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The Four-Color Theorem (4CT)

Using no more than 4 colors, every map can be colored so that
adjacent countries always have distinct colors.

First formulated around 1840-1850 (Moebius, DeMorgan).

Kempe published a buggy proof in 1879.

Heawood found the error in 1890, and proved that 5 colors suffice.

It’s clear that at least 4 colors are necessary:
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The Appel-Haken Proof

In 1976, Appel and Haken proved the conjecture for four colors.

Their proof, at some point, had to perform a very large case
analysis that was not feasible by hand.

They wrote specialized computer code for it.

The analysis required a lot of computing power (for those days):
1200 hours on 4 computers.
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Philosophical Reaction

Shortly after the A+H proof, Tymoczko claimed that if we accept
4CT as a theorem, then:

1. We are changing the concept of mathematical proof.

2. Mathematics becomes much more like an experimental natural
science.

3. In particular, deduction ceases to be the chief methodology of
mathematics.

It would also follow that:

• the concept of proof is negotiable, and

• standards of rigor are not immutable.
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Rationale

Premise: “Proofs are surveyable.”

A prooft must be such that mathematicians can look it over, review
it, and verify it.

But no mathematician has ever surveyed a prooft of the 4CT.

Indeed, most probably no mathematician ever will.

Therefore, the A+H experiment is not a prooft of 4CT.
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Social Constructivism

Tymoczko’s conclusions are aligned with social constructivism in
mathematics:

1. Mathematics is an intrinsically human activity.

2. The main vehicle for generating mathematical knowledge is not
deduction.

3. Mathematical truth is not necessary.

4. Mathematical knowledge is not a priori.

5. Mathematical knowledge is not infallible.

6. Mathematical rigor is a changing social construction.
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Orthodox Reaction

Computer methods offer:

1. not a new concept of proof, but rather

2. a new way of discovering, presenting and checking proofs.

Likewise, what is negotiable is:

1. not the underlying concept of proof, but

2. our techniques for checking whether an object really represents
a correct proof.
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The A Priori Question

Tymoczko said that the evidence one obtains from an unsurveyable
computer proof depends on empirical factors (reliability of
computers, etc.)

Hence, the corresponding justification is not a priori.

But the evidence one obtains from most proofs (even surveyable,
non-computerized ones) depends on empirical factors.

Every time a physical agent A evaluates a proof, empirical
considerations become causally relevant.

Whether it is silicon or human brains, any physical mechanism is
subject to error. Hidden appeals to induction are often made.
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More on the A Priori Question

Mathematician A checks a token π̂ of a proof π.

A thinks the proof is sound, but is not sure.

A thinks he knows how to apply modus ponens, having done it with
apparent success many times before.

But A has the flu.

A checks π̂ again (repeating the “experiment”).

A comes across a typo. The token π̂ does not instantiate π
correctly after all.

Then A asks B and C to also check π̂ (for redundancy).

Are these “experimental” or “inductive” techniques?
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The Big Picture

J(A,F, d) : Person A is justified in believing F to degree d ∈ [0, 1]

Plato’s world Real world
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Token π̂1

Token π̂2

- J(A,F, d1)
eval(A, π̂1)

- J(B,F, d2)
eval(B, π̂2)
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What Tymoczko Missed

He viewed computers as black boxes.

Analogous to Martian inference rule “Simon says.”

But computers are not black boxes.

We have detailed mathematical theories that explain and predict
their observable behavior.

In particular, we can prove theorems about computer programs,
such as:

∀ x, y . [P(x) ↪→ y]⇒R(x, y)

I.e.: If and when program P produces the output y given input x,
then R(x, y). Moreover, those proofs can be surveyable — if P is
small/simple. (E.g., ‘R’ might denote correctness.)
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Believing in Computer-Generated Results

But if we believe

∀ x, y . [P(x) ↪→ y]⇒R(x, y) (1)

and we also believe
[P(a) ↪→ b] (2)

then we are entitled to believe

R(a, b).

The theoretical question is: What justification, in general, can we
have for believing (1) and (2)?

