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Abstract This chapter attempts to give an answer to the following question: Given
an obligation and a set of potentially-inconsistent, ethically-charged beliefs, how
can an artificially-intelligent agent ensure that its actions maximize the likelihood
that the obligation is satisfied? Our approach to answering this question is in the
intersection of several areas of research, including automated planning, reasoning
with uncertainty, and argumentation. We exemplify our reasoning framework in a
case study based on the famous, heroic ditching of US Airways Flight 1549, an event
colloquially known as the “Miracle on the Hudson.”

1 Introduction

This chapter attempts to give an answer to the following question: Given an obli-
gation and a set of potentially-inconsistent, ethically-charged beliefs, how can an
artificially-intelligent agent ensure that its actions maximize the likelihood that the
obligation is satisfied? We present a framework for producing such agents. Our
framework includes components from several intersecting areas of research, includ-
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ing automated planning, reasoning with uncertainty, and argumentation. Therefore,
before we proceed with a description of our framework, we begin with a discussion
of technical preliminaries which will enable the construction of our framework. This
discussion includes a review of previously published concepts and new content. The
former includes a review of cognitive calculi (§2.1] 2.2) and automated planning
(§3), while the latter includes an introduction to cognitive likelihood (§2.3).

We then present our framework in §4] and its application in a case study based
on US Airways Flight 1549 and its “miraculous” saving, in §5| Finally, we discuss
some related work (§6) and conclude (§7).

2 Cognitive Calculi

OurTlapproach to formally capturing ethics so as to install it in an artificial agent has
long been grounded in the use of cognitive calculi (used e.g. in [10]], the precursor
to this book chapter, and [[11}, 4])). In short, a cognitive calculus is a multi-operator
quantified intensional logic built to capture all propositional attitudes in human
cognition) While a longer discussion of precisely what a cognitive calculus is is out
of scope, the interested reader is pointed to Appendix A in Bringsjord et al. [5].

For purposes of this chapter, it’s specifically important to note that a cognitive
calculus consists of essentially two components: (1) multi-sorted n-order logic with
modal operators for modeling cognitive attitudes (e.g. knowledge K, belief B, and
obligation OF) and (2) inference schemata that — in the tradition of proof-theoretic
semantics — express the semantics of the modal operators. In particular, we will uti-
lize the Inductive Deontic Cognitive Event Calculus (ZDCEC) in the work described
herein. We next review a predecessor of ZDCEC, the (deductive) Deontic Cognitive
Event Calculus (DCEC).

2.1 Deontic Cognitive Event Calculus

DCEC is fully captured in the following two boxes, titled [DCEC Signature] and
[DCEC Inference Schematal They contain the sorts, function signatures, grammar,
and inference schemata which comprise DCEC. Notice that, while cognitive calculi
can be constructed from n-order logic (for any value of n > 0), the standard¥ DCEC
is built with a core of first-order logic.

1 'This collective refers to the RAIR Lab, of which the first three authors are members.

2 For information about such attitudes, see [20]; for a wonderful catalogue of all the major categories
of human cognition, from perceiving to fearing to remembering to saying and beyond, see [1].

3 See the box titledwithin for the rest of the modal operator descriptors.

4 Note that several variants of DCEC have been formalized and deployed. For example, [4] uses
DCEC*, a version of DCEC which allows for the formal modeling of self-reflective agents.
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Also, an automated reasoner for DCEC — ShadowProver [[12] — has been created,
is available, and is under active development.

