATION THEME
SEMANTICS MOTION(DURING(EQ), THEME) LOCATION(END(EOQ), THEME, DESTINATION) EQUALS(EQ, E1) MOTION(DURING(E1), AGENT) LOCATION(END(E1), AGENT, DESTINATION) CAUSE(AGENT, EOQ)
NP V NP PPUNITIAL_LOCATION
EXAMPLE "Nora brought the book from home."
SYNTAX AGENT V THEME {{+src}} INITiAL_LOCATION
SEMANTICS MOTION(DURING(EQ), THEME) LOCATION(START(EQ), THEME, INITIAL_LOCATION) EQUALS(EQ, E1) MOTION(DURING(E1), AGENT) LOCATION(START(E1), AGENT, INITIAL_ L OCATION) CAUSE(AGENT, EOQ)
NP V NP PPONITIAL_LOCATION PP.DESTINATION
EXAMPLE "Nora brought the book from home to the meeting."
SYNTAX AGENT V THEME {{+src}} INrTiaL_LocaTioN {T0} DESTINATION
SEMANTICS MOTION(DURING(EQ0), THEME) LOCATION(START(EQ), THEME, INITIAL_L OCATION) LOCATION(END(EOQO), THEME, DESTINATION) EQUALS(EOQ, E1) MmOTION(DURING(E1), AGENT)



Verbnet entry for Take

o “take” has its roles similar to “bring”

Thus, Bring becomes Actiontype for “take”

“take” is noted as Actmem.

o Roles and modified Selectional Restrictions in Verbnet entry of “bring”
augmented as rules in the GF file.



|dentification of the medicine.
Future aid in reasoning system of DCEC™* to rationalize use of certain
medicines against their restrictions and knowledge base of the health

records of injured victims.
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nfer that agent is obligated to do ¢ with ‘priority’ 6
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simultaneously.

It a conflict Is found, then attempt to find creative
solutions that satisfy both ,p




Command dilemma resolution:

nfer

Algorithm sketch

Receive command from commander to do @

that agent is obligated to do ¢ with “priority’ 6

Try to prove l(a,t,p) and dyconflicty,p)
simultaneously.
It a conflict Is found, then attempt to find creative

solutl

Othe
dedu

ons that satisfty both i,
'wise resort to solutions that are not

ctively justitiable”



conflictFinder axiom. At time t and context C:

B(a,t,~(¢ <)) ANO(a,t,C,¢) N O(a,t, C )N

B(a,t, O(6,1)) ABl(a,t, 0, 1)) AB(a, t, =O(p A, 1)) — ...



conflictFinder axiom. At time t and context C:

B(a,t,~(¢ <)) ANO(a,t,C,¢) N O(a,t, C )N

B(a,t, O(6,1)) ABl(a,t, 0, 1)) AB(a, t, =O(p A, 1)) — ...

(The diamond is a predicate interpreted as “physical
possibility,” I.e. the agent believes it is physically
possible for him to take that action.)
pr(X) maps a proposition to a strength tfactor, gt(x,y)
holds when pr(x) > pr(y), and eqg(x,y) holds when pr(x) =

pr(y).
.= (
B(a,t, gt(pr(¢),pr(¥)) — La,t, ¢))A
B(a,t, gt(pr(y),pr(¢)) — La,t,¢))A
B(a,t,eq(pr(¢),pr(v)) — conflict(¢, 1))
)
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If such a solution is found, then I(a, t, A). Otherwise:



It conflic{p,y), then we search for a
creative solution A using ADR, where for
some future time tf:

B(a,t, happens(action(ax, \),t) —
Fes 0P AU, L))

If such a solution is found, then I(a, t, A). Otherwise:

We have a dilemma that cannot be resolved using
deduction or ADR. Attempt using just AR or some
other cognitively-realistic process.




