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Abstract. How tough is a given question-answering problem? Answers to this question
differ greatly among different researchers and groups. To begin rectifying this, we start
by giving a quick, simple, propaedeutic formalization of a question-answering problem
class. This formalization is just a starting point and should let us answer, at least
roughly, this question: What is the relative toughness of two unsolved QA problem
classes?

1 Formalization of Question-Answering Problem Classes

It is not an exaggeration to say that the AI community had a watershed moment when
IBM’s Watson beat Jeopardy! champion Ken Jennings in a nail-biting match in 2011.
QA is important to AGI: Levesque et al. [7] give an argument in defense of QA being
a test for AGI/AI. Despite the importance and quite impressive real-world success of
QA research, there is very sparse formalization on what makes a QA problem difficult.3

(See [4] for a formalization of a test for AI which has a QA format.)
Concisely, our position is that: 1) QA is crucial for AGI; 2) a rigorous formalization

of QA is important to understand the relative toughness of unsolved problems in QA;
and finally 3) a formal understanding of QA is important for AGI.4 Toward this end,
we start with a simple formalization that could point the way.

We now present a simple formalization of a QA problem class. A QA problem class
consists of a set of questions, a set of answers, a corpus, and some other computational
artifacts. The formalization lets us judge, at least coarsely, whether one QA problem
(e.g. Jeopardy! ) is tougher than another (e.g. answering queries about financial data).

QA Problem Class

A question-answering problem class consists of these following components:
– A set of possible questions Q: Q = {q1, q2, . . .}.
– A set of possible answers A: A = {a1, a2, . . .}.a

? We are grateful to IBM for grants to Bringsjord that in part enable systematic
thinking about the nature of QA, in light of Watson’s victory. We also thank them
for providing us with an incarnation of Watson that has helped us with evaluating
questions similar to the ones given here.

3 A related criticism by Cassimatis (2012) is that the toughness of existing AI tests
(trying to scale mountain peaks on Earth), are nowhere near what is needed for
producing human-level intelligence (trying to reach the moon).

4 QA also happens to be the most effective way of testing other possible forms of
intelligence [2], in line with research that treats the pursuit of AI scientifically [1].



– A set of indices I. Indices here are entities that deictic words (words that
specifiy context such as “now”, “here”, “I”, etc.) can refer to. For the sake
of simplicity, we will consider only time-points as our indices in the present
paper.

– A set of all facts about the world F . The powerset of this set gives us all
possible contexts: W = 2F .

– A corpus C of question-answer pairs

C = {〈qi, ai〉i|qi ∈ Q, ai ∈ A, i = 1, 2, 3, . . .}

– Finally, a mapping function µ which gives us the gold-standard answers: µ :
Q× I×W→ A. For any question q, possible answers a are given by:

µ(q, t, w) = a

a Note: Both Q and A can be infinite.

From this formalization, we immediately get four dimensions of difficulty for QA
problems. For now the dimensions are mostly informal, but even at this early stage
they illustrate the benefits of seeking to formalize QA. The first dimension emerges
from the varying amount of dependence of the answering function µ on the time index
t. The second dimension emerges from the varying amount of world knowledge w that
the answering function µ depends upon. Such questions have been noted elsewhere by
Leveseque et al. (2012) in what they term “Winograd Schemas.” The third dimension is
generated by the range of novelty. The corpus C and its usefulness for computing µ plays
a role in this dimension. For the sake of simplicity, we assume that C is a pre-processed
corpus of facts that the machine has learned or acquired. The fourth dimension arises
from variation of the amount of computational power needed to compute µ. We quickly
discuss the four dimensions with help from sample questions.

1.1 Dimension 1: Dynamicity

Most of the questions asked in Jeopardy! are static in nature: The answer does not
depend on any time component.5

President under whom the U.S. gave full recognition to Communist China. (An-
swer: Jimmy Carter)

The answer a to a question q can depend on the time t it is asked, the physical
location p it is being asked at, and the person a asking it, and other such context-based
information. For now, we focus only on the time the question is asked. Even this trivial
feature can render some problems very hard. Some example questions of this nature
are given below:

Sample Dimension-1 Questions

q1 What was IBM stock’s Sharpe ratio in the last 60 days of trading?

5 Philosophers and linguists might disagree with us here. Of course, we cheerfully
concede that given enough time, the meaning of words used in Jeopardy! could
change; and for that matter collective human knowledge could change as well.



q2 Give me the maximum wind speed in New York in the last year, looking at
only the days on which it rained.

1.2 Dimension 2: World Knowledge

Some questions can be static in nature but require human levels of intelligence to an-
swer. These usually are questions that any lay-person with appropriate native-language
capacity can answer. These questions typically require processing enormous amounts of
background knowledge about the world and contextual information. One such problem
class which scores high on this dimension is the class of Winograd Schemas.

The Winograd Schema (WS) challenge, introduced by Levesque et al. (2012), is a
reading-comprehension test intended to rectify issues with the Turing Test. Two sample
questions are given below.