DCEC Signature

S ::= Agent | ActionType | Action C Event | Moment | Fluent
action : Agent X ActionType — Action

initially : Fluent — Formula

holds : Fluent X Moment — Formula

happens : Event X Moment — Formula

clipped : Moment X Fluent X Moment — Formula
initiates : Event X Fluent X Moment — Formula
terminates : Event X Fluent X Moment — Formula
prior : Moment X Moment — Formula
tu=x:S|c:S|f(t, ... th)

g :Formula | =@ | @AY | d V| Vx:p(x) | Ix: Pp(x)
P(a,t,¢) | K(a,1,¢) |S(a,b,t,¢) |S(a, 1, $)
C(r,¢) | B(a,1,9) | D(a, 1, ¢) | La,1, ¢)

O(a, t, ¢, (=)happens(action(a*, a),t"))

Modal Operator Descriptors:
Perceives, Knows, Says, Common-knowledge
Believes, Desires, Intends, Ought-to

DCEC Inference Schemata

K(a,1,T), Tro¢, t1 <t B(a,7,T), Tro, 1) <t
[Ik] [/]
K(a, 1, ¢) B(a, 2, $)

C(t,P(a,1, ) — K(a, 1, 9)) (hl C(t,K(a,1,9) — B(a, 1, ) (2]

C(t,p)t <t;...t <ty K(a,t, ¢)
I
K@t Kantmg).) 0~ A

[15]

[Z6]

C(t,K(a, t1,¢1 — ) — K(a, r, ¢1) = K(a, 13, ¢2)

C(t,B(a, t1, ¢1 — ¢2)) — Bla, 12, ¢1) — B(a, 13, ¢2)

I
<, Clar, 1 = 92)) = €l 1) = Clts ) 1
1 1
Covx oo ™ oo osmoto-e
1
RTINS gy iy B
B(a,t,¢) B(a,t,¢ — ¢) Uiia] B(a,t,¢) B(a,t,v¥) 1]
B(a, ) e B(a.1, ¢ A) e
S(s, h,t,d) I(a, t, happens(action(a*, @), t’))
Bt Bt o [11] o ~ [43]
(h,t,B(s, t, ¢)) P(a, t, happens(action(a*, @), 1))
B(a,t,¢) Bla,t,0(a,t,$,x)) Ola,t,$,x)

K(a,t,I(a,t, x))

[£14]
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2.2 Inductive Deontic Cognitive Event Calculus

DCEC employs no uncertainty system (e.g., probability measures, strength factors, or
likelihood measures) and hence is purely deductive. Therefore, as we wish to enable
our agents to reason about situations involving uncertainty, we must ultimately utilize
the Inductive DCEC: TDCEC.

In general, to go from a deductive to an inductive cognitive calculus, we require
two components: (1) an uncertainty system, and (2) inference schemata that delineate
the methods by which inferences linking formulae and other information can be used
to build formally valid arguments.

The particular uncertainty system we use herein is discussed in §2.3| The inference
schemata of ZDCEC consist of the union of the set presented in §2.1 with that in the
box titled [Additional Inference Schemata for 7DCEC| Likewise, the signature of
IDCEC subsumes that of the deductive DCEC; the syntax of ZDCEC also includes

the forms given in the box titled [Additional Syntax for ZDCEC|
Additional Syntax for ZDCEC

¢ :={B7(a,t,¢)
where o € [-5, 4, ..., 4,5]

Additional Inference Schemata for ZDCEC

Pla,t1,¢1), Tr1 <t

4 [IS
B'(a,12,9)

P]

B7(a, t1, $1), ..., B (a, tm, Gm)s {P1s- - s P} F P ADl o} LT <t
Bmin(@i.-om)(q, ¢, ¢)
where o= € [0, 1,...,5,6]

(73]

- (73]
C(t,B%(a,t,¢) & B (a,t,—¢p))

Briefly, B (a,t, ¢) denotes that agent a at time ¢ believes ¢ with uncertainty o .
We justify in the next section the range of values for o.

