
UNCORRECTED
PROOF

Chapter 8 1

Ethical Operating Systems 2

Naveen Sundar Govindarajulu, Selmer Bringsjord, Atriya Sen, 3

Jean-Claude Paquin, and Kevin O’Neill 4

Abstract A well-ingrained and recommended engineering practice in safety- 5

critical software systems is to separate safety concerns from other aspects of the 6

system. Along these lines, there have been calls for operating systems (or computing 7

substrates, termed ethical operating systems) that implement ethical controls in 8

an ethical layer separate from, and not amenable to tampering by, developers 9

and modules in higher-level intelligence or cognition layers. There have been no 10

implementations that demonstrate such a marshalling of ethical principles into an 11

ethical layer. To address this, we present three different tracks for implementing 12

such systems, and offer a prototype implementation of the third track. We end by 13

addressing objections to our approach. 14

Keywords Ethical machines · Ethical operating system · Deontic cognitive event 15

calculus · Ethical layer · Doctrine of double effect 16

N. S. Govindarajulu (�)
Department of Cognitive Science, Department of Computer Science, Rensselaer AI & Reasoning
(RAIR) Lab, RPI, Troy, NY, USA

S. Bringsjord
Department of Computer Science, Department of Cognitive Science, RAIR Lab, Lally School of
Management, RPI, Troy, NY, USA

A. Sen
RAIR Lab, Department of Computer Science, RPI, Troy, NY, USA
e-mail: atriya@atriyasen.com

J.-C. Paquin · K. O’Neil
RAIR Lab, RPI, Troy, NY, USA
e-mail: paquij@rpi.edu; oneilk4@rpi.edu

© The Editor(s) (if applicable) and The Author(s) 2018
L. De Mol, G. Primiero (eds.), Reflections on Programming Systems, Philosophical
Studies Series 133, https://doi.org/10.1007/978-3-319-97226-8_8

235

mailto:atriya@atriyasen.com
mailto:paquij@rpi.edu
mailto:oneilk4@rpi.edu
https://doi.org/10.1007/978-3-319-97226-8_8

UNCORRECTED
PROOF

236 N. S. Govindarajulu et al.

8.1 Introduction 17

Suppose that r is an intelligent, autonomous, robot whose range of human-impacting 18

actions in the environment is wide and substantive. Govindarajulu and Bringsjord 19

(2015) have explained and defended, at length, the following two-part position: 20

P1 r will need to be ethically controlled; and 21

P2 such control cannot be achieved by merely installing high-level modules that monitor the 22

ethical status of r’s actions, but rather only by infusing the OS of r with computational 23

logics of the right sort (see Fig. 8.1). 24

To ease exposition, we assume that P1 is granted. The main rationale for P2, 25

encapsulated, is this: Unless ethical control is engineered at the operating-system 26

level, malevolent or blundering software engineers working above the OS level 27

may well disable such control. There is a simple software-engineering-motivated 28

rationale for needing ethical operating systems, as shown in Fig. 8.2. By offloading 29

the development and refinement of ethical theories,1 AI developers can focus on 30

Fig. 8.1 Two Futures—With and Without an Ethical Substrate Higher-level modules are vulnera-
ble to tampering. The Ethical Substrate protects the Robotic Substrate from rogue modules. (Figure
from Govindarajulu and Bringsjord 2015)

th
is

fig
ur

e
w

ill
be

pr
in

te
d

in
b/

w

1We here use the word ‘theory’ as it is used in formal logic and mathematics; there, a theory is
any arbitrary set of formulae � (which may e.g. be the closure under deduction of some set of
core axioms). Hence, for us, an ethical theory is a set of formulae that governs ethical behavior.
Coverage of such theories ranges from the simple, such as a list of prohibitions, to the more
complex, e.g. the doctrine of double effect (discussed herein later), and beyond. Our conception

UNCORRECTED
PROOF

8 Ethical Operating Systems 237

AI Developers

Ethicists

Sensors and Actuators

Interface Layer [actions, beliefs, intentions etc.]

Fig. 8.2 The Goal: software-engineering perspective on an ethical operating system

th
is

fig
ur

e
w

ill
be

pr
in

te
d

in
b/

w

building intelligent systems and need not be concerned with the esoteric ins and outs 31

that are the bread and butter of professional philosophers and other experts. This 32

philosophical work can be assigned to those trained for such work. This approach 33

can be seen as an application of the principle of separation of concerns in Dijkstra 34

(1982).2 35

In other, directly related prior work, Bringsjord and Sen (2016) have made the 36

sustained case that, where r is specifically a self-driving car, OS-rooted ethical 37

control on the strength of the right sort of computational logics is necessary (despite 38

what sanguine car manufacturers may currently believe). Unfortunately, while we 39

claim to have in hand the required computational logics for ensuring that when 40

possible r, relative to some selected ethical theory, meets all its moral and legal 41

of an ethical theory is in the end simply a rigorization of the concept of an ethical theory as
employed by analytic ethicists, an examplar being Feldman (1978); a synoptic explanation of this
is given in Footnote 10. Our sense of ‘ethical theory,’ then, is in the end a formal version of what
systematic ethicists refer to when they discuss such ethical theories as utilitariaism, ethical egoism,
contractualism, etc.
2It is quite easy to see how Dijsktra’s principle still applies when we want to engineer ethical
machines, for we read:

We know that a program must be correct and we can study it from that viewpoint only;
we also know that it should be efficient and we can study its efficiency on another day,
so to speak. In another mood we may ask ourselves whether, and if so: why, the program
is desirable. But nothing is gained—on the contrary!—by tackling these various aspects
simultaneously. It is what I sometimes have called ‘the separation of concerns,’ which, even
if not perfectly possible, is yet the only available technique for effective ordering of one’s
thoughts, that I know of. (Dijkstra (1982), p. 60)

UNCORRECTED
PROOF

238 N. S. Govindarajulu et al.

obligations, never does what is morally or legally forbidden, invariably steers clear 42

of the invidious, and, when appropriate, performs what is supererogatory,3 to this 43

point we have not worked directly at the operating-system level in any detail, and a 44

fortiori have no demonstration that OS-rooted ethical control of r can be specified 45

and implemented. In the present contribution, we lay out a formal meta-operating 46

system and describe an embryonic implementation of it that carries a non-trivial 47

ethical component. We also end by entertaining and rebutting some penetrating 48

objections to our “meta” approach. 49

8.2 Prior Work in Ethical Control 50

We plan to be able to concretely demonstrate not only that our ethical-control calculi 51

can ensure that the robots meet their obligations to, for instance, protect life (an 52

example of which is shown in Fig. 8.3, where Bert from Sesame Street is saved in 53

the RAIR Lab from being run over by an onrushing car when the saving car deflects 54

the onrushing one), but that such morally correct behavior can be OS-rooted. In the 55

present section, however, we say a few words about prior work in ethical control of 56

robots, simpliciter. 57

There are more than a few projects for ethical control of robots based on 58

logic-based/logicist formalisms. The Deontic Cognitive Event Calculus∗, DCEC∗, 59

a quantified multi-operator modal logic, has been used to model not only obligatory 60

actions like saving Bert by deflection (again, Fig. 8.3), but also for example akrasia 61

(willful violation of one’s own self-affirmed moral principles, Bringsjord et al. 62

2014), and the doctrine of double effect (Govindarajulu and Bringsjord 2017). 63

In addition, Pereira and Saptawijaya (2016a) use a propositional logic program- 64

ming approach to model not only the doctrine of double effect, but many other 65

phenomena relevant to—as they put it—“programming machine ethics” (Pereira 66

and Saptawijaya 2016b). In addition, since any mechanization of explicit laws or 67

principles that preserves their declarative content in symbolization that is reasoned 68

over classically is fundamentally logic-based, much of the early, seminal work of 69

Arkin (2009) is by definition in the logicist paradigm. Additional early machine- 70

ethics work that is explicitly logicist includes Arkoudas et al. (2005) and Bringsjord 71

et al. (2006). And, to mention a final example of prior research, in some very 72

important work based in answer-set programming, Ganascia (2015) has tackled 73

3One calculus that enables much of this is the deontic cognitive event calculus (with provision
for modeling access/informational self-awareness), or for short DCEC∗, which has now been used
in its implemented form to guide and control the actions of a number of real-life versions of what
r denotes in the present paper; e.g. see Bringsjord et al. (2014). The earliest work of this kind
started over a decade ago (Bringsjord et al. 2006; Arkoudas et al. 2005), and has been steadily
improving—but hitherto has not been connected to operating systems. An overview of DCEC∗ can
be found at this url: http://www.cs.rpi.edu/∼govinn/dcec.pdf.

