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Abstract

We describe our approach to building advanced synthetic
characters, within the paradigm of logic-based Al Such char-

~acters don’t merely evoke beliefs that they have various men-
tal properties; rather, they must actually have such properties.
You might (e.g.) believe a standard synthetic character to be
evil, but you would of course be wrong. An advanced syn-
thetic character, however, can literally be evil, because it has
the requisite desires, beliefs, and cognitive powers. Our ap-
proach is based on our RASCALS architecture, which uses
simple logical systems (first-order ones) for low-level (per-
ception & action) and mid-level cognition, and advanced log-
ical systems (e.g., epistemic and deontic logics) for more ab-
stract cognition. To focus our approach herein, we provide a
glimpse of our attempt to bring to life one particular advanced
synthetic character from the “dark side” — the evil charac-
ter known simply as E. Building E entails that, among other
things, we formulate an underlying logico-mathematical def-
inition of evil, and that we manage to engineer both an ap-
propriate presentation of E, and communication between E
and humans. For presentation, which we only encapsulate
here, we use several techniques, including muscle simula-
tion in graphics hardware and approximation of subsurface
scattering. For communication, we use our own new “proof-
based” approach to Natural Language Generation (NLG). We
provide an account of this approach.

The Dearth of Al in AI

There’s an unkind joke — which made the rounds (e.g.) at
the Fall 2004 AAAI Fall Symposium on Human-Level Al —
about the need to create, within Al, a special interest group
called “AT’. This kind of cynicism springs from the not un-
common, and not totally inaccurate, perception that most of
Al research is aimed at exceedingly narrow problems light
years away from the cognitive capacities that distinguish hu-
man persons.!

Human-level Al is now so unusual that an entire upcom-
ing issue of Al Magazine will be devoted to the subject —
a bit odd, given that, at least when the field was young,
AT’s journal of record would have routinely carried papers

*The R&D described in this paper has been supported in part
by much appreciated grants from AFRI.-Rome and DARPA-IPTO.
! An endless source of confirming examples can be found in the
pages of the Machine Learning journal. The dominant learning
technique that you yourself employ in striving to learn is reading;

* witness what you’re doing at the moment. Yet, a vanishingly small

amount of R&D on learning is devoted to getting a computer pro-
gram to learn by reading.
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on mechanizing aspects of human-level cognition. Seminal
Al thinkers like Simon, Newell, Turing — these researchers
didn’t shy away from fighting to capture human-level intelli-
gence in machine terms. But now their attitude seems mori-
bund.

But gaming, simulation, and digital entertainment (and
hereafter we refer simply to ‘gaming’ to cover this entire
field/market), thankfully, are different: wiltimately anyway,
they call for at least the appearance of human-level Al
(Bringsjord 2001). (On a case-by-case basis, as various
games show (e.g., The Sims (Electronic Arts Inc. 2000)), a
non-advanced character will of course do just fine.) Gaming
doesn’t strive just for a better SAT-based planner, or another
tweak in a learning algorithm that doesn’t relate in the least
to human leaming. A SAT planner doesn’t constitute a vir-
tual person. But that’s precisely what we want in gaming, at
least ultimately. “And even in the short term we want char-
acters that at least seem human. Methodologically speaking,
gaming’s best bet for characters that seem human is to bite
the bullet and strive to engineer characters that have what it
takes to De human. This, at least, is our strategy.

Gaming and Full-Blown Personhood

Now, there are various ways to get clearer about what gam-
ing, at least in the long-term, needs when it comes to human-
level intelligence. One way is to say simply that gaming
needs artificial creatures which, behaviorally at any rate, sat-
isfy one or more plausible proposed definitions of person-
hood in the literature. One such definition has been pro-
posed by Bringsjord in (Bringsjord 1997). This definition
essentially amounts to the view that z is a person if and only
if = has the capacity

1. to “will,” to make choices and decisions, set plans and projects
— autonomously.

2. for consciousness, for experiencing pain and sorrow and happi-
ness, and a thousand other emotions — love, passion, gratitude,
and so on;

3. for self-consciousness, for being aware of his/her states of mind,
inclinations, preferences, etc., and for grasping the concept of
him/herself;

4. to communicate through a language;

5. to know things and believe things, and to believe things about
what others believe, and to believe things about what others be-
lieve about one’s beliefs (and so on);

6. to desire not only particular objects and events, but also changes
in his or her character;




7. to reason (for example, in the fashion exhibited in the writing
and reading of this very paper).