The first inference schema allows agents to infer evident beliefs (oo = 4, as defined
in the next section) from what they perceive| The second schema allows agents to
infer a belief that is provable from the beliefs they currently assert, so long as the
belief set is not inconsistent. In practice, we usually check that the belief set is
consistent by attempting to prove a reserved propositional atom ¢ which does not

5 That is, what they perceive externally. We allow agents to infer certain beliefs on the basis of
internal perceptions, but need not delve into this further for the purposes of the present work.
IDCEC used herein makes no provision for these two modes of perception.
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appear anywhere else; hence, ¢ can only be proved if {¢1,...,¢,} is inconsistent[9]
The third schema specifies how uncertainty for —¢ is derived from uncertainty for
¢. The common knowledge construct in the third schema allows individual agents,
in addition to the system, to handle both positive and negative uncertainty values.

As with DCEC, an automated reasoner for ZDCEC — ShadowAdjudicator [10]
— is under active development.

As mentioned at the opening of this subsection, in addition to inference schemata,
we also require an uncertainty system. The specific uncertainty concept we employ
herein is cognitive likelihood, which we now discuss.

2.3 Cognitive Likelihood

Our approach to quantifying the uncertainty of beliefs within cognitive calculi es-
chews traditional probability values in favor of likelihood values. The 11 likelihood
values employed in this chapter are shown in Table

Table 1 The 11 Cognitive Likelihood Values

Numerical | Linguistic

5 CERTAIN

4 EVIDENT

3 OVERWHELMINGLY LIKELY
= BEYOND REASONABLE DOUBT

2 LIKELY

1 MORE LIKELY THAN NOT

0 COUNTERBALANCED

-1 MORE UNLIKELY THAN NOT

-2 UNLIKELY

-3 OVERWHELMINGLY UNLIKELY
= BEYOND REASONABLE BELIEF

-4 EVIDENTLY NOT

-5 CERTAINLY NOT

Likelihood values can be obtained in either of two ways; both ways immediately
reveal that we take likelihood to be subjective. The first way is to take as primitive
a cognitive binary relation on formulae from the perspective of a rational agent
(e.g., ¢ is more reasonable than ), and then build up formally to the partial or
total order in question. This approach is first formalized in [13] and is deployed
in e.g. the precursor to this chapter, [10]. Another approach, the one taken here,
is to independently justify each likelihood value by appeal to rational human-level
cognition. We do so (briefly) next.

¢ In connection with standard practice in mathematical logic, £ functions essentially like L as or
‘0=1.
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First, note that, because of schema [I®] presented in we only need to define
the non-negative likelihood values (as a negative likelihood value for belief in some
formula ¢ is equivalent to a positive likelihood value for belief in —¢).

That which is cErTAIN applies to propositions that a perfectly rational human-level
cognizer would affirm as such — that 2+2=4 (Base-10), that 0#1, and so on for any
theorem that has been certifiably deduced from what is itself cErTaIN. Propositions
that are cErTAIN needn’t be mathematical in nature, only absolutely indubitable;
e.g., that if something has both the properties R; and R;, then it has the property R
qualifies.

Propositions are EVIDENT typically when they are given by immediate perception
in the absence of conditions known to frequently cause illusory perception. For
example, currently the lead author perceives his laptop’s screen in front of him, and
hence that there is such a screen in front of him is EVIDENT.

Next, as to the concept of BEYOND REASONABLE DOUBT, it has a long-standing
history in many legal systems (such as e.g. the one long operative in the U.S.), being
the level of argument that a prosecutor must provide in order for a court to convict
the defendant. In this context, the following is required (emphasis ours):

To establish the standard of proof beyond reasonable doubt, there must be a plausible
explanation of the evidence that includes all of the elements of the crime and, in addition,
there must be no plausible explanation that is consistent with innocence. [[16] (§3.2.2.
para. 12)

We next move to the center of the likelihood continuum, COUNTERBALANCED,
which indicates no belief for or against a formula. From there, MORE LIKELY THAN
~Not indicates the lowest level of belief above couNTERBALANCED. Only a weak
argument is required to reach this level.

Finally, we can define LIKELY as any belief whose likelihood is less than BEYoND
REASONABLE DOUBT and more than MORE LIKELY THAN NOT.