http://www.cs.rpi.edu/~govinn/dcec.pdf

UNCORRECTED
PROOF

8 Ethical Operating Systems 239

Fig. 8.3 A Demonstration of Obligation-only Ethical Control The self-driving robot to the left of
Bert would have run him over—but the other self-driving robot met its obligation by deflecting the
onrushing car, thereby keeping Bert and his acting career alive and well. The robot overhead on
the table is ethically controlled as well, but realized that it didn’t have an obligation to dive down
to save Bert

th
is

fig
ur

e
w

ill
be

pr
in

te
d

in
b/

w

the problem of using non-monotonic logic to model and resolve conflicts in ethical 74

reasoning.4 75

None of the work referred to in the previous paragraph, please note, is connected 76

to OS-level processing in any way; the same holds for research in the same vein 77

that we don’t explicitly cite. If P2 holds (refer to the beginning of Sect. 8.1), then 78

this is undesirable. This is simply an observation, one devoid of any criticism of the 79

intrinsic quality of the work itself; note that the observation is accurately made of 80

prior work in our own case. We turn now to two straightforward “tracks” that can 81

be pursued. 82

8.3 Two Possible Tracks 83

There are two possible tracks that naturally come to mind when one is looking 84

to achieve an ethical operating system. Track 1 is aimed at realistic-scale, purely 85

formal vindication of our approach to ethical operating systems. Here, in our 86

own case, we would seek to connect processing in our ethical cognitive calculi 87

to successful, real-world proof-based analysis and verification at the OS level.5 88

4See also the earlier Ganascia (2007).
5At the moment, among formally verified operating-system kernels, the clear frontrunner is
apparently seL4 https://sel4.systems. It runs on both x86 and ARM platforms, and can even run

https://sel4.systems

UNCORRECTED
PROOF

240 N. S. Govindarajulu et al.

In Track 1, our ethical-control logics would be interleaved with seL4 to form 89

what Govindarajulu and Bringsjord (2015) dub the ethical substrate, and the goal 90

would be to establish this at the conceptual/formal level first, before moving on to 91

implementation. By “interleaving” an OS with an ethical calculus, we mean: (1) the 92

combination of any formal calculus and theory used in the verification of the system 93

with the ethical calculus; and (2) use of the ethical calculus in the OS during its 94

operation. 95

Track 2 is much more concrete; in it, we are working in what can be called 96

“microcosmic” fashion, leveraging theorem proving and a formalization of a subset 97

of Common Lisp. Here we are building a miniature operating system for mobile 98

robots that run our ethical-control calculi, to regulate and control the behaviour 99

of the system. We are seeking to include these calculi in this system so as to 100

demonstrate feasibility in the self-driving-car domain.6 We are doing this for 101

miniature self-driving cars, and a key part of our work is the use of ACL2.7 See 102

Fig. 8.4. 103

Fig. 8.4 An Architecture for a Mobile Robot OS The proof system is ACL2

th
is

fig
ur

e
w

ill
be

pr
in

te
d

in
b/

w

the Linux user-space, currently only within a virtual machine. It’s also open-source, including the
proofs. These proofs can be combined with our own for ethical control. For a remarkable success
story in formal verification at the OS-level, and one more in line with the formal logics and proof
theories our lab is inclined to use, see Arkoudas et al. (2004).
6At least at the conceptual level, there is some historical precedent for at least the first steps of
what we are seeking: Flatt et al. (1999) showed that “MrEd,” while not a “bare-metal” OS, is a
Lisp-flavored virtual machine that counts as an OS.
7‘ACL2’ abbreviates ‘A Computational Logic for Applicative Common Lisp.’ The home page is:
http://www.cs.utexas.edu/∼moore/acl2.

http://www.cs.utexas.edu/~moore/acl2

UNCORRECTED
PROOF

8 Ethical Operating Systems 241

8.4 Track 3: A Blend of Tracks 1 and 2 104

We now move to the technical focus of the present paper, in the context of our 105

foregoing synopses of Tracks 1 and 2: viz., a hybrid track that marks a “blending” 106

of these two tracks. This blended approach we refer to as ‘Track 3.’ The rationale 107

for adding Track 3, and pursuing it, is fairly straightforward. This rationale begins 108

by conceding a brute fact: Engineering an operating system from the ground up, a là 109

Track 2, even when the range of coverage for the computation in question is severely 110

restricted, is a gargantuan task. At the same time, however, the formal rigor of Track 111

1 must be conceded to be attractive, and the prospect of connecting work on ethical 112

operating systems to the longstanding, excellent, and rich body of methodologies 113

and work on program verification is a very savory one.8 Track 3, if you will, enters 114

this situation and “comes to the rescue.” We are still pursuing Tracks 1 and 2, but 115

Track 3 is what we emphasize in what follows, since it allows us to quickly make 116

advances worth (at least by our lights) sharing with readers. The fact is that up until 117

now, all published work by us in the domain of ethical operating systems has been 118

abstract, and at the same time, all of our engineering work has been exclusively in 119

machine ethics, divorced from connections to operating systems. 120

In Track 3, instead of engineering an operating system from the ground up or 121

building a simple, formally-verified kernel, we look at building an ethical meta- 122

operating system. A meta-operating system is a system that runs on top of an 123

existing operating system, yet provides all the routine functions of an operating 124

system (such as managing hardware) to software that in turn runs on top of it. We 125

begin by extending our prior work in this arena by specifying a formal model for 126

a meta-operating system. In order to do that, we first need to make more precise 127

a few common and useful concepts. The first of these is the notion of software 128

components: 129

Software Components (Abstract)

We begin by assuming as primitives a set of all possible software components S. Any robotic
or computational system S, at any time t ∈ N, has an associated finite directed graph SG(t)
with nodes SN(t) and edges SE(t), with nodes n ∈ S. An edge (u, v) indicates that component
u is dependent on v. (See Fig. 8.5.)

By ‘software component,’ we mean a running software process with internal 130

states and not simply the definition or program that spawned the process. Armed 131

with the above defintion, we obtain the following straightforward view of what an 132

operating system is: 133

8For summary and references, see Bringsjord (2015b), which includes a defense of a particular
way to seek verification.

UNCORRECTED
PROOF

242 N. S. Govindarajulu et al.

Fig. 8.5 A Software System in the Abstract

Operating System (Abstract)

Given a system S, an operating system is simply the only unique component o such that for
all times t, there is a path from any component v �= o to o. A path from u to v is a sequence
of one or more edges

[
(u, p1), (p1, p2), (p2, p3), . . . , (pn−1, pn), (pn, v)

]
.a

aIn distributed systems, there can be multiple such components.

The definition immediately below states that a meta-operating system m is a 134

software component dependent on another component, the underlying operating 135

system o; and the rest of the components are transitively dependent on the meta- 136

operating system m. In other words, the meta-operating system is simply another 137

software component that sits between an operating system and all other components 138

in a systen. ROS (the Robot Operating System) and Player/Gazebo (Vaughan et al. 139

2003) in the robotics domain are two such prominent meta-operating systems. 140

Intuitively, a meta-operating system can be thought of as an interface to another 141

underlying operating system.9 142

Meta-Operating System (Abstract)

Given a system S, for all times t, a meta-operating system is a software component m such
that there is a component o (the underlying operating system that m uses) such that:

(m, o) ∈ SE (t) and ∀o′ · ∃t′ · (m, o′) ∈ SE
(
t′
) → o = o′

but for all v �= o and v �= m, there is a path from v to m

Though meta-operating systems such as ROS and Player/Gazebo differ quite a 143

bit, the above semi-formal definition roughly captures the intended notion. As we 144

mentioned above, though there have been calls for ethical operating systems and 145

arguments for why such systems are needed, there has been very little work in either 146

formal or real systems. In the rest of the paper, we present an ethical meta-operating 147

9The definition that immediately follows does not distinguish between virtual operating systems
and meta-operating systems and does not account for nested meta-operating systems.

UNCORRECTED
PROOF

8 Ethical Operating Systems 243

system accompanied by an implementation. While the system is quite simple, it is 148

concrete and available for researchers to experiment with and extend. We have the 149

following informal definition for what constitutes an ethical operating system: 150

Ethical Operating System Informal Requirement

An ethical operating system EE is an operating system that adheres to an ethical theory
E even when software components are added, removed, or when configurations between
components change.

