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Abstract

I critically review Raymond Turner’s Computational Artifacts — Towards a Philos-
ophy of Computer Science by placing beside his position a rather different one,
according to which computer science is a branch of, and is therefore subsumed by,
immaterial formal logic.
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Consider the elementary natural-deduction! inference schema universal elimination,
customarily denoted by such text as the following:

Vxp(x) vg
—a h
¢ (%)
This schema often appears in particular specifications of first-order logic (= .2}),
as most readers will well know.? I have just used text to denote something that is

immaterial. You cannot lift the schema in question; nor can you weigh it, or destroy
it, or spoon it into a box and hand that box as a gift to someone not fortunate enough

I Crisply used by Turner himself in the presentation of his logic TPL (§12.2).

2Turner will readily agree that I YE and the larger specification of which it is usually a part when £}
is presented makes use of formal languages, which are a crucial part of the seminal philosophy of com-
puter science he gives and defends in (Turner 2018) (see in particular §7.2 therein). Details regarding the
particular languages I use in this review are out of scope due to space constraints.
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340 S. Bringsjord

to be familiar with any of the proof theories 7 1 Ilz, If, ... for .,2”1.3 In general, as
Ross (1992) explains, inference schemata, including ones with which all philosophers
will be familiar (e.g., hypothetical syllogism*), are non-physical. The realm of the
immaterial contains as well other categories of abstract objects that compose those
things that, by the lights of both Turner and my own, are at the heart of what computer
science is, and therefore at the heart of what genuine computer scientists do. For
example, ¢ in 1)¥ must be a well-formed formula, which means that it must be
in accord with some formal grammar G that includes some alphabet A;. The pair
(G1, Ay) is the formal language £ of .7}, and this language inherits immateriality
from the two immaterial things that compose it.

Now, the immaterial nature of the familiar things I have just referred to stands in
stark contrast to Turner’s conception of the nature of those things that everyone agrees
are (at least in name) central to computer science. This is easy to confirm. After all, a
spoon is an artifact; so is a box; and both are as such quite material/physical. Turner
happily embraces these facts early on (see, e.g., p. 25). In fact, one of the refreshing
aspects of his book is that he is crystal clear at its outset as to how his philosophy of
computer science will in general be erected:

Technical artifacts are taken to include all the common objects of everyday life,
such as chairs, televisions, paper clips, telephones, smartphones and dog col-
lars. They are material objects, the engineered things of the world that have
been intentionally produced by humans in order to fulfill a practical function.
In this regard, they differ from naturally occurring entities such as stars and
rivers. A central part of the analytic philosophy of technology aims to under-
stand their nature, design, and construction, and it is from this perspective
that we approach the artifacts of computer science. (Turner 2018, p. 25;
emphasis by bold text mine)

Alas, I doubt very much that there are any artifacts of computer science. The
reason is that the core elements of computer science are logicist, and as such are
immaterial. As to computer engineering, well, yes, that might be a rather different
story, but it is one we ought to ignore: we are discussing not philosophy of computer
engineering, but of computer science. Perhaps there is no small irony in the bio-
graphical fact that Turner himself, theoretical computer scientist that he is, has made
precious little use of, say, electrical engineering, in the creation of his truly impres-
sive oeuvre.’ It is interesting along this line to further note that Turner is the co-author

3In addition to natural deduction, which is seldom used in automated (deductive) reasoning (but see the
seminal Pollock 1995), we e.g. have proof theories based on resolution (which is at the heart of Prolog).
For classic coverage of resolution for automated reasoning, see (Wos et al. 1992).
4Formalized as follows, and, note, part of both zero-order (%)) and first-order (.£}) logic:
b Yy >y 1HS
FYEpy 0/1

ST suspect that Turner would say that he has in fact been occupied at times with what he calls program
artifacts, defined in Chap. 5, p. 52. Unsurprisingly, I see program artifacts as having one foot in computer
science, and another in computer engineering.