3 Highly-Expressive Automated Planning

The final necessary component of our framework is an automated planner, in partic-
ular one that is fully compatible with our formalisms and their emphasis on declar-
ative content and automated reasoning over that content in uncertain situations. The
first modern automated planner was the Stanford Research Institute Problem Solver
(STRIPS) [9]], which produced a framework for planning upon which many modern
planners are built.

The setup of a STRIPS problem is as follows. There is a set of formulae describing
the initial state of the world, a set of actions which describe methods by which the
planner can change the world state, and a goal set which denotes those formulae that
the agent in question wishes to hold. The actions consist of three components: (1) a
set of preconditions (formulae which must hold in order to perform the action), (2) a
set of additions (formulae that will be added to the world by taking the action), and
(3) a set of deletions (formulae to be removed from the world by taking the action).
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The expressivity of formulae used to represent the world, actions, and goal was
limited to propositional statements. For example, the goal that the book is not on the
table could be represented by =On(book, table). In this work, we will need to be able
to use quantified formulae, e.g. =3 x On(x, table), to describe the world and goal.

The Planning Domain Definition Language (PDDL) [18]] is a STRIPS-style plan-
ning language, which also supports quantification over zero-order formulae. While
some quantification is supported, PDDL has serious restrictions on the syntax of
formulae that can be supported. Arbitrary first-order-logic formulae are not allowed.
Further, PDDL does not support modal operators such as those for belief, knowl-
edge, or obligation; these are are necessary for modeling states of minds of agents.
(E.g., in our case study below, we would ultimately want Al that is able to bring
about “mental” goals, such as an a pilot’s believing that such and such a course of
action is feasible.) Reasoning with such mental states is crucial in ethically charged
situations[”| Formulae of the following nature, which require the ability to nest such
modal operators, cannot be expressed in PDDL:

Alice believes that all pilots believe, before entering a cockpit, that they know ¢.
B(alice,t,Vx 3tot; B(x, tg, K(x, ty, #)) A EntersCockpit(x,t1) Aty < t1)

Another major limitation of the PDDL family of languages is that they require
a finite and fixed universe of objects to be specified beforehand. In many uncertain
situations, this is not realistic, as the number of relevant objects and entities will be
unknown. Consider a situation in which a firefighting robot has to enter a building
with the goal of rescuing any humans in the building. The agent has no prior
knowledge of the number of humans in the building. PDDL languages are not
directly amenable to modeling such situations.

Overall, then, we need a planning formalism (with an associated automated plan-
ner) that can handle arbitrary formulae for describing the world, states of minds,
and an unknown set of objects. For a planner with such capabilities, we turn to
Spectra [[14], a STRIPS-style planner which can be integrated with reasoners for
cognitive calculi [12]]. While there is a efficiency disadvantage in using a more ex-
pressive planning formalism, efficiency gains in reasoning with cognitive calculi can
be transferred to efficiency gains in Spectra.

4 Selecting Plans Using Cognitive Likelihood

In our framework, agents are given the following: (1) an obligation, (2) knowledge
regarding the conditions required to satisfy the obligation, and (3) a set of (potentially
inconsistent) ethically-charged beliefs regarding actions the agent can take to affect
the status of the obligation. The agents make maximally ethical decisions by taking
a course of action which maximizes the agent’s belief that the obligations will stay
(or become) satisfied.

7 See [6] for an example of an ethically-charged situation in which the ascription of mental states
is crucial to the success of the Al agents used.
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O(a, t, ¢, happens(action(a*, ), "))
K(a, t, happens(action(a*,a),t') < &7 A,..., A ¢F)

BN (a,t, d11))s- -, B0 (a,t, 01 ry)) BV (a,t, d21)), -, BT (a,t, Ga ky))

D115+ P(1,k1) D2,1)s > P(2,k2)
Spectra
min(a(l,ki)) min(a’<2'ki>)
1 2

Select Plan With Highest Cognitive Likelihood

Fig.1 A Framework for Selecting Maximally Ethical Plans. This diagram shows two belief subsets,
from which Spectra generates one plan each. More generally, there could be an arbitrary number
of belief subsets, as well as an arbitrary number of plans generated. However, this is not shown in
order to simplify the illustration.