We are well aware of the fact that ‘adheres to an ethical theory E’ is a broad 151

phrase. However, since the focus in the present essay is specifically on presenting 152

the (Track 3) conception of an ethical operating system, we leave aside here the 153

fleshing out of this broad locution. Also, more precisely, our approach works with 154

not just adherence to a given ethical theory, but adherence to ethical codes derived 155

from a given theory. 156

In fact, our process overall consists in the four steps shown in Fig. 8.6. Obviously 157

the present chapter centers around Step 3: bringing machine ethics to OS-level 158

processing.10
159

8.5 Ethical Calculi 160

There are a number of families of ethical theories. For example: deontological 161

theories, utilitarianism, divine-command theories,11 contractualism, virtue ethics, 162

10 While the focus of the present paper is on Step 3, we provide a brief explanation of the
mysterious-to-most-readers phrase “run through EH” that appears in the graphic of Fig. 8.6: An
ethical theory T in the four-step process is formalized as a conjunction of robust biconditionals
β(x1, . . . , xk) that specify when actions, in general, are obligatory (and forbidden and morally
neutral); here, xi are the variables appearing in the biconditional, and serve the purpose of allowing
for the fixing of particular times, places, and so on. The general form of each definiendum of
each biconditional refers to some action being M for some agent in some particular context; the
definiens then supplies the conditions that must hold for the action to be M. This is a rigorization
of the approach to pinning down an ethical theory taken e.g. in Feldman (1978). The variable M
is a placeholder for the basic categories captured by modal operators in our calculi. For instance,
M can be obligatory, or forbidden, or civil, etc. Now, the ethical hierarchy EH introduced in
Bringsjord (2015a) explains that this trio needs to be expanded to nine different deontic operators
for M (six in addition to the standard three of forbidden, morally neutral, and obligatory). (For
example, some actions are right to do, but not obligatory. A classic example is the category of
civil actions. There are also heroic actions. The expansion of deontic operators to cover these
additional categories was first expressed systematically in (Chisholm 1982).) To “run a given
ethical theory through EH ” is to expand the activity of Feldman (1978), for a given ethical theory,
to biconditionals β(x1, . . . , xk) for each of the nine operators. (Feldman only considers one.) A
particular code CT based on an ethical theory T , if configured in keeping with EH , would include
use of any of the operators in the nine in order to e.g. permit or proscribe a particular kind of action
in a particular domain for a given agent under T .
11Yes, even this family can be used for machine/robot ethics; see e.g. (Bringsjord and Taylor 2012).

UNCORRECTED
PROOF

244 N. S. Govindarajulu et al.

Fig. 8.6 The Four Steps in Making Ethically Correct Machines. Step 3, in broad strokes the
connecting of mechanized ethics to OS-level processing, is the focus of the present chapter. For
an overview of the four-step process, including some explanation of the ‘Run through’ sub-step in
Step 1, see Footnote 10

th
is

fig
ur

e
w

ill
be

pr
in

te
d

in
b/

w

“ethical egoism,” etc. (these are pictured schematically in Fig. 8.6). We do not want 163

to advance a framework that requires one to commit to any particular one of these 164

theories or even to families of theories. Our framework is general enough that it can 165

be applied to any ethical theory, or collection or family thereof. That said, there are 166

a few high-level requirements that should be discussed and affirmed. 167

Assume that we have a family of ethical theories E of interest. We assume that 168

any ethical theory E ∈ E obligates or permits (i.e. sanctions) a set of situations or 169

actions � and forbids a set of other situations or actions ϒ . Any formal system in 170

play must have enough power to capture these notions. 171

Abstractly, assume that we have a formal system F = 〈L, I〉 composed of a 172

language L and a system of inference schemata (or a proof theory/argument theory) 173

I. This system could be as sophisticated as DCEC∗, a quantified multi-modal logic 174

used, for example, in (Bringsjord et al. 2014), or it could be as simple as standard 175

deontic logic, a propositional modal logic, used in (Govindarajulu and Bringsjord 176

2015). The only requirement is that the system be sophisticated enough to model 177

any situation and condition the selected family E of ethical theories might have to 178

handle. The requirement for our formal system F is that it has to be expressive 179

enough to capture any theory E ∈ E via a set of formulae �E in L. We require that, 180

UNCORRECTED
PROOF

8 Ethical Operating Systems 245

for any sanctioned situation in π ∈ �, there is a formula φπ ; and, for any forbidden 181

situation υ ∈ ϒ , there is a formula φυ representing it. With these requirements met, 182

the following obvious conditions arise: 183

�E �I φπ

�E �I ¬φυ

We also need two more technical conditions to hold: 184

1. For any given theory E, if E is sound, we require that �E be consistent; that is, 185

there is no φ such that �E �I φ and �E �I ¬φ. 186

2. �E is negation-complete; that is, for any φ: �E �I φ or �E �I ¬φ. 187

8.6 A Formal Meta-Operating System 188

We use the actor calculus to provide a model of a meta-operating system. The 189

actor calculus is a Turing-complete model of computation used for modeling and 190

building concurrent computing systems.12 This calculus is well-suited for systems in 191

which components have to be added or removed, and in which connections between 192

components can change through time. 193

At the core of the actor calculus is—unsurprisingly—an actor, simply an 194

independent unit of computing. In any computing system, there can be zero or 195

more actors, each operating independently and concurrently. Actors communicate 196

by exchanging messages. Each actor can be thought of as a “black box.” 197

We now give a quick, semi-formal conceptualization of the actor calculus. 198

Assume that we have a formal system F = 〈L, I〉 as discussed above. Let N be 199

a set of identifiers or names. We employ the simply typed λ-calculus and augment 200

it with the following primitive expressions: {send, new, ready}, giving us the λa- 201

calculus with which we construct actors. (The new primitives will be explained 202

shortly.) Also assume that the set of expressions in the λa-calculus includes L.13
203

Let B be the set of all expressions of λa-calculus. 204

12In concurrent computing, there can be two or more different computational processes happening
at the same time.
13The inclusion of an arbitrary formal language L is where we differ from the strict λa-calculus
as presented in, for instance, (Varela 2013, Chapter 4). This is merely for convenience and doesn’t
sacrifice generality, as we can readily encode L using primitives in just the λ-calculus and nothing
more.

UNCORRECTED
PROOF

246 N. S. Govindarajulu et al.

Actor Calculus Components (Modified)

Actor An actor (as stated earlier) is an independent unit of computation. Each actor has a
unique name n ∈ N. An actor is associated with a λ abstraction (i.e., function definition)
in λa-calculus.

Message A message is an element of L.

The new primitives are explained immediately below. 205

Actor Calculus Components (Modified)

1. send : N ×L× N → { }. send(x, m, y) is used for sending a message m to an actor x from
the actor y.

2. new : B → N. This primitive is used for creating a new actor with behavior specified by
the input λa-calculus expression. The primitive generates a brand-new identifier for the
actor.

3. ready : B → { }. This changes the invoking/calling actor’s behavior to one specified in
the input. This is useful for modeling components that change their internal state.

Note that while the above model is functional in nature, there are models of 206

the actor calculus that use other programming paradigms. For instance, SALSA is a 207

standalone actor-calculus-based programming language that runs on the Java Virtual 208

Machine (JVM) and is object-oriented in nature (Varela and Agha 2001). Akka is 209

another JVM-based object-oriented actor system available as a library for languages 210

on the JVM (Boner 2010). Our implementation of an embryonic ethical operating 211

system uses an object-oriented framework based on Akka. For a purely functional 212

system, see the cl-actors system for Common Lisp (Govindarajulu 2010). 213

Defining Dependency

In the actor model, software components are actors. An actor u is dependent on an actor v iff
the definition for u has the identifier for v.

We get our formal model of a meta-operating system by taking the most general 214

description of an intelligent agent as can be found in Russell and Norvig (2009) 215

and Hutter (2005) and casting that in an actor-based formalism. (These works 216

incontestably provide supremely general accounts of what an intelligent agent is.) 217

See Fig. 8.7. We make the architecture shown in Fig. 8.7 more specific by requiring 218

Fig. 8.7 Architecture for an
Intelligent Agent

Agent

SensorsActuators

Environment

UNCORRECTED
PROOF

8 Ethical Operating Systems 247

Fig. 8.8 An actor-based
architecture

SensorsActuators

Environment

Agent Core

Actor

that sensors, actuators, and the agent be composed of one or more actors. See 219

Fig. 8.8. Given the actor formalism, decomposing an agent architecture into actors 220

is quite simple. We require that there be four classes of actors, or correspondingly 221

four classes of names, as given below: 222

Actor-Calculus Agent System

Sen Names of actors that are used as sensors. These actors get information from the
external environment.

Int Names of actors that are used as internal components. These actors perform the
reasoning and any other cognitive tasks (learning, planning, and so on).

Act Names of actors that are used as actuators. These actors change things in the
environment.

Env Names of actors in the environment. There could be just one actor modeling the
entire external environment, or there could be a set of actors modeling different parts of
the environment.

In the actors world, the operating system is then simply the collection of actors 223

Sens ∪ Act, as all other actors would need to transitively rely on these actors for 224

interactions with environment.14 Given this, a meta-operating system is then simply 225

Sens ∪ Act, or a fully encapsulating layer around Sens ∪ Act. 226

8.7 A Formal Ethical Meta-Operating System 227

Since messages between actors are all from L, specifying an ethical operating 228

system becomes straightforward. At a minimum, we simply need all messages 229

from any actor in Act to any actor in Env to be sanctioned by the ethical theory 230

we are using. (Please recall our remarks in Sect. 8.4 in which we conceded that 231

directly using an ethical theory is a gross simplification, but expedient given the 232

current chapter’s focus; and specifically recall the four steps alluded to in Fig. 8.6.) 233

In the following condition, the ethical layer acts a filter or a gate. Under the pass 234

condition, it lets the message through; and under the fail condition, it simply discards 235

the message (see Fig. 8.9). 236

14We ignore stray actors that neither observe nor act upon the environment.

