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Abstract. After introductory remarks, we share our two-part theoret-
ical position, viz. that: (P1) The best overarching approach to suitably
defining GI, and obtaining AGI, is via formal logic, including specifically
via logic-based learning that is academic in nature; and (P2) AI/AGI is
best pursued by seeking artificial agents that pass determinate cognitive
tests. We note that in striking harmony with this position is work on AGI
by Goertzel et al. that has inspired us; this is work in which PreSchool
for would-be AGIs provides an attractive route toward AGI itself. While
Goertzel et al. envisage a virtual academic academic environment, we
have in mind physical classrooms, for physical robots. We describe the
robot PERI.2, which we have started to send to school.

1 Introduction

However one might prefer to define AGI, it seems likely to be a matter of con-
sensus that we have GI,1 and that you do too.2 Why are we so fortunate? Many
reasons, often competing ones among them, will be offered. One prominent rea-
son, it seems to us, is this: Because we all went to school, year after year, for
many years, and learned a lot in the process; and we went there physically. From
a high-altitude perspective, the present paper revolves around this reason.

The plan for the paper is in general as follows: We begin in the next section
(2) by confessing our two-part theoretical position, namely that

1 We note here one vocal objection to that consensus: Yann LeCun has claimed that
humans do not have general intelligence [24]. He discusses a hypothetical scenario
wherein a human’s visual field is permuted as an example of our lack of general
intelligence, arguing (it seems) that the ability to learn this permutation is required
of anything which could be considered “general” intelligent. While a an attempted
refutation of LeCun’s position is out of scope for this paper, we do volunteer here
that this “permutation skill” is clearly not particularly intelligent by any reasonable
definition of the word (let alone by any reputable test of intelligence/cognitive ability
we are aware of), and hence any definition of general intelligence which requires it
as a prerequisite is not one we find at all plausible.

2 If some of our readers are artificial, and not human persons, then they have AGI.
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P1 The best overarching approach to suitably defining GI, and obtaining AGI,
is via formal logic, including specifically via logic-based learning that is
academic in nature.

P2 AI/AGI is best pursued by seeking artificial agents that pass determinate
cognitive tests.

We then note that in harmony with this position is inspiring work on AGI
by Goertzel et al. [17, 18], in which PreSchool (and, in general, grade levels pro-
gressing beyond this into at least K–12) for would-be AGIs presents an attractive
engineering route toward AGI itself. While Goertzel et al. envisage a virtual aca-
demic academic environment, we have in mind physical classrooms, for physical
robots. After explaining our focus on “logical/mathematical” cognition within
the underpinnings of Goertzel’s approach, we describe the robot PERI.2, which
we have started to send to school in the hopes of it developing AGI. We give
an example of an academic challenge for PERI.2 in the logical/mathematical
category at the Kindergarten level. PERI.2 succeeds upon this challenge, but,
as we admit, much additional work will be needed.

2 Our Two Theoretical Pillars

We fully recognize that there isn’t exactly consensus regarding how best to reach
AGI. In some cases, for example, non-declarative learning is believed to provide
the most, perhaps even the only, route to AGI; an exemplar, by our lights,
would be [23], an (impressive) approach described in a manner wholly bereft of
formal reasoning over declarative knowledge or belief for the intelligent agents
in question.3 However, for better or worse, as the next section confesses, we (or
at least the first author) feel differently.

2.1 Pillar 1: Logic-based AI and Cognitive Science

The first author has long maintained that logic-based AI is superior to method-
ological competitors [see e.g. [7]]. Re. computational cognitive science, the un-
matched effectiveness of logic-based effort, at least for cognition, has likewise
been asserted [see e.g. [11, 6, 8]]. Overall, we posit an infinite collection L of log-
ics (we call them cognitive calculi) reasoning in which can constitute any level
of GI whatsoever. (Standard logics still used in AI include first-order logic L1,
second-order logic L2, etc.) In particular, it seems indubitable that at least for
every aspect of human-level cognition that is reasoning-centric, there exists in
some cognitive calculus L ∈ L that can be tokened, specified, and implemented
for concrete use in AGI; for this in action, see e.g. the novel logics specified and
implemented in [11]. For notational convenience in the remainder of the present
paper, we assume a particular cognitive calculus L ? for the AGI science and
engineering devoted to PERI.2 we describe and report herein — but for econ-
omy forego providing formal specification of L ?. For details regarding cognitive
calculi, see the Appendix in [9].

