Proofs and Justification

Konstantine@alum.mit.edu http://www.cag.lcs.mit.edu/~kostas/dpls/athena

> Selmer Bringsjord selmer@rpi.edu http://www.rpi.edu/~brings

Dept of Cognitive Science Dept of Computer Science Rensselaer Polytechnic Institute (RPI) Troy NY 12180 USA

ECAP 06 @ NTNU 6.23.06

Computer Proofs and Justification

Konstantine@alum.mit.edu http://www.cag.lcs.mit.edu/~kostas/dpls/athena

> Selmer Bringsjord selmer@rpi.edu http://www.rpi.edu/~brings

Dept of Cognitive Science Dept of Computer Science Rensselaer Polytechnic Institute (RPI) Troy NY 12180 USA

ECAP 06 @ NTNU 6.23.06

Computer Proofs and Justification (On Foxes and Hedgehogs) (On Engineering-Guided Philosophy)

Konstantine Arkoudas konstantine@alum.mit.edu http://www.cag.lcs.mit.edu/~kostas/dpls/athena

> Selmer Bringsjord selmer@rpi.edu http://www.rpi.edu/~brings

Dept of Cognitive Science Dept of Computer Science Rensselaer Polytechnic Institute (RPI) Troy NY 12180 USA

ECAP 06 @ NTNU 6.23.06

The Four-Color Theorem (4CT)

Using no more than 4 colors, every map can be colored so that adjacent countries always have distinct colors.

First formulated around 1840-1850 (Moebius, DeMorgan).

Kempe published a buggy proof in 1879.

Heawood found the error in 1890, and proved that 5 colors suffice.

It's clear that at least 4 colors are necessary:

The Appel-Haken Proof

In 1976, Appel and Haken proved the conjecture for four colors.

Their proof, at some point, had to perform a very large case analysis that was not feasible by hand.

They wrote specialized computer code for it.

The analysis required a lot of computing power (for those days): 1200 hours on 4 computers.

Philosophical Reaction

Shortly after the A+H proof, Tymoczko claimed that if we accept 4CT as a theorem, then:

- 1. We are changing the concept of mathematical proof.
- 2. Mathematics becomes much more like an experimental natural science.
- 3. In particular, deduction ceases to be the chief methodology of mathematics.

It would also follow that:

- the concept of proof is *negotiable*, and
- standards of rigor are not immutable.

Rationale

Premise: "Proofs are *surveyable*."

A proof t must be such that mathematicians can look it over, review it, and verify it.

But no mathematician has ever surveyed a proof_t of the 4CT.

Indeed, most probably no mathematician ever will.

Therefore, the A+H experiment is not a proof_t of 4CT.

Social Constructivism

Tymoczko's conclusions are aligned with social constructivism in mathematics:

- 1. Mathematics is an intrinsically *human* activity.
- 2. The main vehicle for generating mathematical knowledge is *not deduction*.
- 3. Mathematical truth is not necessary.
- 4. Mathematical knowledge is not a priori.
- 5. Mathematical knowledge is not infallible.
- 6. Mathematical rigor is a *changing* social construction.

Orthodox Reaction

Computer methods offer:

- 1. not a new *concept* of proof, but rather
- 2. a new way of *discovering*, *presenting* and *checking* proofs.

Likewise, what is negotiable is:

- 1. not the underlying concept of proof, but
- 2. our techniques for *checking* whether an object really represents a correct proof.

The A Priori Question

Tymoczko said that the evidence one obtains from an unsurveyable computer proof depends on empirical factors (reliability of computers, etc.)

Hence, the corresponding justification is not a priori.

But the evidence one obtains from *most* proofs (even surveyable, non-computerized ones) depends on empirical factors.

Every time a physical agent A evaluates a proof, empirical considerations become causally relevant.

Whether it is silicon or human brains, any physical mechanism is subject to error. Hidden appeals to induction are often made.

More on the A Priori Question

Mathematician A checks a token $\hat{\pi}$ of a proof π .

A thinks the proof is sound, but is not sure.