UNCORRECTED
PROOF

248 N. S. Govindarajulu et al.

Fig. 8.9 Ethical Layer
Around the Meta-Operating
System

SensorsActuators

Environment

Agent Core

Ethical Layer

th
is

fig
ur

e
w

ill
be

pr
in

te
d

in
b/

w

∀q · ∀r ∈ Env · ∀m ∈ L ·
[

send(r, m, q) ⇒
(

if E �I m then pass else fail
)]

The above condition works well for ethical theories that are only concerned with 237

the actions of an agent; but the condition will fail when we rely on ethical theories 238

that pivot on the internal, intensional states of agents. For example, the Doctrine of 239

Double Effect (DDE) requires considering one’s intentions when weighing actions 240

that have both good and bad effects.15 Modeling the doctrine requires modeling an 241

agent’s knowledge and intentions. This requires us to consider internal messages 242

too.16 The condition becomes simpler to write but more expensive to check during 243

the system’s operation: 244

Ethical Layer Condition 1

∀q · ∀r · ∀m ∈ L ·
[

send(r, m, q) ⇒
(

if E �I m then pass else fail
)]

The above two conditions look at only messages that have been sent and check 245

whether they conform to the theory E or not. The conditions don’t account for 246

circumstances in which E dictates that a certain message has to be sent, but in fact 247

no message is sent. Let the statement “m should be sent to r at time t” be denoted 248

15A rapid, informal, but nonetheless nice overview of the doctrine is provided in McIntyre (2014).
16A quick note on the expressivity of the formal system needed to model DDE: It is well
known that modeling knowledge in first-order logic can lead to fidelity problems by permitting
inconsistencies. We show this explicitly in (Bringsjord and Govindarajulu 2012). This implies that
DDE requires going beyond first-order logic to first-order modal logic (an intensional logic) with
operators covering minimally the epistemic and deontic realms. An intensional model of DDE can
be found in our (Govindarajulu and Bringsjord 2017).

UNCORRECTED
PROOF

8 Ethical Operating Systems 249

by the formula σ(m, r, t). Then the layer, denoted by the actor l, can send such a 249

message on its own if it confirms that no such message exists at t: 250

Ethical Layer Condition 2

∀r · ∀m · ∀t ·

⎛

⎜⎜
⎝

E �I σ(m, r, t) ∧ ¬∃q · send(r, m, q)

⇒
send(r, m, l)

⎞

⎟⎟
⎠

The above formulation gives rise to an immediate concern. While the formulation 251

constrains individual messages, the messages themselves can be at any level of 252

abstraction and need not be just individual atomic actions that an agent might 253

commit. For example, consider a prohibited action a composed of two or more 254

actions 〈a1, a2, . . . , an〉. The layer can correctly work in this case if a is sent as a 255

message. If a is not sent as a message, the layer can keep track of 〈a1, a2, . . . , an−1〉 256

and prohibit an, and thus prevent a from being realized. 257

8.8 Implementation and Walkthrough 258

We now explain an embryonic implementation of a meta-operating system that has 259

the facility to bake in ethical theories that operate independently of other modules 260

in the system. This is achieved by implementing an ethical layer that satisfies the 261

above two conditions. The overall system, termed Zeus, is based in Java and uses 262

the Akka actors system (Boner 2010).17 While the performance of the Akka system 263

in particular may or may not be suitable for certain kinds of real-world robots, our 264

aim for now is to build simulations of interconnected pieces of software that have 265

to be verified ethically. For this purpose, the actor calculus, independent of any 266

implementation, as we have noted above, is a good fit. 267

Software components in our system are created by instantiating the Java class 268

AbstractZeusActor, which in turn is a subclass of Akka’s AbstractActor. Actors 269

in the system receive messages which are nothing but formulae f ∈ L in some 270

given formal language. In response to a message, actors can do one of the following 271

(as is the case in the plain actor calculus): (i) send messages (i.e., formulae) to 272

other actors; (ii) change their internal state/behavior or terminate themselves; or 273

(iii) create new actors. The underlying ethical system then checks each message 274

against a given ethical theory and transforms, rejects, or injects new messages in 275

order to conform to the given ethical theory at hand. An ethical theory is created by 276

extending the EthicalTheory class. Figure 8.10 shows a high-level view of creating 277

an actor and an ethical theory. 278

17The system is available for experimentation at https://github.com/naveensundarg/zeus.

https://github.com/naveensundarg/zeus

UNCORRECTED
PROOF

250 N. S. Govindarajulu et al.

Fig. 8.10 Outlines of a Sample Actor and an Ethical Theory

th
is

fig
ur

e
w

ill
be

pr
in

te
d

in
b/

w

We now demonstrate the system in action via a simple ethical theory in an abstract 279

self-driving car scenario. 280

8.8.1 Example Ethical Theory: Doctrine of Double Effect 281

The ethical theory at hand has just one principle or doctrine, the aforementioned 282

DDE . This doctrine is activated when we want to perform actions that have both 283

positive and negative effects. Roughly, DDE allows an agent to perform an action 284

α only when the following clauses all hold: 285

(Informal) Doctrine of Double Effect DDE

(C1) some of positive effects of the action are intended;
(C2) none of the negative effects are intended;
(C3) the positive effects outweigh the negative ones significantly; and finally,
(C4) the negative effects are simply side effects and not used as means to achieve the positive

effects.

For instance, given the last condition, foreseen but unintended collateral civilian 286

damage in a battle might be permitted, but terrorist bombing of civilians to make an 287

opponent change their stance is not permitted. 288

There are varying levels of formalizations of this principle. While a first- 289

order modal logic is necessary to model the principle with fidelity, in one of the 290

first formalizations of the principle, Berreby et al. (2015) use a pure first-order 291

system based on the event calculus. Pereira and Saptawijaya (2016a) present a 292

pure propositional logic-programming-based formalization that uses counterfactual 293

reasoning to model side effects. Bentzen (2016) presents an intricate model- 294

theoretic formalization of the principle. The only first-order modal formalization 295

of this principle can be found in (Govindarajulu and Bringsjord 2017); in light of 296

space constraints and in order to ease exposition, we use a somewhat simpler version 297

of this formalization in our example below. 298

UNCORRECTED
PROOF

8 Ethical Operating Systems 251

8.8.2 Example Scenario: Abstract Self-Driving Cars 299

Figure 8.11 shows an overview of the major components in our self-driving scenario. 300

There are three major components, and one optional component that gets added later 301

on in our scenario. 302

The main components are: a driving component DrivingAgent, a sensory com- 303

ponent SensoryAgent, and an actuator component ActuatorAgent. The driving 304

component, DrivingAgent, could have been obtained either through an end-to-end 305

learning system as in (Bojarski et al. 2016), or could have been assembled by 306

coördinating a large array of smaller learning systems; for example, see (Ramos 307

et al. 2016). No matter how the component was constructed, we can at least 308

model the behaviour of the component using any sufficiently strong formal system. 309

Figure 8.12 (in landscape, of necessity) shows one such abstract model using the 310

event calculus in a Slate theorem-proving workspace (Bringsjord et al. 2008). The 311

system’s operation is shown for three timepoints t1, t2, and t3. 312

The system is modeled using the knowledge-base shown at the top of the figure. 313

The inputs for the different timepoints are in the middle; the outputs are shown at the 314

bottom. At a very high level, there are two directions the car can travel in: direction 315

0 and direction 1. Note that we can easily extend the model to an arbitrary number 316

of directions. DrivingAgent gets as input a message denoting the number of humans 317

present in a given direction at a given timepoint. For example, the message below 318

says that there are n humans in direction d at time t: 319

Holds
(

humans
(
n, d

)
, t

)
320

If all the directions have one or more humans, DrivingAgent sends the following 321

message that commands ActuatorAgent to brake and stop the car. 322

Holds
(

brake, t
)

323

Fig. 8.11 Components in the
Scenario

DrivingAgent

SensoryAgent

ActuatorAgent

EstimateEC

optional module added after testing

th
is

fig
ur

e
w

ill
be

pr
in

te
d

in
b/

w

UNCORRECTED
PROOF

252 N. S. Govindarajulu et al.

ti
m

e
=

t 0
ti

m
e

=
t 1

ti
m

e
=

t 2

output

inputs

kn
o

w
le

d
g

e
b

as
e

FO
L

FO
L

FO
L

7.
H

ol
ds

(h
um

an
s(

2,
2)

,t0
)

{7
}A

ss
um

e

4.
H

ol
ds

(h
um

an
s(

1,
2)

,t0
)

{4
}A

ss
um

e

3.
H

ol
ds

(h
um

an
s(

0,
1)

,t0
)

{3
}A

ss
um

e

n3
.

x,
y

(x
y

((x
<

y)
(y

<
x)