3 On the other hand, among prominent AGI researchers, we are incidentally not alone
in our emphasis on logic-based r&d; see e.g. [30], to which we return below.
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Real Learning is Academic Learning Under the umbrella of logic-based AI
& CogSci, we specifically hold that academic learning of and by formal logic and
mathematics is key to AGI [3] — and it’s this part of our orientation that aligns
with the work of Goertzel et al. (see below).

Logicist Cognitive Robotics As to robotics, the logicist approach to it advo-
cated and pursued by the first author can be quickly summed up by tightening
the concept of cognitive robotics as defined in [25], wherein it is said that such
robotics produces robots whose actions are a function of what they believe. In
line with this, but expanded in keeping with L ?, we seek to engineer robots all
of whose substantive decisions and actions are the result of automated reasoning
to these decisions and actions from formulae in some set Φ of formulae in L ?

known or at least believed by these robots, where such knowledge and belief can
vary in strength depending upon the underlying likelihood of the formulae in Φ.

2.2 Pillar 2: Psychometric AI

Our second theoretical pillar is that AI, and AGI, should be fields devoted exclu-
sively to creating and implementing artificial agents able to excel on established
tests of cognitive ability and skill, including those used in the Academy for hu-
mans; see e.g. [5, 4]. Most recently, this aspect of AI has been used in [1] to have
success in solving Bennett mechanical test problems by artificial agents.

3 The Goertzelian (et al.) Academic Road to AGI

In general, we seek to follow the road to AGI paved by a progression through
academic grade levels at least akin to the progression that brought the reader
to a position in which they can understand the present paper; the progression
of which we speak has been seminally described in [17, 18].

4 PERI.2 in Kindergarten

We give a snapshot of an example of PERI.2 in Kindergarten, being tested in
the area “Logical-Mathematical.” (See Figures 1 & 2.) This area is listed in [17]
as a specific kind of intelligence according to Gardner’s [13] theory of “multiple
intelligences,” and is obviously — given Pillars 1 & 2 for us — pivotal for us.4

4.1 Automated Reasoning of a Meta-Forms Problem/Solution Pair

PERI.2 employs the automated deductive reasoner ShadowProver [20] to verify
proposed solutions to a given Meta-Forms problem; see Figure 1.5 Specifically,

4 [17, 18] also point out that this area finds its way into early eduction.
5 ShadowProver has long been used to engineer logic-based intelligent artificial agents

in our lab. A robust example can be found e.g. in [19]. While ShadowProver’s rea-
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Fig. 1. The Meta-Forms Game, from FoxMind. This game provides a series of “clues”
to the would-be puzzle solver, each of which is a visual version of a “logical statement.”
The goal is to physically construct a complete configuration of the 3×3 board from these
clues. Formally, if Π is a complete configuration of the board, and Γ the collection of
formulae that logicize all clues, then necessarily Π ∪ Γ is provably consistent in L ?.

Fig. 2. PERI.2 Sees the Board (left), and Holds a Meta-Forms Piece in One Hand
(right). Machine vision for PERI.2 courtesy of Cognex; hands are from Barrett.

with a formalization of the clues given to the problem in this figure — as set
Γ of formulae in L ? — and the proposed configuration of the board shown in
this figure — as set Π in L ? — ShadowProver was tasked to find a proof of a
contradiction (i.e. ζ ∧ ¬ζ) from Γ ∪Π. It failed to find a proof in 3.16 seconds,
which entails that the configuration of the board is consistent with the clues,
and hence a solution.

soning is deductive, it is the basis for types of reasoning we believe are key to AGI
r&d, e.g. nonmonotonic/defeasible reasoning. See [10] for an example of an inductive
logic and an inductive automated reasoner (ShadowAdjudicator).
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5 PERI.2, Concretely: A Glimpse