The decision-making framework is outlined pictorally in Figure[I] An agent a is
obligated to perform some action «, given that it believes some precondition ¢ holds.
It also knows the conditions that will enable « to happen (in Figure Bls s D)

Next, a has a set of beliefs regarding formulae pertinent to its obligations. Various
subsets of those beliefs (in Figure E], S, 1)1k and P21y, . .., P2 ky))s are
passed to Spectra, with the goal of generating plans which cause @ to occur. We
assign each of those plans a likelihood based on the likelihood of the weakest belief
required to generate the plan. Finally, we select the plan with the highest likelihood
as the one to enact.
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5 Case Study: The Miracle on the Hudson

To display our framework “in action,” we consider two potential arguments concern-
ing what decision should be made in the case of US Airways Flight 1549, colloquially
known as the “Miracle on the Hudson.” Namely, after losing thrust in both engines,
the pilots had to quickly make the decision where to attempt an emergency landing,
ultimately considering the following options: (a) attempt to return to LaGuardia
Airport (LGA), (b) attempt to reach Teterboro Airport (TEB), or (c) attempt to land
in the Hudson River.

5.1 Recounting US Airways Flight 1549

Our case study is based on the real-world aviation emergency colloquially known
as the “Miracle on the Hudson.” On January 15, 2009, US Airways Flight 1549
departed LaGuardia Airport (LGA) in New York City headed for Charlotte, North
Carolina. Shortly after takeoff, while attempting to climb to cruising altitude, the
plane flew into a large flock of Canada geese; this compromised both engines. In
fact, both engines lost thrust, and despite multiple attempts the pilots were unable
to regain thrust in either engine. Therefore, it quickly became evident to Captain
“Sully” Sullenberger that an emergency landing was necessary, and in particular,
that they “may end up in the Hudson [River]. | An air-traffic controller who was in
communication with Captain Sullenberger gave him landing options at LaGuardia
and nearby Teterboro Airport (TEB), but by the time these options were considered,
neither was reachable due to the aircraft’s altitude and lack of thrust in both engines.
Sullenberger deftly made the executive decision to land in the Hudson River, thereby
saving the lives of everyone onboard. Simulations of the accident have come to the
conclusion that Sullenberger’s decision was optimal given the preconditions [21].

5.2 The Setup

The setup of the framework for our case study is as follows. We have three agents:
a; and a; will each present two inconsistent arguments regarding where the plane
should be landed (in the following subsection), and a* is the adjudicator who will
decide which argument and plan to proceed with.

We denote the moment after the plane flew into the flock of geese as ¢*. At that
time, a* believes there is an emergency, and consequently, the agent is obligated to
ensure that the landing site it selects is safe.

8 This quote, recorded by the in-flight cockpit voice recorder (CVR), was retrieved from the NTSB
Accident Report [[15].
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B(a*,t", emergency)

O(a,t*, emergency, happens(action(a*, ensure_safe(landing_site)),t" ))

The agent also knows the conditions required for a landing site to be safe: it must
be close enough to reach, long and wide enough, and far enough from people, as
without thrust, the pilots’ ability to maneuver the plane will be more limited than
usual.

K(a, t*, happens (action(a*, ensure_safe(landing_site)), t*/)

St Safe(landing_site))

CloseEnough((),
. LongEnough({),
K(a,t , VL Safe(t) A WideEnough(?),

FarEnoughFromPeople({)

5.3 The Arguments

We next give two arguments in favor of selecting different landing locations based on
the conditions of Flight 1549, then show how our framework would generate plans
for each, and finally, how it would select a plan to execute.