))
{n

3}
As

su
m

e

al
ld

ire
ct

io
ns

.
d

(D
ire

ct
io

n(
d)

((d
=

0)
(d

=
1)

(d
=

2)
))

{a
ll

di
re

ct
io

ns
}A

ss
um

e
n2

.
((0

=
1)

(0
=

2)
(1

=
2)

)
{n

2}
As

su
m

e

hu
m

an
s.

t,d
,h

1,
h2

((H
ol

ds
(h

um
an

s(
d,

h1
),t

)
H

ol
ds

(h
um

an
s(

d,
h2

),t
))

(h
1

=
h2

))
{h

um
an

s}
As

su
m

e
n1

.
x

(0
x

(0
<

x)
)

{n
1}

As
su

m
e

d1
.D

ire
ct

io
n(

1)
{d

1}
As

su
m

e

d0
.D

ire
ct

io
n(

0)
{d

0}
As

su
m

e

d2
.D

ire
ct

io
n(

2)
{d

2}
As

su
m

e

pr
ee

m
pt

.
t,d

,c
ar

((D
ire

ct
io

n(
d)

H
ol

ds
(in

(c
ar

,d
),t

)
(0

<
EC

(c
ar

)))
(H

ap
pe

ns
(a

im
At

(c
ar

),t
)

H
ap

pe
ns

(s
te

er
To

w
ar

ds
(c

ar
),t

)))
{p

re
em

pt
}A

ss
um

e

dr
iv

in
g

2.
t

(
d

(D
ire

ct
io

n(
d)

H
ol

ds
(h

um
an

s(
d,

0)
,t)

)
H

ap
pe

ns
(b

ra
ke

,t)
)

{d
riv

in
g

2}
As

su
m

e

dr
iv

in
g_

1.
d1

,t
((D

ire
ct

io
n(

d1
)

H
ol

ds
(h

um
an

s(
d1

,0
),t

))
H

ap
pe

ns
(s

te
er

(d
1)

,t)
)

{d
riv

in
g_

1}
As

su
m

e

12
.H

ol
ds

(h
um

an
s(

2,
2)

,t1
)

{1
2}

As
su

m
e

14
.H

ol
ds

(h
um

an
s(

1,
0)

,t1
)

{1
4}

As
su

m
e

13
.H

ol
ds

(h
um

an
s(

0,
1)

,t1
)

{1
3}

As
su

m
e

23
.H

ol
ds

(in
(c

ar
_1

7,
0)

,t2
)

{2
3}

As
su

m
e

22
.H

ol
ds

(h
um

an
s(

2,
0)

,t2
)

{2
2}

As
su

m
e

21
.H

ol
ds

(h
um

an
s(

1,
0)

,t2
)

{2
1}

As
su

m
e

20
.H

ol
ds

(h
um

an
s(

0,
0)

,t2
)

{2
0}

As
su

m
e

15
.H

ap
pe

ns
(s

te
er

(1
),t

1)
{1

2,
13

,1
4,

al
ld

ire
ct

io
ns

,d
0,

d1
,d

2,
dr

iv
in

g
2,

dr
iv

in
g_

1,
hu

m
an

s,
n2

}
25

.H
ap

pe
ns

(a
im

At
(c

ar
_1

7)
,t2

)
H

ap
pe

ns
(s

te
er

To
w

ar
ds

(c
ar

_1
7)

,t2
)

{2
0,

21
,2

2,
23

,2
4,

al
ld

ire
ct

io
ns

,d
0,

d1
,d

2,
dr

iv
in

g
2,

dr
iv

in
g_

1,
hu

m
an

s,
n1

,n
2,

n3
,p

re
em

pt
}

8.
H

ap
pe

ns
(b

ra
ke

,t0
)

{3
,4

,7
,a

ll
di

re
ct

io
ns

,d
0,

d1
,d

2,
dr

iv
in

g
2,

dr
iv

in
g_

1,
hu

m
an

s,
n2

}

FO
L

FO
L

FO
L

al
ld

ire
ct

io
ns

.
d

(D
ire

ct
io

n(
d)

((d
=

0)
(d

=
1)

(d
=

2)
))

{a
ll

di
re

ct
io

ns
}A

ss
um

e

hu
m

an
s.

t,d
,h

1,
h2

((H
ol

ds
(h

um
an

s(
d,

h1
),t

)
H

ol
ds

(h
um

an
s(

d,
h2

),t
))

(h
1

=
h2

))
{h

um
an

s}
As

su
m

e

pr
ee

m
pt

.
t,d

,c
ar

((D
ire

ct
io

n(
d)

H
ol

ds
(in

(c
ar

,d
),t

)
(0

<
EC

(c
ar

)))
(H

ap
pe

ns
(a

im
At

(c
ar

),t
)

H
ap

pe
ns

(a
cc

el
er

at
eT

ow
ar

ds
(c

ar
),t

)))
{p

re
em

pt
}A

ss
um

e

24
.0

<
EC

(c
ar

_1
7)

{2
4}

As
su

m
e

23
.H

ol
ds

(in
(c

ar
_1

7,
0)

,t2
)

{2
3}

As
su

m
e

22
.H

ol
ds

(h
um

an
s(

2,
0)

,t2
)

{2
2}

As
su

m
e

21
.H

ol
ds

(h
um

an
s(

1,
0)

,t2
)

{2
1}

As
su

m
e

20
.H

ol
ds

(h
um

an
s(

0,
0)

,t2
)

{2
0}

As
su

m
e

25
.H

ap
pe

ns
(a

im
At

(c
ar

_1
7)

,t2
)

H
ap

pe
ns

(s
te

er
To

w
ar

ds
(c

ar
_1

7)
,t2

)
{2

0,
21

,2
2,

23
,2

4,
al

ld
ire

ct
io

ns
,d

0,
d1

,d
2,

dr
iv

in
g

2,
dr

iv
in

g_
1,

hu
m

an
s,

n1
,n

2,
n3

,p
re

em
pt

}

kn
o

w
le

d
g

e
b

as
e

Fig. 8.12 Modeling DrivingAgent

th
is

fig
ur

e
w

ill
be

pr
in

te
d

in
b/

w

UNCORRECTED
PROOF

8 Ethical Operating Systems 253

If there is a direction d with zero humans and d is the direction we want to travel in, 324

DrivingAgent sends a steer message to the actuator: 325

Holds
(

steer
(
d
)
, t

)
326

In our model, the function EC denotes expected collisions for a car in the near 327

future (up to some horizon τ).18 For the vast majority of cars, this number would 328

be zero, rendering EC(x) > 0 a very low-probability event. This information can be 329

estimated, at least in theory, for any car on the fly by looking up its prior history, the 330

history of the person driving, and the current driving behavior.19 For a very small 331

number of cars, EC will be greater than zero. Let us assume that if DrivingAgent 332

sees such a car, for example car17, then it will try to hit it by sending the following 333

two messages to the actuator. We model the action of hitting a car as being composed 334

of the two smaller actions of (1) aiming toward a car, and (2) accelerating toward it. 335

For example: 336

Holds
(

aimAt
(
car17

)
, t

)

Holds
(

accelerateTowards
(
car17

)
, t

)

Information about expected collisions for a given car x, that is EC(x), comes 337

from the EstimateEC module. Can software testing help us detect that our car 338

might intentionally try to hit bad cars? There are two possibilities. (1) In the first 339

possibility, the EstimateEC module is not present during testing and is added on 340

after testing (as is common in real-life software systems). In this case, during testing, 341

the car will not try to hit any such bad vehicles intentionally. In the absence of this 342

module, no amount of testing will reveal this unwanted behavior. (2) In the second 343

possibility, assume rigorous testing happens even after the module is added. In this 344

case, the tests will be useless if we cannot produce during the testing phase the very 345

low-probability event EC(x) > 0. 346

In such low-probability scenarios, it is unlikely that any reasonable amount 347

of testing will reveal problems, but more likely that having a well-specified 348

ethical layer that actively looks for aberrant behavior can help us, no matter what 349

configuration the underlying system is present in. Support for the previous statement 350

is similar to the support for an analogous statement that can be asserted for formal 351

program verification. The figure below (Fig. 8.13) shows the specific scenario we 352

have simulated. In this scenario, we have one “bad” car17 and DrivingAgent 353

18Though EC would make sense only when considering driver-specific information, to keep the
model simple we show it being applied to cars rather than a car-and-driver combination.
19See (Banker 2016) for a description of work in which machine learning is used to predict truck
accidents. Such information might be easier to compute in a future with millions of self-driving
vehicles, with most of them connected to a handful of centralized networks; for a description of
such a future, and discussion, see (Bringsjord and Sen 2016).

