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Abstract. We introduce rudiments of the cognitive meta-architecture
M (majuscule of µ and pronounced accordingly), and of a formal proce-
dure for determining, with M as touchstone, whether a given cognitive
architecture Xi (from among a finite list 1 . . . k of modern contenders)
conforms to a minimal standard model of a human-level AGI mind. The
procedure, which for ease of exposition and economy in this short paper
is restricted to arithmetic cognition, requires of a candidate Xi, (1), a
true biconditional expressing that for any human-level agent a, a prop-
erty possessed by this agent, as expressed in a declarative mathematical
sentence s(a), holds if and only if a formula χi(a) in the formal machin-
ery/languages of Xi holds as well (a being an in-this-machinery coun-
terpart to natural-language name a). Given then that M is such that
s(a) iff µ(m), where the latter formula is in the formal language of M,
with m the agent modeled in M, a minimal standard modeling of an
AGI-level mind is certifiably achieved by Xi if, (2), it can be proved
that χi(a) iff µ(a). We conjecture herein that such confirmatory theo-
rems can be proved with respect to both cognitive architectures NARS
and SNePS, and have other cognitive architectures in our sights.

Keywords: standard modeling of AGI-level minds · cognitive architec-
tures · computational logic.

1 Arithmetic as the Initial Target

Despite florid heraldry from Kissinger et al. [14] announcing an “intellectual
revolution” caused by the arrival of ChatGPT and its LLM cousins of today, we
know that AGI has not arrived. This is so because, as Arkoudas [3] has elegantly
pointed out in a comprehensive analysis, ChatGPT doesn’t know that 1 is not
greater than 1, and surely AGI subsumes command of elementary arithmetic on
the natural numbers.1 We do not pick the domain of arithmetic here randomly.

1 This example is but the tip of an iceberg of negative knowledge in the realm of
mathematics for this and indeed all present and foreseeable LLMs, as Arkoudas
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Arithmetic, and more generally all or at least most of logico-mathematics, is
by our lights the only cross-cutting and non-negotiable space we can presently
turn to in order to at least be in position to judge whether some artificial agent
qualifies as having AGI versus merely AI. Given this, we turn first to arithmetic
cognition to enable us to share our formal procedure for using the cognitive meta-
architecture M as a touchstone for determining whether a candidate cognitive
architecture conforms to a minimal standard modeling of AGI-level minds.

2 The Formal Procedure, for Arithmetic Cognition

2.1 Peano Arithmetic to Anchor Arithmetic Cognition

To anchor arithmetic cognition as a proper part of mathematical cognition at
the human level, we resort herein to simple arithmetic with only addition and
multiplication. The particular axiom system we bring to bear is ‘Peano Arith-
metic,’ or just — to use the conventional label — PA. Unassuming as it may be,
it has a storied place in the history of logic and mathematics, serving as the basis
for such stunning results as Gödel’s incompleteness theorems.2 In particular, we
shall employ herein a simple theorem in PA, viz., ` 2 + 2 = 4. In the general
form of our procedure, not merely arithmetic cognition, but all of mathematical
cognition reduced to formal logic by reverse mathematics will be in play, which
means that not just the likes of 2+2=4 but any statements provable from the
axioms (i.e. PA`) known to be sufficient for all of mathematics, as charted by
the definitive [24], will be fair game.

2.2 Definition of the Procedure

Let s(a) be a mathematical declarative sentence involving both a mathematically
cognizing agent a and a single purely arithmetic proposition believed by a. Such
sentences typically draw from both natural language (e.g. English) and formal
languages. Here’s an example of such a sentence: “Gödel believed that first-order
logic is complete.” We know he believed this because his dissertation centered

shows/explains. Note that Bubeck et al. [8] have made the figurative claim that GPT-
4 has — and we quote — “sparks of AGI.” We don’t know what this metaphorical
claim means mathematically (thus confessedly find little meaning in it), but clearly
by conversational implication these authors would themselves agree that while GPT-
4 is an AI, it’s an AGI. If x has sparks of being an R, then x isn’t an R — this is
the principle at the root of the implication here.