@ Springer



Computer Science as Immaterial Formal Logic 341

of an authoritative overview of philosophy of computer science (Turner and Angius
2017), in which the computer-science-as-mathematics view is presented (§9.1).6

Someone might object to what I have so far said, and the line I have started and
am obviously on, in the following way:

Objection 1

“What you’re saying is really a bit silly, to be frank. You are a fan of what
might be called a platonic conception of formal logic. So what? In this regard
your views are quite beside the point, for the simple reason that formal logic is
formal logic; it’s not computer science. The former comes in quite handy, and
is indeed in Turner’s philosophy of computer science crucial, but just because
a spoon comes in handy when eating doesn’t mean that designing, making, and
using flatware is eating.”

Making flatware is not eating: quite right. But the analogical inference underlying
the objection is invalid in the present case, for the simple reason that, once you have
in hand a suitably rigorous and robust conception of what a logic machine is, it is
easy to see that the computer-science-as-immaterial-formal-logic view holds, or at
least makes a great deal of sense, and can be worked out in detail, comprehensively,
to include for instance a total subsumption of computer programs and programming.’

SThis view is not to be identified with the view I adumbrate herein, but my view is clearly in the same
spirit as the view Turner encapsulates in his overview. (My view can also be viewed as a broadening and
abstraction of what Turner (in his Chap. 1 of Computational Artifacts) calls “the Dijkstra-Hoare core.”)
One thing that prohibits identification is the fact that while my view of what computer science is falls
generally in line with the computer-science-as-mathematics position as described by Turner, I am a thor-
oughgoing immaterialist (some might say a “Platonist,” but since Plato had no idea what, say, an infinite
ordinal such as even w is, the label would surely be inaccurate), and it is not clear that those Turner clas-
sifies under computer-science-as-mathematics (e.g., Dijkstra) are. For a nice treatment of the main ways
of viewing what computer science fundamentally is, see a paper Turner himself draws from: (Eden 2007).
It may be, by the way, that different views of computer science can be developed in terms of the relevant
notion of information at the various levels of abstraction that computer science as a discipline requires (see
Primiero 2016).

7 A variant of Objection 1, pointed out to me by Henri Salha (I confessedly express the objection with a bit
of a harder edge than what Henri wrote to me in personal communication), is as follows:

Objection 1
“Your logicist view of computer science is U.S./U.K.-based, alas. In Continental Europe, e.g.
France, informatique théorique is often reserved to denote the scientific, theoretical (and small)
part of all human activities related to — in the most general sense — computers. In the case of just
informatique, what is referred to is the full set of such activities. Given this context, you simply
disagree with Turner only on the scope of what we should count as computer science.”

In reply, yes, I certainly do disagree with Turner (and apparently with the U.S./U.K. computing establish-
ment) about the scope of what should count as true computer science. I am happy to admit that on the
Continent, and perhaps elsewhere, my contra-Turner position might not have full traction—but I confess
that I doubt that is the case. One reason is that I doubt informatique théorique is all and only thorough-
goingly logicist in e.g. France. (Theoretical computer science (as it is called) is incidentally not purely
logicist in the U.S./U.K.) I also doubt that the generic informatique space includes substantial application-
oriented activity that is logicist. Of course, I may be wrong: I am a lifelong New Yorker. But of this I
am sure: The teaching of computer programming, especially in the US (where “computational thinking”
is ill-advisedly taken to consist in thinking procedurally) K—12 system, is pretty much nothing more than
to teach procedural programming, with a dash of object-oriented spice. This is e.g. revealed in (Rapaport
2019), recently reviewed in (Bringsjord 2018b).
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Turner himself provides a chapter on what he calls “logic machines” (Ch. 4). But
a fatal problem rears up in his title for this chapter: “Logic Machines as Technical
Artifacts.” Since, as we have noted, a technical artifact is a physical thing (despite
the fact that during its design by a mind all sorts of seemingly non-physical factors
arise, such as beliefs by the designer about the mental states of those who will use
the artifact in question), Turner’s logic machines certainly are not mine. Rather, they
are the standard devices spread now across our planet, made of digital circuits. There
is logic here only in the sense that Boolean and arithmetic operations are performed.
If one builds a view of what computer science is atop logic machines in this sense,
then one will be forever imprisoned, because everything that then comes later must
do nothing more than drive the circuits in question, and not only that, but what is
driven is physical, and not in the realm of thought.?