Unfortunately, this list is daunting, especially if, like us,
you really and truly want to engineer a virtual person in
the short term. A large part of the problem is conscious-
ness, which we still don’t know how to represent in third-
person machine terms (Bringsjord 1998; Bringsjord 2001).
But even if we leave aside consciousness, the rest of the
attributes in the above list make for mighty tough chal-

_lenges. In the section “Making the Challenge of Person-

-hood Tractable” we shall retreat from this list to someting
doable in the near term, guided by particular scenarios that
make natural homes for E. But in the end, whatever appears
on this list is an engineering target for us; in the long term
we must confront each clause. Accordingly, in the section
“How Does E Talk?” we explain how we are shooting for
clause 4, communication. We have made progress on some
of the other clauses, but there is insufficient space to present
that progress herein. Clause 5 is one we believe we have
pretty much satisfied, via the formalization and implemen-
tation given in (Arkoudas & Bringsjord 2005).”

Current State of the Art versus Computational
Persons

Synthetic Characters in Gaming

What's being done now in gaming, relative to full-blown
personhood, is clearly inadequate; this can be quickly seen
by turning to some standard work: Figure 1 shows an array
of synthetic characters from the gaming domain; these will
be familiar to many readers.’

None of these creatures has anything close to the distin-
guishing features of personhood. Sustained treatments of
synthetic characters and how to build them are similarly lim-
ited. For example, consider Figure 2, taken from (Cham-
pandard 2003).* As a mere FSA, there is no knowledge and
belief, no reasoning, no declarative memories, and no lin-
guistic capacity. In short, and this is perhaps a better way of
putting the overall problem infecting todays’s virtual char-
acters, all of the cognitive capacities that distinguish human
persons, according to the science of cognition (e.g., (Gold-
stein 2005)), are missing. Even the state of the art using cog-
nitive architectures (e.g., SOAR) is primitive when stacked
against full-blown personhood (Ritter ef al. June 2002).

A preprint is available online at
hitp://kryten.mm.rpi.edw/arkoudas bringsjord.clima.crc. pdf.

3Worst to best, in our eyes: Top-left, The Legend of Zelda; SC
spits text upon entering room. Top-right, Chrono Trigger: tree-
branching conversations. Middle-left, Might & Magic VI (Shop-
keepers). Middle-right, Superfly Johnson from Daikatana; behav-
jor scripting, attempts to follow player and act as a sidekick (fails!).
Bottom-left, Galatea — Interactive Fiction award winner for Best
NPC of 2000 (text-based). Bottom-right, Sims 2. But even here,
nothing like what our RASCALS architecture has is present.

“This is an excellent book, and it’s used in our lab for building
synthetic characters. But relative to the loftier goals of reaching
bona fide personhood in artificial characters, there’s clearly a lot of
work to be done.

Figure 1: Sample Synthetic Characters

What About Synthetic Characters in Cutting Edge
Research?

What about research-grade work on synthetic characters?
Many researchers are working on synthetic characters, and
have produced some truly impressive systems. However,
all such systems, however much they appear to be human
persons, aren’t. We now consider three examples of such
work, and show in each that the character architectures
don’t have the underlying cognitive content that is necessary
for personhood.

REA

An agent developed by (Cassell et al. 1999) known as REA
is an example of a successful, robust agent whose developers
focused primarily on embodied conversation and the conver-
sational interface. She is described as being an expert in the
domain of real estate, and interactions with REA are_both
believable and informative. _

REA, however, is representative of many of the indus-
try’s most successful agents in that she excels at content
management, but fails to deliver rich emotive and cognitive
functionality. REA, after all, cannot generate English from
arbitrary underlying knowledge. Like many of her peers,
REA’s underlying cognitive capabilities are modeled in
an ad-hoc fashion. Her personality is in no way defined;
her interactions within a particular sitwation lack subtlety
and depth. While she excels as a simulated character and
a conversational agent, she is bereft of the rich cognitive
content with which advanced synthetic characters must
behave.

The BEAT Architecture
In an engaging paper (Gratch et al. 2002), Gratch and
colleagues present an architecture for developing rich syn-
thetic characters. This architecture is known as the Behavior
Expression Animation Toolkit Text-to-Nonverbal Behavior
Module (BEAT). Under this architecture, emotion and cog-
nitive content are produced systematically in a simulation-
based approach.