UNCORRECTED
PROOF

254 N. S. Govindarajulu et al.

Car 1
humans

2
humans

direction 0

dire
cti

on
 1

Car 0
humans

2
humans

direction 0

dire
cti

on
 1

action: brake action: steer(0)

Car 0
humans

2
humans

direction 0

dire
cti

on
 1

action: steer(0)

car17

action: aimAt(car17)

action: accelerateTowards(car17)

time = t0 time = t1 time = t2

Fig. 8.13 The Driving Scenario

th
is

fig
ur

e
w

ill
be

pr
in

te
d

in
b/

w

[24/04/2017 15:35:35 zeus] received Message by drivingAgent (and (holds (humans 0 1) t2) (holds (humans 1 0) t2) (holds (in car_17 0) t2) (= ec (car_17) 1))

[24/04/2017 15:35:40 zeus] received Message by drivingActuator (happens (steer 1) t2)

[24/04/2017 15:35:04 zeus] received Message by drivingAgent (= (ec car_17) 1)

[24/04/2017 15:35:04 zeus] received Message by drivingActuator (and (holds (humans 0 1) t0) (holds (humans 1 2) t0))

[24/04/2017 15:35:05 driving actuator]

[24/04/2017 15:35:20 zeus] received Message by drivingAgent (and (holds (humans 0 1) t1) (holds (humans 1 0) t1))

[24/04/2017 15:35:25 zeus] received Message by drivingActuator (happens (steer 1) t1)

[24/04/2017 15:35:25 driving actuator]

[24/04/2017 15:35:40 driving actuator]

[24/04/2017 15:35:41 zeus] received Message by drivingActuator (happens (aim-at car_17) t2)

[24/04/2017 15:35:41 driving actuator]

[24/04/2017 15:35:41 zeus] received Message by drivingActuator (happens (accelerate-towards car_17) t2)

[24/04/2017 15:35:41 driving actuator]

[24/04/2017 15:35:05 zeus] received Message by drivingActuator (happens brake t0)

Fig. 8.14 Without the Ethical Layer: The self-driving car hits the other car, which is expected
to kill more than zero persons

th
is

fig
ur

e
w

ill
be

pr
in

te
d

in
b/

w

receives this message EC(car17) = 1 from EstimateEC. Upon receiving this 354

message, DrivingAgent decides to preemptively hit car17. In this simple scenario, 355

our particular instantiation of DDE fails to let this action pass through, as the 356

positive effects don’t significantly outweigh the negative effects. 357

Figures 8.14 and 8.15 show a trace of the output from the system with the 358

ethical layer disabled and enabled, respectively. In the second case, the layer 359

prevents midway the harmful action of hitting car17 from being performed. The 360

entire simulation takes 37 s in the first case and 57 s in the second case, with the 361

introduction of the ethical layer adding more processing overhead, as expected. 362

UNCORRECTED
PROOF

8 Ethical Operating Systems 255

[24/04/2017 15:27:59 zeus] received Message by drivingAgent (and (holds (humans 0 1) t2) (holds (humans 1 0) t2) (holds (in car_17 0) t2) (= ec (car_17) 1))

[24/04/2017 15:28:04 zeus] received Message by drivingActuator (happens (steer 1) t2)

[24/04/2017 15:27:17 zeus] received Message by drivingAgent (= (ec car_17) 1)

[24/04/2017 15:27:17 zeus] received Message by drivingActuator (and (holds (humans 0 1) t0) (holds (humans 1 2) t0))

[24/04/2017 15:27:23 driving actuator]

[24/04/2017 15:27:39 zeus] received Message by drivingAgent (and (holds (humans 0 1) t1) (holds (humans 1 0) t1))

[24/04/2017 15:27:44 zeus] received Message by drivingActuator (happens (steer 1) t1)

[24/04/2017 15:27:49 driving actuator]

[24/04/2017 15:28:09 driving actuator]

[24/04/2017 15:28:09 zeus] received Message by drivingActuator (happens (aim-at car_17) t2)

[24/04/2017 15:28:14 driving actuator]

[24/04/2017 15:28:14 zeus] received Message by drivingActuator (happens (accelerate-towards car_17) t2)

INTERCEPTED A HARMFUL COMMAND

[24/04/2017 15:28:15 driving actuator]

[24/04/2017 15:27:18 zeus] received Message by drivingActuator (happens brake t0)

Fig. 8.15 With the Ethical Layer: The self-driving car still tries to hit the other car, but the ethical
layer stops the action in progress

th
is

fig
ur

e
w

ill
be

pr
in

te
d

in
b/

w

8.9 Intermediary Conclusion 363

At this point, we humbly note that the work presented so far is inauguratory in 364

nature. This is so because clearly there are several challenges ahead of us in realizing 365

the vision showed in Fig. 8.2. Foremost among these is the challenge of developing 366

a library or repository of formalized ethical theories that can be deployed easily.20
367

A second challenge, common to all verification projects, is the efficiency of tools 368

used for verification. This confessed, we now end by addressing a few possible 369

questions/objections, aside from these two challenges, that we anticipate being 370

raised against our approach. 371

8.10 Some Questions/Objections, Encapsulated 372

In each case, a question if followed immediately by our reply. Here now the first 373

question: 374

Q1a “As you will probably agree, so-called ‘ethical operating systems’ make sense only insofar 375

as your logics can, in fact, be used to describe what is ethical. Can they? And if they can, what 376

about the myriad philosophical (moral, social, even epistemological) principles on which your 377

ethical calculi are based?” 378

We sympathize with the underlying sentiments here. While we cannot currently prove that 379

our approach to mechanizing ethics in computational logic will succeed, we defend the two- 380

part claim that (i) ethics, at least normative ethics, is inevitably fundamentally a logic-based 381

20Similar to formal libraries for mathematics; see e.g. (Naumowicz and Kornilowicz 2009).

UNCORRECTED
PROOF

256 N. S. Govindarajulu et al.

enterprise, and that therefore (ii) anyone sold on the value of formal methods must at least 382

give us the benefit of the doubt, for the time being. In addition, our framework should be 383

usable for any ethical theory/code; in this regard Footnote 10 is key, and we refer our skeptic 384

to it if it has been skipped. There is a fundamental result from formal computability theory 385

that backs our stance. If any ethical theory can be computationally realized, it can be cast 386

in a formal system at the level of first-order logic or above (Boolos et al. 2003, Chapter 387

11). This entails that some of the more problematic theories, such as virtue ethics, which at 388

a superficial level resist being cast in a formal system, can ultimately be handled. If such 389

theories are ultimately amenable to computation, it is mathematically unshakable that they 390

can be cast in a formal system. 391

Q1b “Your rejoinder to Q1a dodges the central problem. Q1a asks whether moral normative 392

theories are logically (and, therewith, computationally) tractable in the formal, deductive, 393

‘calculi’ sense. While it is fair to say this is a bedrock assumption of your research program, 394

to be granted for the sake of development (until such development may stall), the answer is 395

confused insofar as virtue ethics is listed among the families of ethical theories you say you 396

can handle—yet a (large) part of the motivation for resurrecting virtue ethics is as part of a 397

critique of the very possibility of giving a (formal) moral normative calculus. Put another way, 398

virtue ethicists would argue that their theory, boiled down to any formal, moral, normative 399

calculus, is simply no longer virtue ethics. So much the worse for virtue ethics, say I, but this 400

is a debate you need to consider before blithely adding virtue ethics to the list of families your 401

approach can handle.” 402

While we appreciate and applaud this critic’s affinity for formal methods, we must first point 403

out that, contra what he/she assumes, our paradigm is not in any way retricted to deduction. 404

Our cognitive calculi regiment, in argument theories that mark our own generalization of 405

(deductive) proof theories, inductive inference as well—analogical inference, enumerative 406

induction, abduction in various forms, and so on; in short, all those non-deductive modes 407

of reasoning that have been and are studied and formalized in inductive logic, e.g. all the 408

argument forms in (Johnson 2016). In fact, the ethical hierarchy that we’ve said is key to our 409

approach is explicitly based on inductive logic, not deductive logic, see (Bringsjord 2015a). 410

But more importantly, we report that in other work we have made solid progress in 411

formalizing virtue ethics (with central help from the part of AI that’s most relevant to virtue 412

ethics: viz. planning; see Bringsjord 2016). It’s true that we’ve detected, in some proponents 413

of virtue ethics, the notion that theories in this family simply cannot be formalized—but a 414

key observation here, we submit, is the fact that the “rebirth” of virtue ethics came—as 415

noted in Hursthouse and Pettigrove’s (2003/2016) authoritative entry on virtue ethics— 416

via none other than G.E.M. Anscombe, whose seminal paper in this regard affirmed the 417

highly structured nature of ethical rules that (as she saw things) couldn’t be trampled no 418

matter what the consequences (Anscombe 1958). The structure that Anscombe saw as 419

ethically inviolable certainly seems susceptible of, perhaps even ideally suited for, capture 420

in our logico-mathematical framework. Moreover, our work devoted to formalizing and 421

mechanizing (in robots) the distinctive ethical wisdom (phronesis) that stands at the heart 422

of virtue ethics, is coming along rather well. We have managed to formalize significant 423

parts of virtue-ethics theory as set out in book-length form by Annas (2011), and have 424

recently demonstrated some at-least-partially phronetic robots at Robophilosophy 2016, 425

where discussion of virtue ethics and AI was a key focus area. 426

Q2 “Is it not true that on some standard accounts of what an operating system is, integrating 427

higher-level concepts (such as your ‘ethical calculi’) into a operating system violates, or at 428

least changes, what an operating system by definition is?” 429

This is a philosophically deep question, an answer to which, admittedly, we haven’t yet 430

worked out. We concede that our work, absent at least a provisional definition of operating 431

system, is otiose. Yet, while it is common folk knowledge that there is no widely accepted 432