What then is a logic machine, in the computer-science-as-immaterial-formal-logic
(= c-s-a-i-f-1) view? Historically considered, this question is easy to start to answer,
informally: a logic machine is the sort of thing pointed to by Gardner (1958): viz.,
machines that automatically reason in accordance with some associated collection of
inference schemata in some associated logic/s, in order to answer queries. Gardner’s
(1958) final chapter is especially helpful in providing a bridge from the anemic phys-
ical logical machines covered early his book to a future in which automated reasoning
is a reality—a future the reader is lucky enough to be living in.

Of course, one can certainly seek to physicalize logic machines, and doing so, as
Gardner recounts, is exactly what many of those working on logic machines did—
but nonetheless, the machines themselves are immaterial. By leveraging some of the
formal content introduced in the foregoing, we can quickly denote some of these
logic machines. For instance, the logic machine 9; is the quintuple

(P*v q*v ﬁv R7 C)

The third element, %}, is familiar from above, and comprises the aforemen-
tioned formal language £, as well as another ingredient introduced above: viz. Z}, a
collection of inference schemata. As to the new elements in 91,

—  P* is the space of allowable programs (PP, with suitable sub/superscripts, denotes
a particular one);

8This may be a good place to bring to the reader’s attention that De Mol and Primiero (2015) provide a
treatment of links between logic and the history/philosophy of computer science—but the role they see for
logic is Turneresque. They e.g. write:

... logic and technology work together, from the lowest hardware level, governed by Boolean
circuits and arithmetical operations in the stack memory; through the structure of assignment,
sequencing, branching and iteration operations defining modern high-level programming lan-
guages; up to the equivalent abstract formulations of recursive definitions for algorithms. (De Mol
& Primiero 2015, p. 196)

Following on this comes a lucid treatment of some of the roles of logic in computer science, but by now
the reader will be able to predict that since my view, distilled, is that computer science is a branch of logic,
and hence the role of logic is—put starkly—that not of contributor but rather ruler, De Mol and Primiero’s
essay is, like Turner’s, ultimately at odds with my position, at least to a significant degree.
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— gq* is the space of allowable queries (g, with suitable sub-/superscripts, denotes
a particular one);

— R is an automated reasoner; and

— C is the checker of the reasoning found and provided by R, and by other
automated reasoners in other logic machines.

The automated reasoner’s job is to provide answers to queries (i.e., to ¢), and to
discover proofs or arguments that justify these answers. Further explanation of R is
beyond the scope of the present critical review.® The checker’s job (one that in my
experience is undervalued in computer science and Al) unsurprisingly, is to either
certify or reject the proofs/arguments supplied by R. (For a foundational treatment
of the distinction between proof discovery and proof checking, see (Arkoudas and
Bringsjord 2007).) What about the program, P? A program here is simply a set of
declarative statements expressed as formulae in the language £;. This entails that 91,
subsumes and is a superset of standard logic programming in terms of Horn-clause
logic, which is nicely summarized by Turner in §8.3 “Logical Languages.” Here, he
accurately reports that the core principles of standard logic programming are the fol-
lowing, and I quote: “Programs are collections of logical assertions, and computation
is inference” (p. 74). (These principles hold as well for all logic machines as I define
them, even for those logic machines that eschew deduction (in favor of non-deductive
reasoning).) Turner then goes on to write:

Prolog is the main language to emerge from this paradigm. Strangely, this
paradigm has generated fewer languages than have the other paradigms. Nor
has it [= the paradigm] contributed much to type theory. However, it does
attempt to raise programming to the level of specification. (Turner 2018, p. 74)

What is said here is understandable, given Turner’s experience and type-theoretic
orientation, but note that every logic machine 9t corresponds to some programming
language, obviously. (The language Lgy is just in the third element in the tuple
that is 901, and recall that every program P € P* is simply a collection of wffs in
this language). Since there are clearly more than 8¢ logic machines, we are talking
about rather a lot of programming languages. The overall programming paradigm
comprised by the availability of all these programming languages is pure general
logic programming, or just PGLP for short. PGLP was first publicly introduced in
(Bringsjord 2018a).