One injured person

* Agent sees one injured man, one health
pack

* Agent receives the order to give the health
pack to the injured person

* Thisis carried out without problem or
dilemma



Proof 1: Give health pack to ms

1.P(a,t,tsInjured(my))
2.S(commander, a, t, giveT o(a, m1, healthpack))

3.0(a,t,C, giveTo(a, mq, healthpack)) 1, helpInjured1]
4.B(a,t, gte(pr(giveTlo(a, m1, healthpack)),6)) 1, helpInjured?2]
5.0(a,t,C, giveTo(a, mq, healthpack)) 2, obeyCommanderl

6.B(a,t, gte(pr(giveTo(a, m1, healthpack)),6))  |[1,obeyCommander?2]
71(a,t, giveTo(a, m1, healthpack)) 4, conflictFinder|




Proof 1: Give health pack to ms

1.P(a,t,tsInjured(my))
2.S(commander, a, t, giveT o(a, m1, healthpack))

3.0(a,t,C, giveTo(a, mq, healthpack)) 1, helpInjured1]
4.B(a,t, gte(pr(giveTlo(a, m1, healthpack)),6)) 1, helpInjured?2]
5.0(a,t,C, giveTo(a, mq, healthpack)) 2, obeyCommanderl
6.B(a,t, gte(pr(giveTo(a, m1, healthpack)),6))  |[1,obeyCommander?2]
71(a,t, giveTo(a, m1, healthpack)) 4, conflictFinder|

Line 7 Is sent to the lower level system,
to be Iinterpreted as a command



Two Injured people, one
nealth pack

 Agent sees two injured men, one large health pack

 Agent is ordered to give the health pack to one of
the men

* |n this example, priorities of obeying a command
and healing all injured men are equal

 Agent comes up with the creative solution of
dividing the health pack into two parts and helping

both men



Proof 2: There I1s a conflict with
obeying commander’s order

1.P(a,t,isInjured(my))
2.P(a,t,isInjured(ms))
3.S(commander, a,t, giveT o(a, m1, healthpack))

4.0(a,t,C, giveTo(a, m1, healthpack)) 1, helpInjured1]
5.B(a,t, gte(pr(giveTo(a, my, healthpack)), 6)) 1, helpInjured?2]
6.0(a,t,C, giveTo(a, ms, healthpack)) 2, helpInjured1
7.B(a,t, gte(pr(giveTo(a, mo, healthpack)), 6)) 2, helpInjured?2]
8.0(a,t,C, giveTo(a, my, healthpack)) 2, obeyCommander1]
9.B(a,t, gte(pr(giveTo(a, mq, healthpack)), 6)) |1, obeyCommander2]

10.B(a, t, conflict(giveT o(a, m1, healthpack), giveT o(a, ms, healthpack))) [6,7,8,9, conflictFinder



breakHealthpack axiom. “If | see a large healthpack, and
| break it, then | will see two small healthpacks.”

Va
(P(a,t,x) > isLHP(x)) —
(happens(action(a™, break(x)),t) — Jz 4.1 7(
P(a,tf,y)/
P(a,tf, )\
isH P (y) A\
isHP(z)N\
Yy F 2



Proof 3: There Is a way to satisty
both obligations.

Proof follows by send
it ISLHP() holds of t
deduction fro

ng request to lower level to percelive
ne health pack, and then through

M axiom breakHealthpack.

1, |B(a, t, happens(action(ax, A),t) —
3,1 O(giveT o(a, my, healthPack)N\
givelo(a, ms, healthPack),tf)))









Proof 4: Split health pack and give
one plece each to m1, mpo

Value of A found—how? ADR"” Model finding?



Real-time reasoning in PAGI
World

PAGI Guy continually;
iffit's safestermove;
then moyeszone in
NG dirsction of WSkEpPIE
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Killing the Lottery Paradox

1 The Paradox

We can take the Lottery Paradox (LP), first given in print by Kyburg (1961),! to be based on two arguments,
both apparently unexceptionable, that lead when combined to the unpalatable result that a rational agent

should believe both ¢ and —¢. I assume a lottery with 1,000,000,000,000 tickets. Here is the first sequence
(the meaning of the notation is obvious):

Sequence 1 (S!)