Their simulation-based approach is built on top of ap-
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Figure 2: Impoverished Formalism for Synthetic Characters

praisal theories of emotion, where emotions emerge from
analysis of events and objects in a particular domain with
respect to the agent’s goals, standards, and attitudes. But
as Gratch et al themselves point out, appraisal theories “are
rather vague about the assessment process...A promising
line of research is integrating Al-based planning approaches,
which might lead to a concretization of such theories.” We
will present the RASCALS paradigm as one that utilizes pre-
cisely the Al-based planning techniques Gratch et al. regard
as promising.

Unfortunately, while Gratch and colleagues make won-
derful advancements in the logistics of realizing agents,
the issue of developing rich underlying cognitive content
is eschewed. Even assuming that their simulation-based
approach utilizes robust Al-based planning, the focus is
not on developing true cognitive content but rather on its
simulation and modeling.

Believable Interactive Embodied Agents

An approach more focused on building believable characters
was proposed by (Pelachaud & Poggi 2002). They argue that
research should include three distinct phases:

¢ Phase 1: Empirical Research. This phase involves research
“aimed at finding out the regularities in the mind and behavior
of Human Agents, and at constructing models of them.”

e Phase 2: Modeling Believable Interactive Embodied Agents.
Here, “rules are formalized, represented, and implemented in
the construction of Agents.”

¢ Phase 3: Evaluation. Finally, agents are tested on several levels,
including “how well they fit the User’s needs and how similar
they look to a real Human Agent.”

The “rule formalization™ characterized in Phase 2 is, as
Pelachaud and Poggi point out, indispensable when building
believable characters. Since such rule formalizations are all
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CXpressible 1n hirst-order logic, thewr approach is actually a
proper subset of the RASCALS approach. But formalizing
and implementing rules is not enough to achieve true cog-
nition; after all, cognition involves much more than simple
rules/first-order logic. Iterated beliefs are beyond the reach
of first-order logic. Finally, while Pelachaud and Poggi elab-
orate on linguistic rules and formalizations, they fail to men-
tion anything about modeling cognition or interacting with a
given knowledge base, and they make no remarks concern-
ing the logistics behind rule formalization and implementa-
tion. The agents described therein all possess rudimentary
cognitive content but come nowhere close to true cognitive
or emotive capacity.

Making the Challenge of Personhood
Tractable

How can we make the challenge of engineering a virtual
person tractable in the very short term? Qur lab has a two-
part answer. First, assimilate everything out there regarding
the craft of making viewers and users believe that the syn-
thetic character they interact with is a genuine person. This
is the same route that was followed by Bringsjord and Fer-
rucci in the design of the BRUTUS story generation system
(Bringsjord & Ferrucci 2000). In a nutshell, B&F studied
the literature on what responses are desired in readers by
clever authors, and then reverse engineered back from these
responses to a story generation system that triggers some of
them. In connection with synthetic characters, this general
strategy has impelled us to build up a large library on the
design of synthetic charaters in stories and movies. In ad-
dition, we have built up a library of characters in film —
specifically one that specializes in candidates for true evil.
Within the space we have herein, however, this general strat-
egy, and the results so far obtained, can’t be presented. So
we will settle here for a shortcut; it’s the second part of our
two-part answer. The shortcut is to work from concrete sce-
narios backwards by reverse engineering. We currently have
two detailed scenarios under development. One is based on
the evil people whose personalities are revealed in conversa-
tions in (Peck 1983); we leave this one aside for now. The
second scenario, which is part of R&D undertaken in the
area of wargaming, can be summarized as follows. (At the
conference, we would provide a demo of conversation with
E regarding the first of these scenarios, where that conver-
sation conforms to our account of evil; see On our Formal
Account of Evil )

E in Scenario 2, and Inference Therefrom

Let us imagine a man named simply E, a brutal warlord in
a war-tom country. E is someone you’re going to have to
vanquish. He has moved up the ranks of the underworld
in post-apocalyptic America after “success” in many, many
murderous missions. E has taken a number of prisoners from
an organization (let’s call it simply O) he seeks to intimidate.
O is chosen specifically because it is trying to rebuild the
fractured US in the direction of a new federal governing.
Conforming to what has unfortunately become a gruesome
pattern, E decides to film the beheading of one of these poor
prisoners, and to release the video to O.

*Coincidentally, we have recently learned that the game Shat-
tered World for the XBox is related to our scenario.