2 We shall not spend the considerable time that would be needed to list the (count-
ably infinite) axioms, and explain them. Readers can consult the elegant [9] for nice
coverage of PA (and illuminating commentary on this axiom system). There are the-
ories of arithmetic even simpler than PA, because PA includes an axiom relating to
mathematical induction, and the simpler systems leave this axiom aside. For exam-
ple, readers unfamiliar with mathematical induction can, if motivated, consult the
induction-free theory of arithmetic known as ‘Robinson Arithmetic,’ or sometimes
just as ‘Q;’ for elegant coverage, see [5].
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around the landmark proof of this completeness. But this example is far too
complex for our present limited purposes. Accordingly, turning to PA, here’s a
much simpler example of a form that will guide us, put in the present tense:

“Gödel believes that 2+2=4.”

The general form is that some agent a is denoted, that agent has the epistemic
attitude of belief, and the target of that belief is a proposition, expressible in
PA, that 2+2=4. We shall denote the form this way: s(a), to indicate that
our sentence form must involve an agent a; we leave belief and the believed
proposition implicit.

Next, let ‘µ(m)’ be a formula in M, in a suitable formal language that logi-
cizes s(a). Minimally, this language will have an epistemic modal operator for
belief, and will be able to encode arithmetic propositions from natural language.
Therefore, the language will need to be a quantified modal one whose extensional
component is at least first-order logic. Now, the following is by inspection the
case with respect to µ:

s(a) iff µ(m).3

Next, let Xi be any cognitive architecture that aspires to enable standard mod-
eling (and simulation) of AGI-level minds. What is needed from this cognitive
architecture is, (1), the truth of this biconditional:

s(a) iff χi(c).

Standard modeling of an AGI-level mind, given the foregoing, is achieved by Xi

if, (2), it can be proved that

χi(c) iff µ(m).4

We conjecture that such confirmatory theorems can be proved with respect to
both cognitive architectures NARS and SNePS, to which, resp., we shortly turn.
But first we give a very quick overview of the nature of M itself.

3 The M Cognitive Meta-Architecture: Key Attributes

M is not a new cognitive architecture intended and designed to compete with the
likes of Soar and ACT-R and so on as a platform to model and simulate human
and/or AGI cognition. There are innumerable competing architectures in play

3 The formula in the case of M itself is

µ(m) := (believes! m t (= (+ (s (s 0)) (s (s 0))) (s (s (s (s 0)))))),

where s is the successor function and 0 is primitive, but technical details regarding
M are outside of current scope.

4 The kernel of the procedure just described was first adumbrated in [4].
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today [15], all directly reflecting the particular predilections of their human cre-
ators and developers.5 M is for assessing and harmonizing these “particularist”
architectures at a meta level, and is marked by the following three distinguishing
attributes:

– Non-Partisan. M is not designed to advance any particular convictions about the
nature of cognition, and is in this regard unlike the typical cognitive architecture.
To mention just one example, certainly Soar was originally conceived to commit to
and build upon the conviction that a key part of human cognition centers around
condition-action rules. Many other examples of particularist convictions could be
enumerated here for many competing cognitive architectures. In stark contrast, M
reflects the attitude that any partisan advocacy militates against standardization;
instead, the attitude is to move as soon as possible to formalization using the
discipline of formal logic. Of course, no particular logic is to be locked into in any
way as long as its a quantified modal one whose extensional component is at least
first-order logic.

– Thoroughgoingly Formal: Axiomatic and Theorem-based. M is inseparably aligned
with a purely formal view of science and engineering, according to which whatever
phenomena is observed and to be deeply understood and predicted should be ax-
iomatized. The axiomatization of mathematics is now mature (and is the initial
focus in the application of M as touchstone for whether a given cognitive archi-
tecture can minimally be used for standard modeling and simulation of AGI-level
mind), and the axiomatization of physics is now remarkably mature; consider for
example that not only classical mechanics is long done [19], but special relativity
is largely captured [2], and advances are fast being made on general relativity and
quantum mechanics. M is based on the assumption that this level of high maturity
should now be applied to intelligence, so that matters can be theorem-based.

– Minimalist. Given all the resources formal science offers for capturing cognition,
use of M is guided by a minimalist approach. The smaller and simpler is the logical
system that can be used to capture a target, the better.

4 Applying the Procedure

In this short paper, we cannot fully chronicle the application of our procedure
to candidate cognitive architectures. But we attempt to partially justify our
optimism that both the cognitive architectures NARS and SNePS will yield in
each case the needed theorem by virtue of which standard modeling is confirmed.

