
Selmer Bringsjord
Rensselaer AI & Reasoning (RAIR) Laboratory

Department of Cognitive Science
Department of Computer Science

Rensselaer Polytechnic Institute (RPI)
Troy NY 12180 US

@ Schenectady Museum 10.11.07

On Some Cognitive Robotics @ RPI

http://www.cogsci.rpi.edu/research/rair
http://www.cogsci.rpi.edu/research/rair
http://www.cogsci.rpi.edu
http://www.cogsci.rpi.edu
http://www.cs.rpi.edu
http://www.cs.rpi.edu

The Rensselaer AI & Reasoning (RAIR) Lab

RAIR Lab Method

• Isolate and dissect human ingenuity.

• Hence the centrality of cognitive science.

RAIR Lab Method

• Isolate and dissect human ingenuity.

• Hence the centrality of cognitive science.

• Formalize weak correlate to this ingenuity in some
advanced logical system.

RAIR Lab Method

• Isolate and dissect human ingenuity.

• Hence the centrality of cognitive science.

• Formalize weak correlate to this ingenuity in some
advanced logical system.

• Implement correlate in working computer program.

RAIR Lab Method

• Isolate and dissect human ingenuity.

• Hence the centrality of cognitive science.

• Formalize weak correlate to this ingenuity in some
advanced logical system.

• Implement correlate in working computer program.

• Augment this software as needed with machine-
specific power (e.g., supercomputing).

RAIR Lab Method

• Isolate and dissect human ingenuity.

• Hence the centrality of cognitive science.

• Formalize weak correlate to this ingenuity in some
advanced logical system.

• Implement correlate in working computer program.

• Augment this software as needed with machine-
specific power (e.g., supercomputing).

• Empower human by delivering software.

RAIR Lab Method

http://www.cogsci.rpi.edu/research/rair

http://www.cogsci.rpi.edu/research/rair
http://www.cogsci.rpi.edu/research/rair

http://www.cogsci.rpi.edu/research/rair/projects.php

http://www.cogsci.rpi.edu/research/rair/projects.php
http://www.cogsci.rpi.edu/research/rair/projects.php

PERI
Pscyhometric Experimental Robotic Intelligence

• Scorbot-ER IX

• Sony B&W XC55 Video
Camera

• Cognex MVS-8100M Frame
Grabber

• Dragon Naturally Speaking
Software

• NL (Carmel & RealPro?)

• BH8-260 BarrettHand
Dexterous 3-Finger
Grasper System

PERI “Cracked” Block Design*

*With much help from Sandia Labs’ Bettina Schimanski.

(defun peris-choice ()
 (cond ((> (random 10) 5) (hold-earth))
 ((drop-earth))))

? (peris-choice)
"I will drop earth"

? (peris-choice)
"I will hold onto earth"

? (peris-choice)
"I will hold onto earth"

vid1 vid2

Hunt the Wumpus

Hunt the Wumpus

Breeze!

Hunt the Wumpus

Hunt the Wumpus

Hunt the Wumpus

Hunt the Wumpus

Stench!

Hunt the Wumpus

Hunt the Wumpus

Hunt the Wumpus

Hunt the Wumpus

Glitter!

Hunt the Wumpus

Stench!

Hunt the Wumpus

Glitter!

Hunt the Wumpus

Gold!

Hunt the Wumpus

The situation calculus in the following layers works as follows:
The result function takes in a list of actions and returns a list representing a location

There is a general definition of the result function, which SNARK uses to build up sequences of actions,
and it is defined as:

 (= (result ?actions (result (list ?action) square))
 (result (append (list ?action) ?actions) square))

Results for single actions are then defined – in this case since the theory is used to plan a path
consisting of visited squares, the result of a single action on a square is only defined if that square is
visited, e.g. if the action is ‘up, the result function returns the square above it:

(= (result (list up) (list 1 0)) (list 1 1))

SNARK is used to prove there is a list of actions that the result function takes in and performs on the
agent’s current location and returns the location of interest

For example if the agent is at (2,1) and wants to get to (0,0), SNARK would generate, assuming the appropriate
squares are visited, (list down left left)
i.e. (= (result ?actions (list 2 1)) (list 0 0))

	 (= (result ?actions (result (list ?action) (list 2 1))) (list 0 0)) 	 //general-result-defn
	 (= (result ?actions (list 2 0)) (list 0 0))	 	 	 //result-of-down
	 (= (result ?actions (result (list ?action) (list 2 0))) (list 0 0))	 //general-result-defn
	 (= (result ?actions (list 1 0)) (list 0 0))	 	 	 //result-of-left

 at this point ‘left solves it, and SNARK has remembered the list up to this point, so the answer is

(list down left left)

Situation Calculus

Simulation Performance
• In the world situation on the right, it

takes SNARK 2 seconds to generate
(LIST UP RIGHT RIGHT DOWN
DOWN RIGHT RIGHT UP UP UP
UP UP UP LEFT LEFT LEFT
LEFT LEFT LEFT DOWN DOWN
DOWN DOWN DOWN DOWN) as a
solution for the home layer – that’s 2
seconds for a list of length 25

• Before much needed efficiency
enhancements and some slight
theory adjustments, this proof would
have taken well over a day

• This shows the need for careful,
terse theory and taking full
advantage of all appropriate
efficiency options in SNARK

• Here, a gray square represents a
visited square and A represents
the agent’s location

 A

Simulation
Performance : Type I

• The average run times for successful runs are:
• For a 2 by 2 map, the average was 0.27 seconds

• For a 3 by 3 map, the average was 1 second
• For a 4 by 4 map, the average was 3.25 seconds
• For a 5 by 5 map, the average was 5.82 seconds
• For a 6 by 6 map, the average was 11.02 seconds
• For a 7 by 7 map, the average was 18.67 seconds

• For an 8 by 8 map, the average was 25.99 seconds
• For a 9 by 9 map, the average was 45 seconds
• For a 10 by 10 map, the average was 58.25 seconds

• The next slide shows minimum, maximum, and average run times for
successful runs for different map sizes of Type I – minimum times were
typically 0 seconds (approximately), which occurred when the gold
was in the start square, and maximum times typically occurred when
the agent found the gold after exploring almost the entire map

Simulation
Performance : Type I

0

50

100

150

2 x 2 3 x 3 4 x 4 5 x 5 6 x 6 7 x 7 8 x 8 9 x 9 10 x 10

min
average
max

Wumpus World
Competition

Video of Marc
Controlling Robot

The End