A thinks he knows how to apply *modus ponens*, having done it with apparent success many times before.

But A has the flu.

A checks $\hat{\pi}$ again (repeating the "experiment").

A comes across a typo. The token $\widehat{\pi}$ does not instantiate π correctly after all.

Then A asks B and C to also check $\hat{\pi}$ (for *redundancy*). Are these "experimental" or "inductive" techniques?

What Tymoczko Missed

He viewed computers as black boxes.

Analogous to Martian inference rule "Simon says."

But computers are *not* black boxes.

We have detailed mathematical theories that *explain* and *predict* their observable behavior.

In particular, we can prove *theorems* about computer programs, such as:

 $\forall x, y \, . \, [\mathcal{P}(x) \hookrightarrow y] \Rightarrow R(x, y)$

I.e.: If and when program \mathcal{P} produces the output y given input x, then R(x, y). Moreover, those proofs can be surveyable — if P is small/simple. (E.g., 'R' might denote correctness.)

Believing in Computer-Generated Results

But if we believe

$$\forall x, y \, . \, [\mathcal{P}(x) \hookrightarrow y] \Rightarrow R(x, y) \tag{1}$$

and we also believe

$$[\mathcal{P}(a) \hookrightarrow b] \tag{2}$$

then we are entitled to believe

R(a,b).

The theoretical question is: What justification, in general, can we have for believing (1) and (2)?

The practical question is: Is it possible to engineer systems in a way that maximizes such justification?

Analyzing the Justification Degrees d_1 depends on:[1] The size and logical complexity of $\hat{\pi}$ d_2 depends on:[2] The size of $\hat{\mathcal{P}}$ [3] The size of $\hat{\mathcal{P}}$ [3] The size of \hat{a} [4] The size of \hat{b} [5] The length of the computation of $\hat{P}(\hat{a})$ [6] The reliability of the hardware/software platform executing \hat{P} [7] Random physical phenomena (cosmic rays, etc.)Most important factors: [1], [2], [3], [4], and [6].

Two Serious Drawbacks

- Unfortunately, this scheme will not work for most computerized proofs, because [1] and [2] will be overwhelming.
 Suppose the original A+H code was expressed as a program
 \$\hat{P}\$ in a PL with formal semantics:
 - The size of $\widehat{\mathcal{P}}$ would be too large for rigorous analysis.
 - The size of the proof $\hat{\pi}$ showing the correctness of \mathcal{P} would be overwhelming.

Accordingly, both d_1 and d_2 would be seriously compromised, regardless of the remaining factors (computer reliability, etc.).

2. In addition, we would have to verify a new program $\widehat{\mathcal{P}}$ and new proof $\widehat{\pi}$ with each new project.

Feasibility

The field of *proof engineering* has come a long way.

Several theorem-proving systems can produce certificates: HOL, Coq, Athena, etc.

4CT was recently (2005) proved in Coq.

The ultimate evidence is a low-level proof, expressible as a λ -calculus term in the type theory of Coq.

That term can be verified by the Coq proof checker, which is small and simple.

We can do even better: simplify the platform. Implement the proof-checking algorithm in silicon.

Conclusions

4CT was *not* an epistemic landmark in mathematics.

• The concept of proof, as cognizer-independent, remains rock-solid.

Computers or not, empirical considerations are almost always involved in our justification for believing mathematical results.

Such justification is a matter of degree.

With clever engineering, computer proofs can be orders of magnitude more reliable than human-surveyed proofs.

• Clever engineering can inspire, and indeed guide, philosophy!

Basic idea: minimize our *trusted base*. We only need to trust: (1) a small and simple proof checker; and (2) the platform that executes it.

This technology is feasible. Non-trivial theorems (including 4CT) have been proved using this scheme.

Relevant Systems For Further Reading & Study

Arkoudas' Athena system:

 $http://www.cag.lcs.mit.edu/\sim kostas/dpls/athena$

Bringsjord's (with Shilliday, Taylor, Clark, Khemlani) Slate system: http://www.cogsci.rpi.edu/research/rair/slate