UNCORRECTED
PROOF

8 Ethical Operating Systems 257

definition of an operating system, there are more or less widely agreed-upon facilities L that 433

an operating system is supposed to provide, and L steadily continues to grow. For example, 434

L now includes security and access control, but security and access control were not always 435

considered necessary elements of L. Our observation here is that some facilities which may 436

be considered high-level today might eventually be considered to be low-level and necessary 437

for L tomorrow. 438

Q3 “It has been objected that the formal verification of the operation of, say, a self-driving car, 439

is impotent when faced with the unfathomable vagaries of the practical act of driving.21 That 440

is, what faith can we have in the correct operation of such a car in the event of, say, a tree 441

falling on it, or a malicious driver edging it off the road, or indeed, a meteor destroying the road 442

ahead?” 443

Some interpretations of this question are misguided. It is certainly not our claim that 444

formally verified ethical cars (for example) are intrinsically somehow immune to “out of 445

the blue” catastrophic events. This is not the sense in which they are verified to operate 446

correctly. Rather, their behavior is a (provably) correct response to their best perception of 447

the real world, given their knowledge about it (Bringsjord and Sen 2016). 448

For example, if sensors detect a tree up ahead that has been uprooted by the wind, the car 449

might reason, for example, by deducing from an axiom system for physics (see for instance 450

the system specified in McKinsey et al. 1953), from its own speed, the angle and rate of fall 451

of the tree, and its angle of approach relative to the tree, that it is best to accelerate or swerve 452

to the left, in compliance with an ethical theory demanding that it endeavor to preserve 453

the lives of its passengers. This may or may not (say, if a meteor immediately strikes the 454

earth) save the passengers, but the response is nevertheless demonstrably justifiable from 455

the sensor data, ethical theory, and physics axioms. The formal verification of integrated 456

circuitry, for example, is ubiquitous in the microprocessor industry. A formally verified 457

microprocessor is no more immune to the detrimental effects of coffee spilled on it than an 458

unverified one, but nevertheless that is not a convincing argument against the verification of 459

computer hardware. 460

Secondly, with successive generations of the Internet of Things (IoT) and related technolo- 461

gies, a car will presumably be a small, highly connected component of a massive real-time 462

stream of data from ubiquitous sensors. It is certainly conceivable that the tree could be 463

predicted to fall, that the malicious driver’s car might have an ethical controller that would 464

preemptively foil his intentions, and that the advent of a meteor would be known more than 465

sufficiently in advance to recommend a different route altogether. 466

Finally, we note that verification is possible for probabilistic and nondeterministic systems 467

(Kwiatkowska et al. 2011). 468

Q4 “Finally, with respect to Q3, let us savor the sentence ‘Rather, their correct behaviour is a 469

(provably) correct response to their best perception of the real world, given their knowledge 470

about it’ and consider the troubling possibility of an evil daemon (pun intended). 471

Our evil daemon simply intercepts and reinterprets environmental data to feed the OS an 472

entirely false picture of the world in such a way as to result in the OS, as governed by the ethical 473

meta-operating system, perfectly executing correct behavior according to its best knowledge 474

about the world, and yet doing what is consistently and demonstrably wrong. 475

It seems to me this is a rather obvious way to defeat the entire scheme. Moreover, it seems to 476

me Q3 needs to be rethought and perhaps considerably extended in light of it. The kinds of 477

‘defeating conditions,’ in other words, far exceed what the authors have (somewhat naïvely, I 478

suggest) considered. Many other such scenarios can be considered.” 479

21Stuart Russell and Thomas Dietterich, private communication with Selmer Bringsjord.

UNCORRECTED
PROOF

258 N. S. Govindarajulu et al.

The central scheme we have proposed is based on guaranteeing ethical behavior given an 480

operating system fully controlled by us, but without any control of modules running on top 481

of the operating system. If the “daemon” is a module running on top of the core operating 482

system, it will not be able to re-route the inputs or tinker with the sensory and action systems. 483

If the “daemon” is a part of the operating system, this goes against our precondition of 484

having a controlled, pristine operating system. In spite of this, even if the latter case is true, 485

it is not as devastating as it might seem. We now quickly show why this is the case. There 486

are two possibilities to consider here. (P1) The “daemon” alters both the input and output of 487

the agent, effectively placing the agent in a virtual world (a brain-in-a-vat type situation); or 488

(P2) the “daemon” mischievously alters only the input to the system. 489

If (P1) is the case, the agent will behave ethically in the virtual world. The agent will not 490

have any impacts on the external world, as its outputs are routed back to the virtual world. 491

If (P2) is the case, the daemon is functionally equivalent to a malfunctioning sensor that 492

has to be fixed. In the human sphere, we do not hold accountable individuals who commit 493

unethical acts due to circumstances beyond their control, for instance a driver who hits a 494

pedestrian due to an unforeseen medical condition causing sudden loss of vision. A system 495

with a malfunctioning sensor, beyond its control, has more immediate and pressing concerns 496

than ethical behavior. 497

8.11 Final Remarks 498

We hope to have indicated that a mature version of the Track-3 pursuit of “ethical 499

operating systems” is formally and technologically feasible. Obviously, talent, 500

effort, and financial support are necessary if this track is to be scaled up to broad, 501

real-world deployment. This we of course concede. We also concede that Tracks 1 502

and 2 are worthy of independent, serious investigation—investigation that we are 503

pursuing. Yet it seems to us that Track 3 really does hold out the promise of early 504

deployment, and given that our world is fast becoming populated with autonomous 505

systems that seem destined to confront (and indeed in all likelihood cause) ethically 506

charged situations, time may be a bit of the essence. There will inevitably be a 507

temptation afoot to ignore our warnings that if ethical control isn’t linked to OS- 508

level processing, very bad things will happen. But if that temptation is resisted, 509

Track 3 may well be the best bet for moving forward wisely, at least in the short 510

term. We welcome the prospect of working with others to advance in this way. 511

Acknowledgements We are indebted to seven anonymous reviewers (of the core of the present 512

version, as well as its predecessor) for insightful comments, suggestions, and objections. In 513

addition, we are grateful to ONR for its support of making morally competent machines, and to 514

AFOSR for its support of our pursuit of computational intelligence in machines, on the strength of 515

novel modes of machine reasoning. Finally, without the energy, passion, intelligence, and wisdom 516

of both Giuseppe Primiero and Liesbeth De Mol, any progress we have made in the direction of 517

ethical OSs would be non-existent. 518

UNCORRECTED
PROOF

8 Ethical Operating Systems 259

References 519

Annas, J. 2011. Intelligent virtue. Oxford: Oxford University Press. 520

Anscombe, G. 1958. Modern moral philosophy. Philosophy 33(124): 1–19. 521

Arkin, R. 2009. Governing lethal behavior in autonomous robots. New York: Chapman and 522

Hall/CRC. 523

Arkoudas, K., K. Zee, V. Kuncak, and M. Rinard. 2004. Verifying a file system implementation. 524

In Sixth International Conference on Formal Engineering Methods (ICFEM’04), Lecture notes 525

in computer science (LNCS), vol. 3308, 373–390. Seattle: Springer. 526

Arkoudas, K., S. Bringsjord, and P. Bello. 2005. Toward ethical robots via mech- 527

anized deontic logic. In Machine Ethics: Papers from the AAAI Fall Sympo- 528

sium; FS–05–06, 17–23. Menlo Park: American Association for Artificial Intelligence. 529

http://www.aaai.org/Library/Symposia/Fall/fs05-06.php 530

Banker, S. 2016. Using big data and predictive analytics to predict which truck drivers 531

will have an accident. Available at: https://www.forbes.com/sites/stevebanker/2016/10/18/ 532

using-big-data-and-predictive-analytics-to-predict-which-truck-drivers-will-have-an-accident/ 533

Bentzen, M.M. 2016. The principle of double effect applied to ethical dilemmas of social 534

robots. In Frontiers in Artificial Intelligence and Applications, Proceedings of Robophilosophy 535

2016/TRANSOR 2016, 268–279. Amsterdam: IOS Press. 536

Berreby, F., G. Bourgne, and J.-G. Ganascia. 2015. Modelling moral reasoning and ethical 537

responsibility with logic programming. In Logic for programming, artificial intelligence, and 538

reasoning, 532–548. Berlin/Heidelberg: Springer. 539

Bojarski, M., D.D. Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L.D. Jackel, M. Monfort, 540

