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The Rensselaer AI & Reasoning (RAIR) Lab
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• Isolate and dissect human ingenuity.

• Hence the centrality of cognitive science.

• Formalize weak correlate to this ingenuity in some 
advanced logical system.

• Implement correlate in working computer program.

• Augment this software as needed with machine-
specific power (e.g., supercomputing).

• Empower human by delivering software.

RAIR Lab Method





http://www.cogsci.rpi.edu/research/rair

http://www.cogsci.rpi.edu/research/rair
http://www.cogsci.rpi.edu/research/rair


http://www.cogsci.rpi.edu/research/rair/projects.php

http://www.cogsci.rpi.edu/research/rair/projects.php
http://www.cogsci.rpi.edu/research/rair/projects.php






PERI
Pscyhometric Experimental Robotic Intelligence

• Scorbot-ER IX 

• Sony B&W XC55 Video 
Camera

• Cognex MVS-8100M Frame 
Grabber

• Dragon Naturally Speaking 
Software

• NL (Carmel & RealPro?)

• BH8-260 BarrettHand 
Dexterous 3-Finger 
Grasper System



PERI “Cracked” Block Design*

*With much help from Sandia Labs’ Bettina Schimanski.



(defun peris-choice ()
       (cond ((> (random 10) 5) (hold-earth)) 
             ((drop-earth))))

? (peris-choice)
"I will drop earth" 

? (peris-choice)
"I will hold onto earth"

? (peris-choice)
"I will hold onto earth" 
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Gold!



Hunt the Wumpus



The situation calculus in the following layers works as follows:
The result function takes in a list of actions and returns a list representing a location

There is a general definition of the result function, which SNARK uses to build up sequences of actions, 
and it is defined as: 

  (= (result ?actions (result (list ?action) square))
     (result (append (list ?action) ?actions) square))

Results for single actions are then defined – in this case since the theory is used to plan a path 
consisting of visited squares, the result of a single action on a square is only defined if that square is 
visited, e.g. if the action is ‘up, the result function returns the square above it:

(= (result (list up) (list 1 0)) (list 1 1))

SNARK is used to prove there is a list of actions that the result function takes in and performs on the 
agent’s current location and returns the location of interest

For example if the agent is at (2,1) and wants to get to (0,0), SNARK would generate, assuming the appropriate 
squares are visited, (list down left left)
i.e. (= (result ?actions (list 2 1)) (list 0 0))

	       (= (result ?actions (result (list ?action) (list 2 1))) (list 0 0))  	 //general-result-defn
	       (= (result ?actions (list 2 0)) (list 0 0))	 	 	 //result-of-down
	       (= (result ?actions (result (list ?action) (list 2 0))) (list 0 0))	 //general-result-defn
	       (= (result ?actions (list 1 0)) (list 0 0))	 	 	 //result-of-left

 at this point ‘left solves it, and SNARK has remembered the list up to this point, so the answer is 

(list down left left)

Situation Calculus



Simulation Performance
• In the world situation on the right, it 

takes SNARK 2 seconds to generate 
(LIST UP RIGHT RIGHT DOWN 
DOWN RIGHT RIGHT UP UP UP 
UP UP UP LEFT LEFT LEFT 
LEFT LEFT LEFT DOWN DOWN 
DOWN DOWN DOWN DOWN) as a 
solution for the home layer – that’s 2 
seconds for a list of length 25

• Before much needed efficiency 
enhancements and some slight 
theory adjustments, this proof would 
have taken well over a day

• This shows the need for careful, 
terse theory and taking full 
advantage of all appropriate 
efficiency options in SNARK

• Here, a gray square represents a 
visited square and A represents 
the agent’s location
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Simulation 
Performance : Type I

• The average run times for successful runs are:
• For a 2 by 2 map, the average was 0.27 seconds

• For a 3 by 3 map, the average was 1 second
• For a 4 by 4 map, the average was 3.25 seconds
• For a 5 by 5 map, the average was 5.82 seconds
• For a 6 by 6 map, the average was 11.02 seconds
• For a 7 by 7 map, the average was 18.67 seconds

• For an 8 by 8 map, the average was 25.99 seconds
• For a 9 by 9 map, the average was 45 seconds
• For a 10 by 10 map, the average was 58.25 seconds

• The next slide shows minimum, maximum, and average run times for 
successful runs for different map sizes of Type I – minimum times were 
typically 0 seconds (approximately), which occurred when the gold 
was in the start square, and maximum times typically occurred when 
the agent found the gold after exploring almost the entire map



Simulation 
Performance : Type I
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Wumpus World 
Competition



Video of Marc 
Controlling Robot



The End


