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of the Processing in the Raven Progressive Matrices Test
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The cognitive processes in a widely used, nonverbal test of analytic intelligence, the Raven Progres-
sive Matrices Test (Raven, 1962), are analyzed in terms of which processes distinguish between
higher scoring and lower scoring subjects and which processes are common to all subjects and all
items on the test. The analysis is based on detailed performance characteristics, such as verbal proto-
cols, eye-fixation patterns, and errors. The theory is expressed as a pair of computer simulation
models that perform like the median or best college students in the sample. The processing character-
istic common 1o all subjects is an incremental, reiterative strategy for encoding and inducing the
regularities in each problem. The processes that distinguish among individuals are primarily the
ability 1o induce abstract relations and the ability to dynamically manage a large set of problem-

solving goals in working memory.

In this article, we analyze a form of thinking that is prototypi-
cal of what psychologists consider to be analytic intelligence.
We use the term analytic intelligence to refer to the ability to
reason and solve problems involving new information, without
relying extensively on an explicit base of declarative knowledge
derived from either schooling or previous experience. In the the-
ory of R. Cattell (1963). this form of intelligence has been la-
beled fluid intelligence and has been contrasted with crystal-
lized intelligence, which more directly reflects the previously
acquired knowledge and skills that have been crystallized with
experience. Thus, analytic intelligence refers to the ability to
deal with novelty, to adapt one’s thinking to a new cognitive
problem. In this article, we provide a theoretical account of
what it means to perform well on a classic test of analytic intelli-
gence. the Raven Progressive Matrices Test (Raven, 1962).

We describe a detailed theoretical model of the processes
used in solving the Raven test, contrasting the performance of
college students who are less successful in solving the problems
with those who are more successful. The model is based on mul-
tiple dependent measures, including verbal reports, eye fixa-
tions, and patterns of errors on different types of problems. The
experimental investigations led to the development of computer
simulation models that test the sufficiency of our analysis. Two
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computer simulations, FAIRAVEN and BETTERAVEN, express
the differences between good and extremely good performance
on the test. The FAIRAVEN model performs like the median col-
lege student in our sample; BETTERAVEN performs like one of
the very best. The BETTERAVEN model differs from FAIRAVEN
in two major ways: BETTERAVEN has the ability to induce more
abstract relations than FAIRAVEN, and BETTERAVEN has the
ability to manage a larger set of goals in working memory and
hence can solve more complex problems. The two models and
the contrast between them specify the nature of the analytic
intelligence required to perform the test and the nature of indi-
vidual differences in this type of intelligence.

There are several reasons why the Raven test provides an ap-
propriate test bed to study analytic intelligence. First, the size
and stability of the individual differences that the test elicits,
even among college students, suggest that the underlying differ-
ences in cognitive processes are susceptible to cognitive analy-
sis. Second, the relatively large number of items on the test (36
problems) permits an adequate data base for the theoretical and
experimental analyses of the problem-solving behavior. Third,
the visual format of the problems makes it possible to exploit
the fine-grained, process-tracing methodology afforded by eye-
fixation studies (Just & Carpenter, 1976). Finally, the correla-
tion between Raven test scores and measures of intellectual
achievement suggests that the underlying processes may be gen-
eral rather than specific to this one test (Court & Raven, 1982),
although like most correlations, this one must be interpreted
with caution.

The Raven test, including the simpler Standard Progressive
Matrices Test and the Coloured Progressive Matrices Test, is
also widely used in both research and clinical settings. The test
is used extensively by the military in several Western countries
(for example, see Belmont & Marolla, 1973). Also, because of
its nonverbal format, the test is a common research tool used
with children. the elderly. and patient populations for whom the
processing of language may need to be minimized. The wide
usage means that there is a great deal of information about the
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performance profiles of various populations. But more impor-
tant. it means that a cognitive analvsis of the processes and
structures that underlie performance has potential practical
importance in the domains in which the test is used for either
research or classification.