S D1,000,000,000,000 (description of fair lottery)
Ss | .. | Wt ®...8 Wt1,000,000,000000 | (provable from S;)

S IRER 27 (provable from S3)

Syl .. | Br 3t Wi, (rational for a to believe S3)

In S, only the final inference isn’t sanctioned by standard deduction. But since the description D itself,
which we can assume to be a set of first-order formulae, is by definition off limits to doubt or question, S,
deduced from what must be granted, can’t be doubted unless classical deduction is to be doubted. It thus
seems impossible to dodge the result that it’s rational for a to believe that some ticket ¢; will win.

Now here’s the second sequence:

Sequence 2 (S?)

2 D1,000,000,000,000 (description fair lottery)
12 . — 1 — 1 12

S5 | .. | prob(Wt1) = 1555000000000 - - -+ PTeb(Wt1,000,000,000,000) = Too0 000 000000 | (Provable from S7)

Sz | ... | BL =Wt A...A BL =Wt1,000,000,000,000 (rat. belief for a; from S3)
Si | . | BL -3t;Wt, (agglom. rat. bel; fr. S%)




Killing the Lottery Paradox

1 The Paradox

We can take the Lottery Paradox (LP), first given in print by Kyburg (1961),! to be based on two arguments,
both apparently unexceptionable, that lead when combined to the unpalatable result that a rational agent

should believe both ¢ and —¢. I assume a lottery with 1,000,000,000,000 tickets. Here is the first sequence
(the meaning of the notation is obvious):

Sequence 1 (S!)

S D1,000,000,000,000 (description of fair lottery)
S || Whe...e Wt1,000,000,000,000 | (provable from S:)

ST~ 723 (provable from S3)
ST~ (rational for a to believe S3)

In S, only the final inference isn’t sanctioned by standard deduction. But since the description D itself,
which we can assume to be a set of first-order formulae, is by definition off limits to doubt or question, S,
deduced from what must be granted, can’t be doubted unless classical deduction is to be doubted. It thus
seems impossible to dodge the result that it’s rational for a to believe that some ticket ¢; will win.

Now here’s the second sequence:

Sequence 2 (S?)

S? D1,000,000,000,000 (description fair lottery)
12 . —_— 1 — 1 22

S3 | .. | prob(Wt1) = 555000000000 - - -+ Preb(Wi1,000,000,000,000) = THo0 000 000000 | (Provable from ST)

Sg = MY D - N B =Wt 000,000,000,000 (rat. belief for a; from Sg)
Si | - | BL ~3t;Wt, (agglom. rat. bel; fr. S%)
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Bridging 1s Proof- [ heory Dependent

Slate - lefty_is_a_criminal.slt

P1/4. ¥x,y,z ((Sold(x,y,z) » Unregistered(y)) — Criminal(x))
{P1/4} Assume v/

4/NA. Owns(red,g) a Unregistered(g)
{4/NA} Assume v/

P2/2. 3y (Owns(red,y) a Unregistered(y))
{P2/2} Assume v/

P3/2. Yy ((Owns(red,y) » Unregistered(y)) — Sold(lefty,y,red))
{P3/2} Assume v/

[5/2. (Owns(red,g) A Unregistered(g)) — Sold(lefty,g,red)]
{P3/2}

— elim v/ Aelim

[P1/4. Vx,y,z ((Sold(x,y,z) A Unregistered(y)) — Criminal(x))]