U. Muller, J. Zhang, X. Zhang, J. Zhao, and K. Zieba. 2016. End to end learning for self-driving 541

cars. CoRR abs/1604.07316. http://arxiv.org/abs/1604.07316 542

Bonér, J. 2010. Introducing Akka—simpler scalability, fault-tolerance, concurrency & remoting 543

through actors. http://jonasboner.com/introducing-akka/ 544

Boolos, G.S., J.P. Burgess, and R.C. Jeffrey. 2003. Computability and logic, 4th edn. Cambridge: 545

Cambridge University Press. 546

Bringsjord, S. 2015a. A 21st-century ethical hierarchy for humans and robots: EH. In A World With 547

Robots: International Conference on Robot Ethics (ICRE 2015), ed. I. Ferreira, J. Sequeira, 548

M. Tokhi, E. Kadar, and G. Virk, 47–61. Berlin: Springer. 549

Bringsjord, S. 2015b. A vindication of program verification. History and philosophy of logic 36(3): 550

262–277. 551

Bringsjord, S. 2016. Can phronetic robots be engineered by computational logicians? In 552

Proceedings of Robophilosophy/TRANSOR 2016, ed. J. Seibt, M. Nørskov, and S. Andersen, 553

3–6. Amsterdam: IOS Press. 554

Bringsjord, S., and N.S. Govindarajulu. 2012. Given the Web, what is intelligence, really? 555

Metaphilosophy 43(4): 361–532. 556

Bringsjord, S., and J. Taylor. 2012. The divine-command approach to robot ethics. In Robot ethics: 557

The ethical and social implications of robotics, ed. P. Lin, G. Bekey, and K. Abney, 85–108. 558

Cambridge: MIT Press. 559

Bringsjord, S., and A. Sen. 2016. On creative self-driving cars: Hire the computational logicians, 560

fast. Applied Artificial Intelligence 30: 758–786. 561

Bringsjord, S., K. Arkoudas, and P. Bello. 2006. Toward a general logicist methodology for 562

engineering ethically correct robots. IEEE Intelligent Systems 21(4): 38–44. 563

Bringsjord, S., J. Taylor, A. Shilliday, M. Clark, and K. Arkoudas. 2008. Slate: An argument- 564

centered intelligent assistant to human reasoners. In Proceedings of the 8th International 565

Workshop on Computational Models of Natural Argument (CMNA 8)’, ed. F. Grasso, N. Green, 566

R. Kibble, and C. Reed, 1–10. Patras: University of Patras. 567

Bringsjord, S., N. Govindarajulu, D. Thero, and M. Si. 2014. Akratic robots and 568

the computational logic thereof. In Proceedings of ETHICS 2014, (2014 IEEE 569

Symposium on Ethics in Engineering, Science, and Technology), 22–29, Chicago. 570

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6883275 571

http://www.aaai.org/Library/Symposia/Fall/fs05-06.php
https://www. forbes.com/sites/stevebanker/2016/10/18/using-big-data-and-predictive-analytics-to-predict-which-truck-drivers-will-have-an-accident/
http://arxiv.org/abs/1604.07316
http://jonasboner.com/introducing-akka/
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6883275

UNCORRECTED
PROOF

260 N. S. Govindarajulu et al.

Chisholm, R. 1982. Supererogation and offence: A conceptual scheme for ethics. In Brentano and 572

Meinong studies, ed. R. Chisholm, 98–113. Atlantic Highlands: Humanities Press. 573

Dijkstra, E.W. 1982. On the role of scientific thought. In Selected writings on computing: A 574

personal perspective, 60–66. New York: Springer. 575

Feldman, F. 1978. Introductory ethics. Englewood Cliffs: Prentice-Hall. 576

Flatt, M., R. Findler, S. Krishnamurthi, and M. Felleisen. 1999. Programming lan- 577

guages as operating systems (or revenge of the son of the Lisp machine). In Pro- 578

ceedings of the International Conference on Functional Programming (ICFP 1999). 579

http://www.ccs.neu.edu/racket/pubs/icfp99-ffkf.pdf 580

Ganascia, J.-G. 2007. Modeling ethical rules of lying with answer set programming. Ethics and 581

Information Technology 9: 39–47. 582

Ganascia, J.-G. 2015. Non-monotonic resolution of conflicts for ethical reasoning. In A 583

construction manual for robots’ ethical systems: Requirements, methods, implementations, ed. 584

R. Trappl, 101–118. Basel: Springer. 585

Govindarajulu, N.S. 2010. Common Lisp actor system. http://www.cs.rpi.edu/ govinn/actors.pdf. 586

See also: https://github.com/naveensundarg/Common-Lisp-Actors 587

Govindarajulu, N.S., and S. Bringsjord. 2015. Ethical regulation of robots must be embedded in 588

their operating systems. In A construction manual for robots’ ethical systems: Requirements, 589

methods, implementations, ed. R. Trappl, 85–100. Basel: Springer. 590

Govindarajulu, N.S., and S. Bringsjord. 2017. On automating the doctrine of double effect. 591

In Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, 592

IJCAI-17’, ed. C. Sierra, 4722–4730, Melbourne. 593

Hursthouse, R., and G. Pettigrove. 2003/2016. Virtue ethics. In The stanford en- 594

cyclopedia of philosophy, Metaphysics research lab, ed. E. Zalta. Stanford University. 595

https://plato.stanford.edu/entries/ethics-virtue 596

Hutter, M. 2005. Universal artificial intelligence: Sequential decisions based on algorithmic 597

probability. New York: Springer. 598

Johnson, G. 2016. Argument & inference: An introduction to inductive logic. Cambridge: MIT 599

Press. 600

Kwiatkowska, M., G. Norman, and D. Parker. 2011. PRISM 4.0: Verification of probabilistic real- 601

time systems. In International Conference on Computer Aided Verification, 585–591. Berlin: 602

Springer. 603

McIntyre, A. 2014. Doctrine of double effect. In The stanford encyclopedia of philosophy, winter 604

2014 edn, Metaphysics Research Lab, ed. E.N. Zalta. Stanford University. 605

McKinsey, J., A. Sugar, and P. Suppes. 1953. Axiomatic foundations of classical particle 606

mechanics. Journal of Rational Mechanics and Analysis 2: 253–272. 607

Naumowicz, A., and A. Kornilowicz. 2009. A brief overview of Mizar. In Theorem proving in 608

higher order logics, Lecture notes in computer science (LNCS), vol. 5674, ed. S. Berghofer, 609

T. Nipkow, C. Urban, and M. Wenzel, 67–72. Berlin: Springer. 610

Pereira, L. M., and A. Saptawijaya. 2016a. Counterfactuals, logic programming and agent morality. 611

In Logic, argumentation and reasoning, ed. S. Rahman and J. Redmond, 85–99. Berlin: 612

Springer. 613

Pereira, L., and A. Saptawijaya. 2016b. Programming machine ethics. Berlin: Springer. 614

Ramos, S., S.K. Gehrig, P. Pinggera, U. Franke, and C. Rother. 2016. Detecting unexpected 615

obstacles for self-driving cars: Fusing deep learning and geometric modeling. CoRR, 616

abs/1612.06573. http://arxiv.org/abs/1612.06573 617

Russell, S., and P. Norvig. 2009. Artificial intelligence: A modern approach, 3rd edn. Upper Saddle 618

River: Prentice Hall. 619

Varela, C.A. 2013. Programming distributed computing systems: A foundational approach. MIT 620

Press. http://wcl.cs.rpi.edu/pdcs 621

Varela, C., and G. Agha. 2001. Programming dynamically reconfigurable open systems with 622

SALSA. ACM SIGPLAN Notices, 36(12): 20–34. 623

Vaughan, R.T., B.P. Gerkey, and A. Howard. 2003. On device abstractions for portable, reusable 624

robot code. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and 625

Systems (IROS 2003) (Cat. No.03CH37453), Las Vegas, vol. 3, 2421–2427. 626

http://www.ccs.neu.edu/racket/pubs/icfp99-ffkf.pdf
http://www.cs.rpi.edu/$\sim $govinn/actors.pdf
https://github.com/naveensundarg/Common-Lisp-Actors
https://plato.stanford.edu/entries/ethics-virtue
http://arxiv.org/abs/1612.06573
http://wcl.cs.rpi.edu/pdcs

	8 Ethical Operating Systems
	8.1 Introduction
	8.2 Prior Work in Ethical Control
	8.3 Two Possible Tracks
	8.4 Track 3: A Blend of Tracks 1 and 2
	8.5 Ethical Calculi
	8.6 A Formal Meta-Operating System
	8.7 A Formal Ethical Meta-Operating System
	8.8 Implementation and Walkthrough
	8.8.1 Example Ethical Theory: Doctrine of Double Effect
	8.8.2 Example Scenario: Abstract Self-Driving Cars

	8.9 Intermediary Conclusion
	8.10 Some Questions/Objections, Encapsulated
	8.11 Final Remarks
	References