PERI.2 has a pair of dexterous, tactile-sensing Barrett hands attached to pow-
erful Yaskawa arms, which together provide somatic information to his “mind.”
For vision, PERI.2 has three Cognex cameras that compose a system for sight
capable of several fundamental operations, ranging from simple object recogni-
tion given a training example, to color and blob identification, to edge detection
and measurement, and beyond. Given our approach to AGI, all such information
ultimately is expressed in formulae of L ?. In the case of its tackling a Meta-
Forms problem, PERI.2 must ultimately transduce the clues it receives for the
problem into the formulae (represented internally as s-expressions) composing
Γ (see Fig. 1). For example, a clue might appear as (and (space 0 0) (blue

0 1) (triangle 0 1)), suggesting that the blue triangle will have a space be-
neath it. Presently PERI.2 is rigidly engineered to solve Meta-Forms, but even
with our target for AGI restricted to the math/logic category, the fact is that
Kindergarten presents challenges (e.g. 2 + 2 =?) that are arithmetic in nature.
Accordingly, our cognitive calculus L ? subsumes Peano Arithmetic, but this
dimension must be left aside here.

6 Related Work

As is well-known, AGI can generally be classified as the field that explores the
creation of computational agents possessing some level of general intelligence:
the ability to exhibit complex problem-solving capabilities in an arbitrary envi-
ronment, akin to the ability of humans (but not necessarily at the same level
as humans) [15, 14, 33]. As AGI focuses on a broad overarching goal, inevitably
there are many camps in AGI, each based upon its own approach to the problem
[12, 14]. Obviously, camps that are not overtly logicist bear little connection to
our approach to AGI. Nonetheless, a simple triadic breakdown of approaches in
AGI helps to contextualize the work discussed herein; this is particularly so for
the first element of the trio in question, which is:

– The Symbolic6 Approach. Here logic is in fact the basis for memory and
reasoning. Knowledge in these systems consists of statements from which
new knowledge can be derived by logical reasoning. New statements may
also be added by way of fully logic-based perception (e.g. see [32]). Differ-
ent approaches use different ontologies and different logics with different
properties to optimize for the type of reasoning to be executed [21]. In-
variably, at least so far, relative to the calculi L upon which our AGI r&d
is based, logics in this approach to AGI by others are inexpressive, and
reasoning is correspondingly simple. In particular, often representation
and reasoning in this AGI approach can be reduced to information and
processing in (perhaps with tailor-made inference schemata as needed) at
the level of only L1, augmented perhaps with a few intensional operators.

6 Since all symbolic information and processing in AI/AGI can carried out in a formal
logic, feel free to replace ‘Symbolic’ here with ‘Logicist’ or ‘Logic-based.’
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Some notable members of the symbolic camp are Wang’s NARS [31] sys-
tem and Shapiro et al.’s SNePS and GLAIR architectures [27]; all three
encode symbolic representations of knowledge into a graph representation.

– The Emergent Approach: This approach focuses on creating agents
whose memory and learning take the form of connectionist systems. The
emergent approach assumes, naturally enough, an emergent hypothesis:
that symbolic reasoning and learning can emerge from basic connections
and interactions between nodes, as they perhaps do (at least in part) in
the human brain. Contra the logicist approach, “knowledge” in emergent
systems is encoded within the weights and connections between nodes of
a network, which may evolve over time for “learning.”

– Hybrid Approaches: Hybrid AGI systems aim to combine emergent and
symbolic approaches. According to [12], hybrid approaches suffer from the
same shortcomings as emergent approaches: they have “difficulty in real-
izing higher-order cognitive functions” such as reasoning over arbitrarily
complex/iterated declarative content, which is the hallmark of our L.