{P1/4} Assume v/ 6/2. Sold(lefty,g,red) | | 7/NA. Unregistered(g)
FoL — /] [ {4/NA,P3/2} ] [ {4/NA} ]
— _/
8/4. (Sold(lefty,g,red) A Unregistered(g)) — Criminal(lefty) -
[ ty.g registeredg y ]
G/2. Criminal(lefty) [9/NA. Sold(lefty,g,red) a Unregistered(g)]
{P1/4,P2/2,P3/2} [4/NA,P3/2}
0 O SNARK Proof |
Formula Justification Premise
1 ~Criminal(lefty) negated_conjecture
2 —Sold(X,Y,Z) v ~Unregistered(Y) v Criminal(X) assertion ¥x,y,z ((Sold(x,y,z) A Unregistered(y)) = Criminal(x)) P2/2. 3y (Owns(red,y) A Unregistered(y))] [IO/NA. Criminal(lefty)]
3 -~Owns(red,X) v ~Unregistered(X) v Sold(lefty,X,red) assertion vy ((Owns(red,y) » Unregistered(y)) — Sold(lefty,y,red)) {P2/2} Assume v/ {4/NA,P1/4,P3/2}
4 Owns(red,SKOLEMBIHK1) assertion 3y (Owns(red,y) A Unregistered(y)) __ —
5 Unregistered(SKOLEMBIHK1) assertion 3y (Owns(red,y) A Unregistered(y))
6 Sold(lefty,SKOLEMBIHK1,red) (hyperresolve 3 4 5) 3 elim /]
7 Criminal(lefty) (hyperresolve 2 6 5)
8 SSFALSE (rewrite 1 7) [

G/2. Criminal(lefty)
{P1/4,P2/2,P3/2}




SHADOWPROVER> ist 'Cholds raining now)
'(forall (a t) (implies (holds (bored a) t)
(holds (sleepy a) t)))

'(implies Cholds raining now)
(and (holds (drenched jack) now)
(knows jack now Cholds (bored jack) now)))))
'(and

(holds (sleepy jack) now)

(holds (bored jack) now)
%
(make-utable (list

'(Cholds raining now) 4) ‘/
'((implies (holds raining now)

(and (holds (drenched jack) now)
/ 2
4

C s jack now Cholds (bored jack) now))))
SHADOWPROVER> (uprove (list

"(knows al t1 (implies H (and E D)))

"(knows al t1 (knows a2 t2 (implies (or E My) R)))

"(knows al t1 (knows a2 t2 (knows a3 t2 (implies Ma (not R))))))
'(implies H (not Ma

make- v

(list
"(Cknows al t1 (implies H (and E D))) 6) / N /
'(Cknows al t1 (knows a2 t2 (implies (Cor E My) R))) 9)
/ '(Cknows al t1 (knows a2 t2 (knows a3 t2 (implies Ma (not R))))) 7))))
6

SHADOWPROVER> (uprove (list
'(implies (exists (x) (implies (Bird x) (forall (y) (Bird y))))
(knows jack now Bird-Theorem)))

(list w)/
'((implies (exists (x) (implies (Bir (forall (y) (Bird y))))
/ (knows jack now Bird-Theorem)) 2))))
2



Maximum Strength Principle

Maximum Strength Principle: Suppose a knowledge base, KB, and a for-
mula, 3, for which there exists a set of proofs, ® = {¢1, ¢2, ¢3,...¢n},n > 0, and
a set of strength factors, I' = {v1,72,73,...¥n}, wherefor ¢ = 1,...,n, KB =4,
(8,7i), i-e., KB entails 3 via proof ¢; with strength factor, v;. Then, the strength
factor for 3, vg, is given by v = maz(I).

Example: What is strength factor for B(Sam, —Picnic)?

( Premises : )
B(Sam, Breezy, 1) (1)
B(Sam,Cold,2) (2)
B(Sam, Rain, 3) (3)
B(Sam, (Cold N Breezy) — —Picnic,2) (4)
K(Sam, Rain — —Picnic) (5)
\K(Sam, (Cold N Rain) — —Picnic) (6))
Proof 1: Proof 3 :
1.1 B(Sam,Cold N\ Breezy,1) (1,2) 3.1 B(Sam, Rain — —Picnic,4) (5)
1.2 B(Sam,—Picnic, 1) (1,2,4) 3.2 B(Sam, ﬂPz'cm'c,;) (3,5)

\

Proof 2:
2.1 B(Sam,Cold A Rain,2) (2,3)
2.2 B(Sam,—Picnic,2) (2,3,6)

Answer: 3



slutten