Turner might retort that this is an artificially inflated count, because he is talking
of “in-use” programming languages. But the c-s-a-i-f-1 view is replete with multiple
in-use programming languages under the fold of automated reasoning. For exam-
ple, such languages are concretely operative for % and fragments thereof (e.g., the

9For an impressive implementation of R, the reader can obtain and study Govindarajulu’s (2016)
ShadowProver.
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propositional calculus), for .%; (and for fragments thereof!?), for %5, for quantified
modal logics (see , e.g., Govindarajulu and Bringsjord 2017), and for higher-order
logics (e.g. see Benzmiiller and Paleo 2014). I do not have an exact count, but once
automated reasoning is allowed to be the basis of computing, and programming lan-
guages for this basis bloom as the mode and type of automated reasoning varies, a
plethora of programming languages is clearly immediately with us. Even the count
of in-use languages of the relevant sort seems to exceed, for instance, those in both
the imperative and functional folds.

Please allow me to point out that logic machines connect in some ways directly to
computability theory. For example, we have the following:

Theorem 1: Let f be a u-recursive function (from N to N). Some Turing
machine M can compute f if and only if 91| can compute f.

Theorem 1’: Let f be a pu-recursive function (from N to N). Some Prolog
program P can compute f if and only if 9t} can compute f.

Of course, we have here a family of theorems, each member of which refers to
some Turing-level manner of computing the functions in question. However, the flip
side of the coin is that the vast majority of logic machines exceed the power of Turing
machines.!! To mention just the first step in the separation between Turing machines
and logic machines, simply note that Turing machines (and their equivalents) max out
at Ay in the Arithmetic Hierarchy, while 2t fully handles ;. Readers unfamiliar
with such matters can nonetheless see clearly how the separation works, as follows.

A Turing machine M can be fully captured by a corresponding finite set ®j; of
formulae in L£1; this is well-known and easily understood from reductions of the
Entscheidungsproblem to the Halting Problem for standard Turing machines (see,
e.g., Boolos et al. 2003 ). We can accordingly show that M halts after having started
work on some input i if a formula ¢; that expresses the placement of i on M’s tape
initially, conjoined with @, entails by some standard proof theory I{ that a formula
h expressing halting holds. Since the query

Dy Ui} h?

can be answered by logic machine 91;, we’ve moved from mere semi-decidability
to full decidability.!?> Once the separation between Turing-level machines and logic
machines is thus established, a formal paradise quickly appears, in the form of the

190ne longstanding class of “fragment” logic machines (not, I confess, recognized as such until now; they
fell under Gardner’s (1958) naive sense of logic machine) corresponds to syllogistic reasoning. For exam-
ple, a member of the class was physicalized by Marquand (1885). Formally, with more space available, we
could specify and consider the logic machine Dﬁf)rg, which computes Aristotle’s tiny fragment glmg of
Z, set out in his Organon. The machine I have in mind has an inferential theory that includes from above
1 IV E and IJ;IS , and IlV I (universal introduction), which, e.g., suffice for this machine’s automated reasoner
to answer that Yes the syllogism Barbara is valid, and supply a confirming proof. See (Smith 2017) for an
overview of Aristotle’s logic, and turn to (McKeon 1941) to study the primary source.

L ogic machines are obviously in most cases Delphic, and relate therefore analogically to the use of
oracles in charting relative computability.

120f course, how one might go about building the automated reasoner for 9; is a separate, and
challenging, question.
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logic-machines hierarchy £9% (out of scope here). To mention just one example, we
have the logic machine 90, ,,, which corresponds to the “small” and “well-behaved”
infinitary logic .%,,, », which allows countably infinite disjunctions and conjunctions,
but only finite quantification.!