Several different research approaches have converged on the
conclusion that the Raven test measures processes that are cen-
tral to analytic intelligence. Individual differences in the Raven
test correlate highly with those found in other complex, cogni-
tive tests (see Jensen, 1987). The centrality of the Raven test
among psvchometric tests is graphically illustrated in several
nonmetric scaling studies that examined the interrelations
among ability test scores obtained from archival sources and
from more recently collected data (Snow, Kyllonen, & Marsha-
lek, 1984). The scaling solutions for the different data bases
showed remarkably similar patterns. The Raven test and other
complex reasoning tests were at the center of the solution. Sim-
pler tests were located toward the periphery, and they clustered
according to their content. as shown in Figure | (top panel).
This particular scaling analysis is based on the results from vari-
ous cognitive tests given 1o 241 high school students (Marsha-
lek. Lohman, & Snow. 1983). Snow et al. constructed an ideal-
ized space to summarize the results of their numerous scaling
solutions, in which they placed the Raven test at the center, as
shown in Figure | (bottom panel). In this idealized solution,
task complexity is maximal near the center and decreases out-
ward, toward the periphery. The tests in the annulus surround-
ing the Raven test involve abstract reasor....2. induction of re-
lations. and deduction. For tests of intermediate or low com-
plexity only. there is clustering as a function of the test content.
with separate clusters for verbal. numerical. and spatial tests.
By contrast. the more complex tests of reasoning at the center
of the space were highly intercorrelated in spite of differences
in specific content.

One of the sources of the Raven test’s centrality, according to
Marshalek et al. (1983), is that “more complex tasks may re-
quire more involvement of executive assembly and control pro-
cesses that structure and analyze the problem, assemble a strat-
egy of attack on it, monitor the performance process, and adapt
these strategies as performance proceeds™ (p. 124). This theo-
retical interpretation is based on the outcome of the scaling
studies. Our research also converges on the importance of exec-
utive processes. but the conclusions are derived from a process
analvsis of the Raven test.

Although there has been some dispute among psvchometri-
cians about which tests in the larger space might be said to re-
flect analytic intelligence, the Raven test is central with respect
to either interpretation. In one view, intelligence refers to a con-
struct underlying a small range of tests. namely those at the cen-
ter of the space. This view is associated with Spearman (1927),
although Spearman himself avoided the term intelligence and
instead used the term g to refer to the determinants of shared
variance among tests of intellectual ability (Jensen, 1987). An
alternative view, associated with Thurstone (1938), applies the
term intelligence to a large set of diverse mental abilities, includ-
ing not only those at the center of the space but also some do-
main-specific abilities, such as those in the periphery of the
space. Although the two views differ in the size of the spaces
which they associate with intelligence, the centrality of the Ra-

ven test emerges in either case. The centrality of the Raven test
indicates not only that it is a good measure of intelligence. but
also that a theory of the processing in the Raven test should
account for a good deal of the reasoning in the other tests in the
center of the space.

This article is organized in four parts. The structure of the
problems is described in the Problem Structure and Human
Performance section, which focuses on the problem character-
istics that are likely to tax the psychological processes. We also
report two studies that examine the processes empirically, de-
termining which processes distinguish between high-scoring
subjects and lower scoring subjects and which processes are
common to all subjects in their attempts to solve all problems.
In the Simulation Models section, we describe the two simula-
tion models that perform like the median subject or like the
best subject. Next, we compare the performance of the human
subjects and the theoretical models in detail in Comparing Hu-
man Performance to the Theory. In the final section, Cognitive
Processes and Human Intelligence, we generalize the theory and
examine its implications for a theory of intelligence.