Given just this small amount of information, what can we
infer about E’s knowledge and reasoning? That it has at least
the following six attributes:

I. Mixed Representation. E’s knowledge is not simply linguistic
or symbolic in nature. It includes visval or pictorial knowledge
as well. For example, E clearly is thinking in terms of mental
images, because he plans to gain leverage from the release of
images and video. In addition, though it isn’t pleasant to con-
template, E certainly has a “mental movie” that he knows he can
turn into real life: he envisions how such executions work before
performing them.

]

. Tapestried. Presumably E’s knowledge of his prisoners is rel-
atively new. But this new knowledge is woven together with
extensive prior knowledge and belief. For example, in E’s case,
he has extensive knowledge of O, and its principles regarding
treatment of prisoners.

. Extreinte Expressivity. E’s knowledge and reasoning requires
highly expressive propositions. For example, he believes that O
believes that it is universally forbidden to execute prisoners, and
he believes that some of those aiding the United States’ rebuild-
ing effort will be struck with fear once the execution is complete
and suitably publicized, and that that fear will affect their beliefs
about what they should and shouldn’t do.

4. Mixed Inference Types. E’s reasoning is based not only on de-
ductive inference, but also on educated guesses (abduction), and
probabilistic inference (induction).

[9¥]

5. Uses Natural Language. E communicates in natural language,
with his cemrades, and with others as well.

6. Multi-Agent Reasoning. E is of course working in coordinated
fashion with a number of accomplices, and to be effective, they
must reason well as a group.

‘Working within the paradigm of logic-based Al (Bringsjord
& Ferrucci 1998a; Bringsjord & Ferrucci 1998b; Nilsson
1991; Genesereth & Nilsson 1987), and using the MARMML
knowledge representation and reasoning system, which is
based on: the theory known as mental metalogic (Yang
& Johnson-Laird 2000a; Yang & Johnson-Laird 2000b;
Yang & Bringsjord 2005; Rinella, Bringsjord, & Yang 2001;
Yang & Bringsjord 2001a; Yang & Bringsjord 2001b; Yang,
Braine, & O’Brien 1998), the Denotational Proof Language
known as Athena (Arkoudas 2000), Barwisean grids for di-
agrammatic knowledge and reasoning (see the mathemati-
cal section of (Barwise & Etchemendy 1995)), and RAS-
CALS®(see Figure 3), a revolutionary architecture for syn-
thetic characters, we are building a virtual version of E that
has the six attributes above.

Brief Remarks on the RASCALS Architecture

Let us say a few words about RASCALS, a brand new en-
try in the field of compuational cognitive modeling, which
revolves around what are called cognitive architectures
(e.g., SOAR (Rosenbloom, Laird, & Newell 1993);, ACT-
R (Anderson 1993; Anderson & Lebiere 1998; Anderson &
Lebiere 2003); CLARION (Sun 2001); Polyscheme (Cas-
simatis 2002; Cassimatis er al. 2004)). What makes the
RASCALS cognitive architecture distinctive? There is in-
sufficient space here to convey any technical detail (for more
details, see (Bringsjord forthcoming)); we make just three
quick points about RASCALS, to wit:

®Rensselaer Advanced Synthetic Character Architecture for
Logical Systems

Figure 3: RASCALS: Rensselaer Advanced Synthetic
Character Architecture for Logical Systems

o All other cognitive architectures we know of fall far short
of the expressive power of RASCALS. For example,
SOAR and ACT-R struggle to represent (let alone reason
quickly over) textbook problems in logic (e.g., the Wise
Man Problem = WMP) but in RASCALS such representa-
tions are effortless (see (Arkoudas & Bringsjord 2005) for
the solution to WMP in Athena, included in RASCALS).

e The great challenge driving the field of computational
cognitive modeling (CCM) is to unify all of human cogni-
tion; this challenge can be traced back to the birth of CCM
in the work of Newell 1973. Such unification is achieved
in one fell swoop by RASCALS, because all of cognition
can be formalized and mechanized in logic (though do-
ing so requires some very complicated logics well beyond
first-order logic, as in (Arkoudas & Bringsjord 2005)).”

e While logic has been criticized as too slow for real-time
perception-and-action-heavy computation, as you might
see in first-person shooter (as opposed to a strategy game,
which for obvious reasons fits nicely with the paradigm of
logic-based Al), it has been shown that RASCALS is so
fast that it can enable the real-time behavior of a mobile
robot. We have shown this by having a logic-based mobile
robot successfully navigate the wumpus world game, a