The practical question is: Is it possible to engineer systems in a
way that maximizes such justification?
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Forming Such Beliefs

START

?
eval(A, π̂) (token proof of correctness P)Stage 1 (mosty deductive)

J(A,∀ x, y . [P(x) ↪→ y]⇒R(x, y), d1)

?
observe(A, P̂(â) ↪→ b̂)Stage 2 (mosty empirical)

Stage 3 (deductive) infer(A,R(a, b))

J(A,P(a) ↪→ b, d2)

?
J(A,R(a, b), d3)

What does d1 depend on? How about d2?
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Analyzing the Justification Degrees

d1 depends on:

[1] The size and logical complexity of π̂

d2 depends on:

[2] The size of P̂

[3] The size of â

[4] The size of b̂

[5] The length of the computation of P̂ (â)

[6] The reliability of the hardware/software platform executing P̂

[7] Random physical phenomena (cosmic rays, etc.)

Most important factors: [1], [2], [3], [4], and [6].
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Two Serious Drawbacks

1. Unfortunately, this scheme will not work for most
computerized proofs, because [1] and [2] will be overwhelming.

Suppose the original A+H code was expressed as a program P̂
in a PL with formal semantics:
• The size of P̂ would be too large for rigorous analysis.
• The size of the proof π̂ showing the correctness of P would

be overwhelming.
Accordingly, both d1 and d2 would be seriously compromised,
regardless of the remaining factors (computer reliability, etc.).

2. In addition, we would have to verify a new program P̂ and new
proof π̂ with each new project.
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A Solution

Fix a proof checker PC in a sufficiently rich logic. Express PC as a
program in a language with rigorous semantics.

-〈proof π̂, theorem F̂ 〉
Proof Checker PC��

�*

HH
Hj

|= F , accept

reject, π̂ is broken

1. PC is small and simple

2. Its formal proof of correctness is surveyable

Now use PC as a filter on the output of other code:

Arbitrary
proof-
search
code P̂

-input x̂ -output 〈π̂, F̂ 〉 - PC ���*

HHHj

accept F̂

reject F̂

UNTRUSTED
TRUSTED
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Advantages

START

?
eval(A, π̂pc)

Here π̂pc is a formal proof
of correctness for PC

J(A,∀ π, F . [PC(π) ↪→ F ]⇒ |= F, d1)

?

observe(A, P̂C(π̂) ↪→ F̂ )

infer(|= F )

J(A,PC(π) ↪→ F, d2)

?
J(A, |= F, d3)

Now d1 is high. And d2 is high too, because the size of π̂ is
immaterial. The size of F̂ is usually negligible. All we are left with
are: length of computation, platform reliability, and random
physical phenomena.
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Feasibility

The field of proof engineering has come a long way.

Several theorem-proving systems can produce certificates: HOL,
Coq, Athena, etc.

4CT was recently (2005) proved in Coq.

The ultimate evidence is a low-level proof, expressible as a
λ-calculus term in the type theory of Coq.

That term can be verified by the Coq proof checker, which is small
and simple.

We can do even better: simplify the platform. Implement the
proof-checking algorithm in silicon.
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Conclusions

4CT was not an epistemic landmark in mathematics.

• The concept of proof, as cognizer-independent, remains
rock-solid.

Computers or not, empirical considerations are almost always
involved in our justification for believing mathematical results.

Such justification is a matter of degree.

With clever engineering, computer proofs can be orders of
magnitude more reliable than human-surveyed proofs.

• Clever engineering can inspire, and indeed guide, philosophy!

Basic idea: minimize our trusted base. We only need to trust: (1) a
small and simple proof checker; and (2) the platform that executes
it.

This technology is feasible. Non-trivial theorems (including 4CT)
have been proved using this scheme.
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Relevant Systems For Further Reading & Study

Arkoudas’ Athena system:

http://www.cag.lcs.mit.edu/∼kostas/dpls/athena

Bringsjord’s (with Shilliday, Taylor, Clark, Khemlani) Slate system:

http://www.cogsci.rpi.edu/research/rair/slate
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