Sample Dimension-2 Questions

q1 Paul tried to call George on the phone, but he wasn’t successful. Who wasn’t
successful? Answer 0: Paul Answer 1: George

q2 Paul tried to call George on the phone, but he wasn’t available. Who wasn’t
available? Answer 0: Paul Answer 1: George

Although the syntactic forms of both questions are identical, correctly identifying
the referent of the pronoun ‘he’ seems to require deep sentence comprehension, a process
exploiting enough background knowledge to recognize that a caller being successful at
a phone call requires that the recipient of the call be available.

One of the problems infecting the Winograd Schema Challenge is that it requires
the vocabulary of words be specified in advance. A bigger drawback of this dimension
is that it tests rather vague, open-ended world knowledge rather than (what might be
called) linguistic knowledge.6 The next dimension rectifies this issue.

1.3 Dimension 3: Novelty

One of the astounding feats of human language understanding is the capacity to as-
similate new words on the fly and discard them later. Observing this can be used to
create problem classes with completely made-up words that do not need any back-
ground world knowledge (e.g. the knowledge about about phone callers and phone call
recipients required for the question above). Such questions directly get to the core of
language understanding. In the two questions given below, we have made-up nouns in
the first case and made-up nouns and verbs in the second case. We can achieve this
novelty by mandating that there be little overlap between the words used in Q ∪ A
and C. A more challenging restriction would be to have no questions in Q overlap with
those in the corpus C.7

6 Having a huge bank of knowledge about the world is not sufficient as CYC [6] still
does not empower computers to answer all possibe questions. This fact bolsters the
claim that leveraging world knowledge is alone exeedingly challenging.

7 Note: We include knowledge of basic arithmetic in linguistic knowledge. What we
term ‘world knowledge’ might also be called “Earthling” knowledge. Any AGI should
be independent of this kind of knowledge but presumably should possess basic arith-
metic skills.



Sample Dimension-3 Questions

q1 If I have 4 foos and 5 bars, and if foos are not the same as bars, how many
foos will I have if I get 3 bazes which just happen to be foos?

q2 Every foobar weozes a foobar if the latter weozes some other foobar. Foobar
27 weozes foobar 28. Is it true that foobar 28 weozes foobar 28?

1.4 Dimension 4: Computational Hardness

The question “What time is it now?” is dynamic but not really that hard to compute.
Some questions are inherently hard even if they are posed in an unambiguous machine
language. This dimension addresses how hard it is to compute µ given all its inputs.
There exist hierarchies of hard computational problems from standard computability
and complexity theory that could be used as a starting point for this dimension.8 The
hardness of a QA problem class along this dimension can be cast in terms of the most
general oracle that would need to be used in computing µ to answer questions in the
given problem class. The sample questions below are both Turing-unsolvable but fit
the general pattern of a QA problem. Both the questions are static, require very little
common sense, and the linguistic knowledge required to comprehend the questions is
pretty straightforward.

Sample Dimension-4 Questions

q1 Does machine M with input i ever halt?

q2 Is this computer program p the same as the program q in my library of
programs?a

a Note: We could easily describe machines, programs, and inputs using words
from normal everyday vocabulary.

2 Extensions

The formalization given above works well only when we consider QA in test settings
and experiments. If we are modeling QA working outside the lab in the real world, we
would need some more components in the formalization.

2.1 Justification of Answers

In the formalization above, we have focused only on the answers being right and not
on how the answers are computed. In order to trust an answer, we would need a
justification that supports the answer and is easy to check.9 So a full formalization of
QA would include the ability to justify answers. We can modify the formalization to
include justifications.

8 Is intelligence correlated with computational complexity? Some of us think so [3].
Note we are using standard measures of complexity mainly for convenience. They
could be superseded by other measures more naturally correlated with intelligence.

9 The justification would rest on some premises and information that could be con-
sidered to have been accepted.



QA Problem Class: Extension 1

– A set of justifications J: J = {j1, j2, . . .}.
– An evaluation function ε : J×A→ {true, false} which evaluates the justifica-

tion j given for an answer a. ε(j, a) = true iff j supports a.

2.2 Ranking of Answers

A QA system in, for example, a personal assistant app would have to learn about and
model its users. In this setting, the gold standard answers would vary from person to
person. QA systems in such a setting would also have to be evaluated against how well
they understand their users.

3 Conclusion

As noted above, our formalization is but a starting point that could help us eventually
compare different QA problems. A formal measure of difficulty is needed for QA due
to its central role in testing for AGI. While there are tests and competitions for QA
(e.g. [9]), a formal measure stemming from the preliminary formalization presented
above might help focus our efforts in the right direction and compare different tests
and competitions. Such a formalization might also help us decide which methods might
be appropriate for different QA problems well before expensive system building and
experimentation. (See [8] for a sampling of the widely different approaches to QA.)
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