It will naturally occur to some skeptics to enquire about
traditional-style learning, and speech recognition. As to the former,
it’s well-known that there are logic-based approaches to divining a
function f by repeated trial; see, e.g., (Russell & Norvig 2002).
There are also well-known knowledge-based (which become, in
RASCALS, more formal, logic-based) techniques for learning:
EBL, RBL, etc.; again, see (Russell & Norvig 2002) for a survey.
Of course, RASCALS does reject purely statistical and probabilis-
tic approaches to learning (and other cognitive phenomena). That
seems quite unsurprising, since statistical approaches in Al rou-
tinely reject, to their peril, declarative/logic-based techniques. As
to the latter problem, RASCALS insists that all language be rep-
resented in logical form, and Bringsjord concedes that this is cur-
rently not achieved, nor even on the horizen. However, with respect
to natural language understanding, all researchers, whatever their
approach, are currently in the same dismal boat.



staple in Al (See Figures 4 and 5.)

Hunt the Wumpus

Figure 4: The Wumpus World Game

Solid Performance
Based on Logic

%2 3x3 Awd

%5 b6

Figure 5: Performance of a RASCALS-Powered Robot in
the Wumpus World

To show part of the underlying structure of E in con-
nection with the attribute Extreme Expressivity, we now
present an informal version of the formal account of evil
that is implemented in our RASCALS architecture. This ac-
count specifically requires logics expressive enough to han-
dle knowledge, belief, and ethical concepts. These logics go
well beyond first-order logic; details and an implementation
can be found in (Arkoudas & Bringsjord 2005). In the sec-
tion “E: The Presentation Level” we explain the technology
that allows E to speak naturally in English; that is, we show
there part of the underlying structure of E associated with
Uses Natural Language.

On our Formal Account of Evil

If we charitably push things in the direction of formally rep-
resenting a definition of evil,® then we can understand Fein-

s'Feinljerg’s work is informal, and not suitable for direct use in
Al and computer science.

35

berg 2003 as advancing pretty much this definition:

Def 1 Person s is evil iff there exists some action a” such that

performing a is morally wrong;

s is morally blameworthy for performing a;

s’s performing a causes considerable harm to others; and

. the reasons or motives for s’s performing a, along with
“the elements that ground her moral blameworthiness,”
are unintelligible.

L R N

A

This is a decent starting place, but for us there are prob-
lems. For example, imagine that E invariably fails to cause
actual harm. Surely he would still qualify as evil even
if he were a bumbling villain. (If the knife slipped when
he attempted decapitation, he would still be just as black-
hearted.) This means that clause 3 should at least be replaced
by

3’. s performs a in the hopes of causing considerable harm
to others

But even this new definition, for reasons we don’t have
space to explain, is wholly inadequate. To give just a flavor
for what E is currently based upon, we present simply our
current best replacement for clause 4:

4" were s a willing and open participant in the analysis of
reasons and motives for s’s seeking to perform a, it would
be revealed that either
(i) these reasons and motives are unintelligible, or
(i1) s seeks to perform a in the service of goal g, and

(a) the anticipatable side-effects e of performing a are
bad, but s cannot grasp this, or

(b) g itself is appraised as good by s when it is in fact
bad.

Just this clause alone required much sustained analysis. (For
a full chronicle of the evolution of a formally refined defini-
tion of betrayal from a rough starting one, see the chapter
“Betrayal” in (Bringsjord & Ferrucci 2000).)

Keep in mind that this is still informal, kept that way in the
interests of easing exposition. In the RASCALS-based im-
plementation of E, evil must be expressed in purely formal
form, which requires, again, that we use advanced logics of
belief, knowledge, and obligation.!?

Keep in mind as well that we’re not claiming that we have
the perfect definition of evil. Some may object to our defi-
nition, and some of their objections may be trenchant. But
the important point is to see how rich evil is — to see that it
involves all kinds of highly cognitive powers and concepts
that simply aren’t found in today’s synthetic characters. To
be evil, one has to have beliefs, desires, and one has to have
a lot of knowledge. The detailed configuration of these el-
ements may not be exactly as we claim they ought to be,
but no one can deny that the elements are needed. Without
them, a synthetic character who is supposed to be evil is only
a fake shell. And in the end, the shell will be revealed to be
a shell: the illusion, at some point, will break down.

°0Or omission.