4.1 Exploration of NARS

What is χi(a) for NARS? The sentence s(a) says that a believes 2+2=4 to be
a true statement, and we shall assume that counterpart to agent a is the NARS
agent n, and that the formula ν is the in-system counterpart to s. Next, we note
that instead of statements NARS has judgments: statements with associated
fuzzy truth-values, consisting of a frequency f ∈ [0, 1] that represents a degree

5 We conjecture that the set of all of these architectures is pairwise inconsistent, but
leave this disturbing prospect aside for subsequent investigation via M.
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of belief in the underlying statement, and a confidence c ∈ [0, 1] representing
how stable the belief is (Definition 3.3 in [25]). For our target of eventually
demonstrating ν(n) iff µ(m) it will suffice6 that we define ν(n) as the statement
“The NARS agent n believes the judgment 2 + 2 = 4 with a frequency of 1
(there is only positive evidence for the statement).” Formalizing this further,
a NARS agent is said to believe a judgment iff it is either an experience, a
judgment provided to the system directly, or a statement that can be derived
from experiences (Definition 3.7 in [25]). Thus ν(n) for a NARS agent n is true by
providing 2 + 2 = 4 as a standalone experience (in our case perhaps provided by
the theoretical perception system outlined in [26]).7 Finally, the representation
of the actual statement 2 + 2 = 4 can be accomplished in a number of ways,
as NARS supports the representation of relational terms that can represent
arbitrary n-ary relations between terms that represent objects. One example of
this representation in Narsese is < (∗ 2 2 4) → add > where add is a term
representing a relation between two summands and a sum.

Having defined ν(n), we can turn to a proof sketch for ν(n) iff µ(m). There
are multiple approaches to this proof, one particularly formal variant would be
expressing NAL in one of our cognitive calculi — a specialized type of logical
system for Theory-of-Mind reasoning8 — in a higher-order logic and proving
a bridge theorem. Instead for economy we opt for an intuitive proof based on
theoretical idealized perception systems for NARS and M. For the forward di-
rection of biconditional proof we assume ν(n). By our above definition, ν(n)
iff the agent n experiences 2 + 2 = 4 or has experiences that deductively9

lead to the conclusion 2 + 2 = 4 with frequency 1 in n. Under idealized per-
ception, this implies the existence of external representations of either s that
2 + 2 = 4, or a set of statements S that imply s. The existence of these exter-
nal representations means that an M agent m under idealized perception would
also perceive s, P(m, ·, s) or perceive the set of S,

∧
e∈S P(m, ·, e). Since many

6 We hold that confidence is irrelevant here as it is a temporal property which only
impacts how likely the system is to change its mind, which has use for nonmonotonic
reasoning but is irrelevant to our current deduction-only explorations.

7 Additionally we could proceed by providing any number of experiences that allow
the system to derive 2+2=4 as long as they allow the system to derive 2+2=4 with
frequency 1.

8 Cognitive calculi build off of the notion of traditional logical systems, which consist of
a formal language L , a set of inference schemata I , and a formal semantics S . The
most notable distinguishing factors of cognitive calculi are (1) they contain modal
operators for mental states, e.g., perception, belief, obligation; and (2) they contain
no model-based semantics; instead the semantics of formulae are purely inference-
theoretic. That is, the semantics are expressed exclusively through the inference
schemata I . For a longer exposition of exactly what a cognitive calculus is and
isn’t, we refer the interested reader to Appendix A of Bringsjord et al. [7].

9 Abductive and inductive reasoning in NARS have the resulting frequency of the
conclusion depend on confidence values influenced by a system parameter; as this can
be arbitrary, this will not guarantee the preservation of frequency of 1 for conclusions
using these modes of reasoning, thus only deductive reasoning applies here.
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standard cognitive calculi have inference schemata allowing perceived state-
ments to become believed statements, and others allowing propositional rea-
soning on beliefs, in the first case P(m, ·, s) → B(m, ·, s), and in the second∧

e∈S P(m, ·, e) →
∧

e∈S B(m, ·, e) → B(m, ·, s) which is the definition of µ(m).
For the backward direction of the biconditional proof, we assume µ(m) to derive
ν(n) using the same argument outlined for the forward direction.

We thus claim that ν(n) iff µ(m), which confirms that NARS conforms to a
minimal standard modeling of AGI-level minds.