AGI stands in stark contrast to today’s mainstream “narrow” AI systems,
usually machine-learning models trained on massive datasets to excel in one par-
ticular task. For our logicist approach to AGI it is important to contextualize
“human-level.” Human-level AI can be thought of as a goal of AGI, but from the
standpoint of our approach to AGI it is only a point on a spectrum of general
intelligence that AGI agents fall on. AGI researchers of either a thoroughgoingly
or even substantive logicist bent can presumably locate their ambitions for fu-
ture AGI systems in the standard hierarchies (Arithmetic, based on L1; and
Analytical, based on L2). In our approach to AGI, because we have a scheme
for measuring intelligence (viz. Λ; see [2]), we can quantify very well where the
level of given agents fall. One particular point worth noting here is that while
we are inspired and guided by Goertzel, his conception of intelligence [16, p.5]
stands in contrast to ours, since he writes that “Intelligence in general must
be considered as an open-ended phenomenon without any single scalar or vec-
torial quantification.” This runs completely counter to the spirit and specifics
of our approach to AGI. Consider e.g. the fact that we commonly compare the
intelligence of human and nonhuman animal agents at least roughly in line with
how academic learning and the test-measured success of such learning works.
Consider for instance the common view that humans are more intelligent than
dogs. It seems more than reasonable that the intuitive concept of intelligence
underlying such a view is some sort of a single scalar. If a human is asked why
he believes that humans are more intelligent than dogs, takes the question seri-
ously, and tries to justify it, it appears to us likely that the rationale provided
will in some way appeal to cognition measured in traditionally academic ways.
Canines are smart, but as we all know, they don’t start to learn to read, nor do
they learn basic arithmetic, these being things routinely taught in PreSchool.

6.1 Remarks on NARS w.r.t. Our Theoretical Pillars

NARS [31] is profitable to consider in relation to our two-pillar approach to AGI.
NARS is fundamentally logicist in nature and has working implementation that
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can solve some preschool-level problems. With regard to our first pillar, Wang
has argued for the need for “cognitive logic” rather than “mathematical logic”
when capturing human reasoning, and claims that the non-axiomatic logic used
in NARS embodies this reasoning [29]. We agree for the most part that cognitive
logics are necessary, but hold e.g. that “real learning” in a cognitive logic still
needs tools from logics used in mathematics [e.g. L1, L2, and L3) to give any
serious treatment of what humans do when they go to K–12 school (since a
large part of that schooling is in none other than mathematics, and reverse
mathematics [28] has disclosed that mathematics ultimately consists of proofs
and other structures built from formulae in first-to-third order logic). In taking a
cognitive approach, NARS has demonstrated a level of competence in the areas of
simple “spatial-visual” and “logical-mathematical” tasks [and has worked toward
some basic “linguistic” tasks (see e.g. [22]]. Due to the cognitive nature of NARS
and its ability to represent knowledge, belief, and self [34], it would in theory be
able to realize our working definition of logicist cognitive robotics from [25]. As
to our second pillar, Psychometric AI [5], NARS is not necessarily at odds with
it, but is focused on achieving intelligence in line with Wang’s working definition
of intelligence as “the capacity of an information-processing system to adapt
to its environment while operating with insufficient knowledge and resources”
[33]. PAI provides by definition a means of meaningfully evaluating incremental
progress toward AGI (viz. tests); Wang’s definition doesn’t supply such means.

7 Are Harder Problems Computationally Feasible?

For alert readers who may be wondering, Fig. 3 shows that harder Meta-Forms
problems are within PERI.2’s intellectual reach, in real time.

Fig. 3. A Difficult Meta-Forms Problem. No positive clues are given (left), yet a proof
of the correctness of PERI.2’s proposal found by ShadowProver (right).

8 Future Work: What About Compromised Perception?

Generally intelligent agents are capable of perceiving that they are mis-perceiving,
as e.g. when they perceive rather dense smoke, and perceive that their sensors
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are therefore compromised; such a situation is shown in Figure 4, for PERI.2’s
attempt to perceive Meta-Forms clues. Currently success in this case eludes us
(and thus PERI.2), but a new cognitive calculus that formalizes such meta-
reasoning is under development, one that reflects the computational science of
attention and perception erected by Bello & Bridewell et al. (e.g. see [26]).

Fig. 4. Perception of Compromised Perception. Here the set Γ of clues for the Meta-
Form problem are hard to reliably perceive due to ambient smoke.
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