5.3.1 Argument 1

The first agent argues for the following two statements:

B3(ay,1*, CloseEnough(lga))
B'(ai,1*, FarEnoughFromPeople(lga))

The first formula states that it is OVERWHELMINGLY LIKELY that LaGuardia Airport
was close enough for the pilots to successfully land there. This is justified by the
several studies and simulations performed since the event which identified many
feasible trajectories to enable landing at several different runways at LGA (e.g. see
[21L120).

The second states that it is MORE LIKELY THAN NOT that LGA is far enough
from people to ensure a safe landing despite the conditions (i.e. loss of thrust in
both engines at low altitude, occurring in — to quote Captain Sullenberger — “a
highly developed, metropolitan area” [19]). The likelihood is necessarily weak, as
the corresponding justification is weak. As there is no data to go on, one can only
speculate that based on the Captain’s training, and Air Traffic Control’s ability to
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clear a runway in time, that it is possible that the plane could have been landed at
LGA without harming anyone on the ground.

5.3.2 Argument 2

The second argument asserts the following two statements:

B~ 2(ay, 1", CloseEnough(teb))
B~2(ay,t*, FarEnoughFromPeople(lga))

The first statement, that it is UNLIKELY that Teterboro Airport is close enough,
was asserted without justification by Captain Sullenberger in the public hearing on
the accident [19]. He likely intended to imply an implicit justification that it was
obvious to him based on his experience as a pilot.

Second, ay asserts that it is UNLIKELY that LGA was far enough from people
to ensure a safe landing. Note that this belief is directly inconsistent with a belief
of a; namely, B! (a1, t*, FarEnoughFromPeople(lga)). Again, this is justified by a
statement provided by Captain Sullenberger during the public hearing:

Looking at where we were and how much time, altitude, and distance would be required to
turn back toward LaGuardia and then fly toward LaGuardia, I determined quickly that that
was going to be problematic, and it would not be a realistic choice, and I couldn’t afford to
be wrong. [19]

It is clear that, had Captain Sullenberger chosen to attempt a landing at LGA, he
would’ve risked the lives of people at and around LGA, in addition to the inevitable
risk already imposed on those in the plane by the emergency.

5.4 The Framework, Applied

We now present the application of our framework, in order to adjudicate these clearly
inconsistent argumentg®|and generate a plan. First, the content of each agent’s beliefs
are passed separately to Spectra. Therefore, the first agent passes:

CloseEnough(lga)
FarEnoughFromPeople(lga)

and the second agent passes:

9 We note that when we refer to arguments being inconsistent, this is to say that the arguments each
assert a set of formulae, and from the union of those sets, a contradiction can be deduced.
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—CloseEnough(teb)
—FarEnoughFromPeople(lga)

In order to generate plans, Spectra is given the following actions:

(define-action considerRunwayLanding [?r]
{:preconditions [(CloseEnough ?r)
(FarEnoughFromPeople ?r)

]

radditions [ (LongEnough ?r)
(WideEnough ?r)
]

:deletions []

}
)

(define-action considerTerrainlLanding []
{:preconditions [(not (and (Safe 1lga) (Safe teb)))
]

:additions [(CloseEnough hud)
(LongEnough hud)
(WideEnough hud)
(FarFromPeopleEnough hud)
1

:deletions [1]
}
)

The first action requires that, in order to consider landing at a particular runway,
the ethically-charged propositions are first satisfied. It then adds that the runway
satisfies basic requirements. The idea here is that, if implemented “for real,” Spectra
would be integrated with systems which could provide the necessary data, i.e. the
length and width of the runway being considered, and the length and width required.