1For a look at the deontic logic (i.e., the logic of ethical con-
cepts) we are relying upon, see (Horty 2001). Our mcchanjzatior}
of this this logic will be presented at the AAAI November 2005
Fall Symposium on Machine Ethics. The paper is available online
at http://kryten.mm.rpi.edu/FS605 ArkoudasAndBringsjord.pdf.




How Does E Talk?
As everyone knows, once the d_aunting chal_]enge of ‘render-
ing consciousness in computational tems is put aside, the
greatest remaining challenge is that of giving an advanced
synthetic character the power to communicate in a natural

. language (English, French, etc.) at the level of a human per-

son. As you’ll recall, communicative capacity is one of the
clauses in the definition of personhood presented above. A
plausible synthetic character must necessarily communicate
in a fluid, robust manner. How, then, is such a rich form of
communication implemented in E?

Reconciling Knowledge Representation and NLG

E speaks by parsing and processing formal knowledge; he
develops an ontology based on internal and external queries,
and then reasons over his knowledge to produce meaningful
content. This content is then sent to his NLG module, trans-
lated into English, and finally presented to the user. Before
we examine what goes on inside E’s NLG module, let’s take
amoment to examine how E produces “meaningful content.”
When we ask E a question, we are clearly interested in
an answer that is both relevant and meaningful, an answer
indistinguishable from those given by a real person. Assum-
ing we have incomplete knowledge, suppose we ask of E,
“Is John dangerous?” E approaches this question through
formal logical analysis. The idea is to have E determine
incontrovertibly whether John is dangerous or not. So, for
instance, suppose E’s knowledge base includes the follow-
ing three facts:
L. DANGERQUS PEOPLE HAVE AUTOMATIC WEAPONS.
2. JoHN HAS A BERETTA AR-70 ASSAULT RIFLE.

3. THE BERETTA AR-70 ASSAULT RIFLE IS AN
AUTOMATIC WEAPON.

None of the information above explicitly tells E whether
John is dangerous or not, but clearly, when presented
the above query, we want E to answer with an emphatic
“Yes.” Still, the answer itself is not enough. To ensure
that E understands the nature of the question as well as
the information he is dealing with, he must, upon request,
provide a justification for every answer. The justification
presented to the user is a formal proof, translated into
English. Thus, E could answer as follows:

JOHN I5 IN FACT DANGERQUS BECAUSE HE HAS
A BERETTA AR-70 ASSAULT RIFLE. SINCE A
BERETTA AR-70 ASSAULT RIFLE IS AN AUTOMATIC
WEAPON, AND SINCE DANGEROUS PEOPLE HAVE
AUTOMATIC WEAPONS, IT FOLLOWS THAT JOHN IS
DANGEROUS.

Content is thus generated in the form of a formal proof. In
general, the proofs generated will be more complex (they
will use larger knowledge bases) and more sophisticated
(they will use deontic and epistemic logic).

While the example is simple and rudimentary (that is, it
makes use of only first-order logic and a small knowledge
base), it demonstrates that E is taking heed of his knowledge
to generate a meaningful reply. In the RASCALS architec-
ture, answering *“Yes” to the query above implies that E must
in fact have the corresponding knowledge, an implication
that does not hold for other architectures.

For a2 more formal method of analysis, we introduce
the “Knowledge Code Test”: If synthetic character C says
something X or does something X designed to evoke in
the mind of the human gamer/user the belief that €' knows
Py, P, ..., then we should find a list of formulas, or the
equivalent, corresponding to P;, P, ... in the code itself.
The characters in Figure 1 would fail such a test, as would
characters built on the basis of Champandard’s specifica-
tions. An FSA, as a matter of mathematical fact, has no
storage capability. A system with power that matches that of
a full Turing machine is needed to pass the Knowledge Code
Test (Lewis & Papadimitriou 1981).

But formal proofs are oftentimes too detailed to be of in-
terest. Before we can even begin translating a proof into
an English justification, we need verify that its level of ab-
straction is high enough that it is easy to read and under-
stand. After all, formal natural deduction proofs are difficult
and tedious to read. To represent proofs at a more wholis-
tic, abstract level, we utilize the denotational proof language
known as Athena (Arkoudas 2000). Athena is a program-
ming language, development environment, and interactive
proof system that evaluates and processes proofs as input.
Its most prominent feature is its ability to present proofs in
an abstract, top-level manner, isomorphic to that of a natu-
ral argument a human might use. By developing proofs in
Athena at this level, a level high enough to be of interest to
a human reader, we can be sure that the language generated
from our NLG module is at precisely the level of abstraction
we desire — neither too detailed nor too amorphous.