4.2 Exploration of SNePS and GLAIR

SNePS is a KRR system, ultimately in fact a logic [22], that can be used as either
a standalone system or inside others; GLAIR is a cognitive architecture designed
by SNePS scientists that uses SNePS for KRR [23]. As γ(g) for GLAIR (or any
agent using SNePS for KRR) depends solely on representation within SNePS at
the knowledge layer of a GLAIR agent [23], we generalize and refer to γ(g) for
any arbitrary agent having SNePS under its hood, henceforth referred to simply
as SNePS agents. Any statement within a SNePS system is said to be believed by
the system. Figure 1 shows a representation of the statement 2+2 = 4 in SNePS
as a network. [11] makes a distinction between a SNePS agent understanding
that 2+2=4 as declarative knowledge versus understanding what 2+2=4 means
as semantic knowledge. In this language, γ(g) can be interpreted purely in the
sense of the representation of the declarative knowledge and is thus satisfied by
the representation in Figure 1.

Fig. 1. A SNePS agent’s belief that 2+2=4. where m2 is the functional term repre-
senting a resultant Sum, from n2 twice, m1 is the proposition that m2 evaluates to n4,
and m3 is the proposition that m2 has a value. (Adapted from Figure 4.1 in [11].)

We claim that s(a) iff γ(g) is true by construction. Unfortunately given cur-
rent space constraints, γ(g) iff µ(m) is non-trivial. Since M has a purely infer-
ential semantics, and since SNePS allows inferences to be systematically carried
out, we prove an inference-theoretic interpretation of the biconditional by show-
ing that given some context in which µ(m) is deduced (in the fashion of [6]),
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γ(g) can be the conclusion of valid reasoning in SNePS that uses a counterpart
of this context. The left-to-right direction follows the same strategy. We thus
assert that SNePS too conforms to a minimal standard modeling of AGI-level
minds.

5 Related Work

Commendably, Laird et al. [16] launched a search for a standard model of the
human mind. But their approach and ours are starkly divergent. We have no
particular interest in the human mind or its embodiment in the form of earthly
brains, which we regard to be adventitious relative to AGI at the human level
and above. Nonetheless, realistically, at least philosophically speaking, there will
be in the minds of some AI theorists overlap between the Lairdian approach
and the approach we introduce herein, so we point out a second divergence:
Their approach is informal, while ours is formal, i.e. theorem-driven. For good
measure, a third aspect of divergence is found in the fact that while we regard
the “best bet” for commonality of AGIs to be found in the arena of logic and
mathematics, cognition in this area is regarded by Laird et al. to be cognitively
recherché, which is borne out holistically by the absence of any discussion what-
soever of logico-mathematical cognition in [16], and more specifically by the fact
that their proposed “standard model” constraints have nothing whatsoever to
do with reasoning, and instead consist of the four pillars of “perception/motor”,
“learning,” “memory and content,” and “processing.” Reasoning, including rea-
soning in connection with logico-mathematical cognition over content in formal
languages, would only perhaps arise in conception in secondary, epiphenomenal
fashion under the roof held up by their quartet of pillars.

We suspect some readers will think that knowledge graphs and description
logics are related to our proposed procedure with M. However, care must be
taken when considering this kind of work.

In practice, most knowledge-graph systems can be represented by a decid-
able description logic 10 (e.g. by ALC, or SHOIN , which are standards for
most knowledge graphs), but such logics cannot capture PA, and they cannot
capture epistemic attitudes about theorems of this axiom system. The reason is
that description logics are proper fragments of first-order logic (FOL), and thus
cannot express PA, which requires full FOL and is by Church’s Theorem unde-
cidable. Formalizing mathematics is known to require at a minimum third-order
logic (M’s cognitive calculi include quantified modal third-order logic) [24]. What
thus may seem to be work related to ours is in the case of knowledge graphs and
description logic actually not. However, our procedure can easily handle weaker,
decidable theories of arithmetic, such as Presburger Arithmetic, and as a matter
of fact the particular sentence s(a)’s component ‘2+2=4’ is a valid statement in
both Peano and Presburger Arithmetic.

10 Some description logics have been discovered to be undecidable [21, 20]. However,
the core focus in the description logic community is on finding decidable fragments.
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6 Objections

We anticipate many objections to our new approach. We rapidly encapsulate
under current space constraints two, and briefly reply to each.

6.1 “But What About Purely Numerical Approaches to AGI?”

It will be said against us: “There are approaches to rigorously capturing general
intelligence at the human level and above that make no reference to the axiom-
atized declarative content of PA, let alone to the additional axiom systems to
which you implicitly refer when invoking reverse mathematics for your standard-
ization program (e.g. see [13]). Your approach is hence idiosyncratic at best, and
tendentious at worst.”