Shifting now to program correctness, Turner’s discussion of the topic (Chap. 25)
is efficient, and his concern for such correctness commendable, but the c-s-a-i-f-
1 paradigm quickly provides everything he needs, in short order, and should allay
his fears. As mentioned above, in Turner’s conception of computer science, there is
on the one hand a computer program, and on the other the program’s specification,
against which proofs of correctness are to be sought. But when one sees computer
science as the invention, crafting, and use of logic machines, computer programs are
specifications. Furthermore, the specific worries Turner has evaporate. For example,
consider the worries he expresses here regarding program verification when outside
the paradigm I champion:

When theorem-provers are employed [for program verification], correctness
proofs are derived by representing the programs as axiomatic theories, and their
specifications are deduced as consequences of those theories. More sophisti-
cated systems employ model checking, where a proof of correctness is obtained
by an algorithm that checks whether the program is a model of the specifica-
tion. While this may reduce the correctness problem to that of a single program,
it still means that we are left with the correctness problem for a program. So,
we have replaced the correctness problem for one program by another, and we
have the beginning of an infinite regress. (Turner 2018, pp. 207-208)

When we turn to formal logic as our sufficient basis for computer science, there
is not even the whiff of a regress, for we can employ what is set out and recom-
mended in (Arkoudas and Bringsjord 2007) and (Bringsjord 2015). In barbarically
broad strokes, the execution of a program P is triggered by the issuance of a query ¢,
and consists in the activity of the automated reasoner R, which yields both an answer
and an associated proof (or formal argument) (a).1* Once the checker C certifies
that 7 is valid, the sole remaining issue is the verification of C. But note that there is
only a single checker C for the entire space of logic programs, and the code is short
and trivial, so can be classically verified once and for all, easily.

Allow me to end by responding, very briefly, to an inevitable objection to both the
logicist paradigm I have outlined, and Turner’s philosophy of computer science, to
wit:

Objection 2
“The two of you, reviewer Bringsjord and author Turner, will doubtless believe
yourselves to be miles apart when it comes to your respective views of what

13 A very brief but sharp overview of Zi is given in Chap. IX §2 of (Ebbinghaus et al. 1994).

140f course, sometimes no proof will be found, but e.g. a timeout notification will be supplied. For further
details, see (Bringsjord 2018a). As wisely noted by Dowek (2015), there is no reason why an automated
reasoner working in connection with Turing-undecidable logics can not be allowed to return a timeout
message.
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346 S. Bringsjord

computer science is, but with some sadness I must report that you are actually
in lockstep in being utterly out of tune with what computer science in the 21st
century is, as a matter of empirical fact. These days, the lion’s share of jobs in
computer science, both in industry and in the Academy, are in machine learn-
ing — and I here specifically must of course emphasize deep learning. This is
certainly true of the States; but I suspect that in large measure it’s true as well of
e.g. Europe. Yet, astoundingly, I observe that in Computational Artifacts there
isn’t an iota regarding what a computer scientist does these days in seeing to it
that an artificial neural network comes to learn a function, and on the strength of
that recognize objects in images, or drive automobiles, etc. As to Bringsjord’s
c-s-a-i-f-1 paradigm, well, machine learning is likewise entirely absent. To the
extent, by the way, that both of you venerate theoretical computer science and
recursion theory, you both on this score alone find yourself far away from the
current wave of — as it’s acronymically known — ML.”

As to what’s in Turner’s book in this regard, the critic is entirely correct—but that
is a virtue of the book. Turner, despite his conflation of computer engineering with
computer science, presents in remarkably lucid and economical fashion much of the
latter, and I am in fact busily directing my own students to his excellent book (and
to others; see Turner 2009) in no small part for this reason. To be clear, it is doubtful
that today’s ML even qualifies as engineering in any accurate academic sense of that
term employed since the advent of the differential and integral calculus. It would be
more accurate to regard this beastly departure from the rigorous theoretical structures
so nicely covered by Turner in Computational Artifacts as alchemy, a claim I have
defended at length elsewhere (Bringsjord et al. 2018).
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