It’s now time to look at precisely how English is generated
from a formal proof,

Proof-based Natural Language Generation

Very few researchers are experimenting with the rigorous
translation of formal proofs into natural language!!. This is
particularly odd when one considers the benefits of such a
program. Natural deduction proofs, provided that they are
developed in a sensible manner, are already poised for ef-
ficient translation. They require absolutely no further doc-
ument structuring or content determination. That is, docu-
ment planning, as defined by (Reiter & Dale 2000), is com-
pletely taken care of by using formal proofs in the first place.

Our NLG module receives as input a formal proof and re-
turns as output English text. The English generated is an
isomorph of the proof received. The structure of the Justi-
fication, then, is precisely the same as the structure of the
proof. If the justification uses reductio ad absurdum in the
middle of the exposition, then you can be sure that there’s a
proof by contradiction in the middle of the formal proof.

Formal proofs are constructed from various different sub-
proofs. A proof by contradiction is one such example of
a type of subproof, but there are of course many others,
Our system breaks a proof down to its constituent subproofs,
translating each subproof from the top down. For example,
assume the following:

l. CHICAGO IS A TARGET OR NEW YORK I5 &
TARGET

" An example of one such team is a research group at the Uni-
versity of Saarlande. The group had, at least until 1997, been devel-
oping a system called PROVERB (Huang & Fiedler 1997). Their
approach to proof-based translation was unique and extremely in-
fluential, though their project was largely unsuccessful.




2. IF CHICAGO IS A TARGET,

3. IF NEW YORK 15 A TARGET, MILLIONS WILL

DIE.

To deduce something meaningful from this information,
we’ll use a proof by cases. Our system translates this proof
form as follows:

RECALL THAT CHICAGO OR NEW YORK IS & TARGET.
EACH CASE PRODUCES THE SAME CONCLUSION; THAT
1S, IF CHICARGO IS A TARGET THEN MILLIONS
WILL DIE, AND IF NEW YORK IS & TARGET THEN
MILLIONS WILL DIE. IT FOLLOWS THAT MILLIONS
WILL DIE.

Predictably, documents produced in this manner, even
when presented at a level abstract enough to make sense
to a layperson, are rigid and, well, inhuman. They use the
same phrases over and over again, they lack fluidity, and
they are completely divorced of grace and wit. To boot,
they disregard contextual information. Merely translating
constituent subproofs to English will not produce natural
English.

Nevertheless, this methodology provides a foundation for
more sophisticated development. Once constituent sub-
proofs are translated properly, they are sent to a microplan-
ning system that maps particular subproofs to discourse rela-
tions (Hovy 1993). This mapping is known as a message and
is not isomorphic. While the structure of the overall proof
is preserved in the final document, individual subproofs are
not treated with the same stringency. They can be molded
and fitted to a number of different discourse relations for the
sake of fluidity. Two more steps remain before natural lan-
guage can be produced.

Lexicalization is the process by which a lexicon of
words is selected and mapped onto its symbolic coun-
terparts. The content implicit in the proof, structured
through subproof analysis and discourse relations, needs
to be lexicalized before it can be presented as English
text. That is, exact words and phrases must be chosen
to represent relationships and predicates. For instance,
TARGET (CHICAGO) must be translated to Ci1caco Is
A2 TARGET and BERETTA (Joun) must be translated to
JoHN HAS A BERETTA before we can move on to glu-
ing everything together. The only way this can happen is
if a lexical database such as WordNet (Miller 1995) is aug-
mented with domain-specific lexicalizations such as those
specifying how to lexicalize “Beretta AR-70.

For even more fluidity, it’s necessary to avoid referring to
the same entities with the same phraseology. At the very
least, pronouns should be substituted when referring to re-
peated concepts, persons, places, and objects. These substi-
tutions are known as referring expressions, and need to be
generated to truly produce fluid, humanlike English.

Fortunately, once the above issues are resolved, the infor-
mation gathered therein can be plugged easily into a surface
realizer such as KPML (Bateman 1997). In this fashion,
proof-based NLG allows for the generation of both struc-
tured and expressive expositions.

How far can an approach to NLG based on logic go? What
about rhetorical structure, for example? The engineering of
E reflects a belief that all of NLG, in the context of an ad-
vanced synthetic characters, can indeed be achieved through

MILLIONS WILL DIE.
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" " the mechanization of sufficiently complex logical systems.