In reply, the key question is what those aiming at securing AGI via approaches
that exclude the standardization we advocate will settle for when an artificial
agent is challenged to demonstrate the power and accuracy of its mathemati-
cal cognition. Suppose that some artificial agent purportedly not only believes
that 2+2=4, but purportedly has command over PA overall. The key question,
then, when narrowed, is: Would purely external behavior of the right sort be
sufficient, or must there be some underlying structures and content associated
with the behavior that enable proving a connection to formulae like µ? Large
Language Models (LLMs), for example, provide an excellent context for asking
this question. Suppose an LLM agent known colloquially by the name ‘Larry,’
based purely on deep learning, and thus completely bereft of any formulae that
encode members of PA` (the closure under deduction of PA), is able to generate
all sorts of sentences like the sentence s from above, but also more complicated
ones, because saying any number-theoretic theorem is possible for this LLM.
Let s′(Larry) be “I believe that every cubic number is the sum of n consecutive
odd numbers,” where the indirect indexical refers to ‘Larry.’ And suppose that
many, many other sentences are generated by Larry on this topic, where this
generation is syntactically flawless, but is by definition based exclusively on un-
derlying numerical data processing. Under this supposition, proving a bridging
biconditional that links from the LLM Larry to formulae in M is impossible.
This is an empirical fact.

We see this as most unfortunate, for the simple reason that science explains
by virtue of finding formal theory that explains observed phenomena; physics is
the paradigmatic case in point. In the case of the LLM that is ChatGPT, the
empirical fact that deep formal science of the type that has always been the
“golden goal” of science is completely excluded as it is in the case of Larry, has
been noted recently by Wolfram [28]. Hence, the blockage by the impenetrable
nature of LLMs for our M-based procedure is just something we must accept,
with all of rigorous science.

6.2 “Math is Merely Manufactured”

The objection against us here can be summarized thus: “Using mathematical
cognition as the cornerstone of a test for standard modeling and simulation of
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AGI-level minds bestows upon such cognition a kind of ‘ground-truth’ status.
But mathematics is essentially a symbol-manipulation game legislated by human
beings, as explained in [17].”

As all or at least most readers will know, while the view espoused in this
objection has been defended by serious scholars (e.g. [17]), this is by no means
a consensus view. There are many well-known problems that afflict the view,
for instance the apparent fact that math stunningly corresponds to the behavior
of the natural world [27], while formal logic has a parallel relationship with
computation [12]. Yet our position, in keeping with the non-partisan nature of
M itself, is to leave such debates to the side, in favor of simply observing that at
the very least, going with mathematical cognition as a starting place for trying
to establish a plumb-line standard modeling of AGI-level minds is rational, since
if any part of cognition is likely to span minds in general it is mathematical
cognition — rather than perception, motor control, natural language usage, etc.

7 Conclusion and Next Steps

Immediate next steps include delivering full proofs of our conjectures with re-
spect to the NARS and SNePS, and expanding our procedure to include cognitive
architectures beyond these two cognitive architectures. Two obvious targets are
Soar and ACT-R, the latter of which promises to qualify as standard by our
metrics in no small part because ACT-R has already been considered from the
standpoint of formal logic (at least at the level of first-order logic; see [10, 1]).
We don’t know what will happen in the case of Soar.11

A significant challenge awaits us when our procedure is expanded beyond
mathematical cognition into other parts of AGI-level cognition. We must be able
to draw from logic-based machinery to for example formalize communication
so that our key biconditionals can go through in this realm. The most severe
challenge to our procedure will arise, we believe, in the case of robust attention
and perception, and, having devoted time to considering perception in connection
with NARS (as seen above), we are studying the attention/perception-centric
cognitive architecture ARCADIA [18] now from a formal point of view.

11 Some readers of earlier drafts of the present paper have asked us whether our pro-
cedure can be applied not just to cognitive architectures, but to artificial agents in
general — for instance to the LLM agents in today’s headlines. This question, alas,
is at once tricky and straightforward. If the question is about pure LLMs, the ques-
tion is straightforward, and easily answered in the negative, since cognitive attitudes
directed at declarative content qua declarative content within the theory of elemen-
tary arithmetic (the full closure of PA under standard first-order deduction) cannot
exist in such a system, which operates exclusively over data derived by tokenizing
and vectorizing etc. away from quantifier-rich formula. Things become tricky when
one sees that LLMs are increasingly getting “glued” to outside intelligent systems
that have been engineered to handle logic-based data and to reason in accordance
with inference schemata that have since Aristotle been devised for processing such
data.
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