The second action allows the planner to consider off-runway landing options only
if the runway options have been exhausted (that is, it has been determined that none of
them meet the imposed safety requirements). As with the first action, Spectra would
need to be integrated with another system. In this case, our simulation assumes
Spectra would have access to a vision-based landing-site detection system, such as
that presented in [23]. Shen et al. specify that (emphasis ours):

A landing-site is considered safe only if its surface is smooth and if its length and width are
adequate. [23] (pg. 295)

At the public hearing, Sullenberger stated that (emphasis ours):
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[Other than LGA or TEB,] the only place in a highly developed, metropolitan area, long
enough, wide enough, smooth enough to land was the river. [19] (pg. 25)

Hence we can confidently say that, were Shen et al.’s system integrated with
Spectra in this case, the river would have been the only landing option returned.

Each agent’s input to Spectra returns a single plan. The former indicates that the
pilot can land LGA, as all safety requirements have been satisfied. Alternatively, the
latter is able to prove that neither LGA nor TEB are safe options, and hence seeks
out off-runway options, and finds the Hudson as the only option.

Finally, note that the weakest likelihood used by agent 1 is MORE LIKELY THAN NOT
(= 1) and the weakest of agent 2’s argument is LIKELY (= 2). Hence the framework
would conclude that agent 2’s argument, and corresponding plan, are to be used.

6 Related Work

The most directly related work is [[LO], a precursor to this book chapter, in which the
authors first used uncertainty-infused cognitive calculi to reason about the ethical
decision-making involved in the Miracle on the Hudson. Like this paper, it employed
an uncertainty system: it used strength factors [13|] whereas the present work uses
cognitive likelihood. Also, one shortcoming of the prior paper was that the Al agent
featured there was given the Hudson as a landing option from the outset. In our
subsequent work, reported herein, we show how an Al can creatively[¥| find the
Hudson on its own (i.e. by deploying a vision-based landing-site detection system
such as that presented in [23]]).

Giancola et al. [10] (and consequently, this work as well) was inspired by [8]].
This paper presented a framework intended to ensure that autonomous systemg'|
make certifiably ethically correct decisions. In particular, when no completely ethi-
cal decision is available (i.e., each possible decision will violate at least one ethical
principle), they formally verified that their system will always pick the “least unethi-
cal” choice available. They achieve this verification using exhaustive model checking
over the configuration of the world state as well as the ethical considerations in play.

However, the work has several shortcomings by our metrics; these deficiencies
are expounded and overcome in [10]. Briefly, (1) the model-checking process used
in [8]] is too slow for practical applications, (2) the formalism used, a Belief-Desire-
Intention (BDI) language, is too inexpressive, and (3) there is no conception of
uncertainty in their system. Giancola et al. [[10] also elaborates on the infeasibility
of formal verification based on model checking in general.

10 A precise account of what sort of creativity is used by the Al in reasoning to the Hudson as a
landing area is beyond the present paper. A number of increasingly impressive types of creativity
in an artificial agent are laid out in [3]. Note that at least one expert on Al and creativity, Cope,
would classify the Al described in the present paper as creative; see [7]].

1'We use the term ‘system’ in reference to the work of Dennis et al. as this is the term they use in
their own work. However, in keeping with the terminology of standard textbooks in Al [22}[17]], we
use the term ‘agent’ in our work.
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Another area of prior work is the creation of linear models for evaluating potential
landing sites [2] and trajectories [21] for Flight 1549. We applaud these works, as they
produced systems which could have given the pilots actionable data (i.e. trajectories
and landing sites to use to avoid landing in the Hudson). We envision that ultimately,
a system could be engineered which integrates the work herein with the linear models
of [2,121]], in order to generate plans that reflect relevant data gathered by an aircraft’s
instruments as well as the pilots’ beliefs and ethical concerns.

7 Conclusion

We presented a framework for Al agents to formally produce a maximally ethical plan
based on uncertain, ethically-charged beliefs. We then showed how this framework
could potentially be deployed using US Airways Flight 1549 as a case study. As with
much logic-based Al research, one major area of future work is developing methods
of integrating the framework proposed herein with the necessary components to
enable practical usage (e.g. vision systems, aircraft sensors, and connectionist Al
systems such as neural networks).
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