Only time will tell if this approach has the necessary breadith,
but rhetorical structure seems particularly well-suited to cap-
ture in logic. Of note here is the fact that it was logic that
dictated including the present paragraph.

E: The Presentation Level

To concretize our thoughts on evil, we show E; a realistic
real-time presentation of an evil talking head in the formal
sense. In order to give E a realistic look and a range facial
expressions, we have created a muscle model of the face.
Each simulated muscle in our model can contract and this
contraction perturbs the vertices of the skin (E is rendered
as a triangle mesh.) The effect of muscle simulation is sup-
plemented by limited use of morph target based animation
for some fine details. In addition, specialized actions are
used to animate the eyes, jaw, and neck.

Prior Work

There have been several recent efforts in the presentation of
talking heads. A VRML based approach shown by (Breton,
Bouville, & Pel 2001) addresses all aspects of facial anima-
tion working in real-time, but for very low polygon models.
The face is parameterized in a simplified manner similar to
E.

A more complex, physics-based system is described in
(Albrecht, Haber, & Seidel 2002). Here the focus is on lip
synchronization and simulation of the mouth and lips. Other
aspects of the face are not specifically addressed.

Our muscle simulation is based largely on that presented
in (Waters 1987), (Parke & Waters 1996), and expanded
upon in (Bui, Heylen, & Nijholt 2003). We chose to work
from the Waters model because we feel it is most practi-
cal for real-time applications and implementation and pro-
grammable graphics hardware. We simulate two types of
muscles.

Linear Muscles

Linear muscles contract along a single axis, and are parame-
terized by five values. The points O and T define the origin
and terminus of the muscle respectively. The scalar F' de-
fines the radius from O where the effect of muscle contrac-
tion begins to decline. The angle Z defines the angle about
O where the muscle affects the skin. Finally, the scalar W
gives the distance between wrinkles that form as the muscle
contracts.

We define a vertex shader (implemented in HLSL) that
modifies the position of skin vertices based on muscle con-
tractions. For a linear muscle this shader computes three
values. Given a vertex at position P with normal N, the
angular displacement, D 4, is:

min(1l — (norm(P — O), norm(T — O) x C,0)

C is the muscle contraction in the above equation. The
radial displacement, Dp, is:

_ [clamp(len(P — 0) = F,0,len(T = 0) = F)]*
(len(T — O) — F)
Finally, the wrinkle offset, Dy, is:
1 — fmod(len(P — O), W) — (W x0.5))?
(W %0.5)2

1




We combine all these values to determine the final vertex
displacement:

(C* DA * DR) + (Du.r * f\r)

Many of the values in the above equations can be pre-
computed before the vertex shader executes. The resulting
implementation uses about 30 shader instructions.

Sphincter Muscles

Sphincter muscles draw together in circular shape and we
use them to model the puckering lips and squinting eyes.
A sphincter muscle is parameterized by an origin O, and a
horizontal and vertical extent, H and V respectively. In the
vertex shader the contraction of sphincter muscles displace
vertices in the following manner:

Ira 2 r 2 A
D2 xV?)+ (D2 + H?
sty (DR V2 + (D] + );,0}*0

H*V

In the above equation, D is the vector from a skin vertex
to the origin of the muscle.

Putting It All Together

Each facial expression, be it a viseme used in speech or an
emotional state, is described in terms of muscle contractions.
To specify those contractions and drive E’s facial animation
systems, we use a very simplified scripting system for trig-
gering named expressions at specified times with specified
intensity values and blending parameters. We use the data
from (Bui, Heylen, & Nijholt 2004) to prevent physically
impossible muscle contractions. A parameterization for the
tongue similiar to (King 2001) is used. A module for eye
movements implements many of the ideas presented in (Lee,
Badler, & Badler 2002). Finally, we simulate subsurface
scattering on the skin using the algorithm of (Sander, Gos-
selin, & Mitchell 2004).

Figure 6: Tool for Manipulating Facial Muscles on E. (Note:
Face shown resembles E’s, but isn’t his. E himself will be
unveiled at the conference.)

Our Demos @ GameOn!

As mentioned above, at the conference we will show a con-
versation with E based on the first of the two aforementioned

scenarios. This interaction will show our approach to the
presentation level in action, and will manifest our formal ac-
count of evil in ordinary conversation that is based on our
NLG technology.
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