Problem Structure and Human Performance

A task analysis of the Raven Progressive Matrices Test sug-
gests some of the cognitive processes that are likely to be impli-
cated in solving the problems. The test consists of a set of visual
analogy problems. Each problem consists of a 3 X 3 matrix, in
which the bottom right entry is missing and must be selected
from among eight response alternatives arranged below the ma-
trix. (Note that the word entry refers to each of the nine cells of
the matrix.) Each entry typically contains one to five figural
elements, such as geometric figures, lines, or background tex-
tures. The test instructions tell the test taker to look across the
rows and then look down the columns to determine the rules
and then to use the rules to determine the missing entry. The
problem in Figure 2 illustrates the format.'

The variation among the entries in a row and column of this
problem can be described by three rules:

Rule 4. Each row contains three geometric figures (a diamond, a
triangle. and a square) distributed across its three entries.

Rule B.  Each row contains three textured lines (dark, striped. and
clear) distributed across its three entries.

Rule C. The orientation of the lines is constant within a row but
varies between rows (vertical. horizontal. and oblique).

The missing entry can be generated from these rules. Rule A
specifies that the answer should contain a square (because the
first two columns of the third row contain a triangle and dia-
mond). Rule B specifies it should contain a dark line. Rule C
specifies that the line orientation should be oblique. from upper
left to lower right. These rules converge on the correct response
alternative, 5. Some of the incorrect response alternatives are

' To protect the security of the Raven problems, none of the actual
problems from the test are depicted here or elsewhere in this article.
Instead, the test problems are illustrated with isomorphs that use the
same rules but different figural elements and attributes. The actual
problems that were presented 1o the subjects are referred to by their
number in the test, which can be consulted by readers.
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Figure 1. Scalings of the intercorrelations among various ability tests showing the centrality of the Raven
test. (Tests near the center of the space. such as the Raven test and letter-series test. are the most complex
and share considerable variance in spite of their differences in content [figural vs. verbal]. The outwardly
radiating concentric circles indicate decreasing levels of complexity and show increasing separation as a
function of test content. Top panel: Nonmetric scaling of the data from 241 high school students. Test
complexity is indicated by the shapes of the points [squares, most complex; triangles, intermediately com-
plex: circles. least complex]. W = Wechsler Adult Intelligence Scale. Bottom panel: An idealization of the
analyses of several psychometric batteries. Tests involving different content—figural, verbal. and numeri-
cal—are separated by dashed lines. Note: The top panel is from **The Complexity Continuum in the Radex
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Figure 2. A problem to illustrate the format of the Raven items. (The
variation among the three geometric forms [diamond. square, and trian-
gle] and three textures of the line [dark. striped. and clear] is each gov-
erned by a distribution-of-three-values rule. The orientation of the line
is governed by a constant-in-a-row rule. The correct answer is 5.)

designed to satisfv an incomplete set of rules. For example. if a
subject induced Rule A but not B or C. he or she might choose
Alternative 2 or 8. Similarly, inducing Rule B but omitting A
and C leads to Alternative 3. This sample problem illustrates
the general structure of the test problems but corresponds to
one of the easiest problems in the test. The more difficult prob-
lems entail more rules or more difficult rules. and more figural
elements per entryv.

Our research focuses on a form of the Raven test that is used
widely for adults of higher ability. the Raven Advanced Progres-
sive Matrices. Sets | and II. Set 1. consisting of 12 problems, is
often used as a practice test or to obtain a rough estimate of a
subject’s ability. The first several problemsin Set I can be solved
by perceptually based algorithms such as line continuation
(Hunt. 1974). However. the later problems in Set I and most of
the 36 problems in Set I1. which our research examines, cannot
be solved by perceptually based algorithms. as Hunt noted.
Like the sample problem in Figure 2, the more difficult prob-
lems require that subjects analyze the variation in the problem
to induce the rules that generate the correct solution. The prob-
lems requiring an analytic strategy can be used to discriminate
among individuals with higher education. such as college stu-
dents (Raven, 1965).
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Figure 3. The percentage error for each problem in Set 11 of the Raven
Advanced Progressive Matrices Test shows the large variation in diffi-
culty among problems with very similar formats. (The data are from
2,256 British adults, including telephone engineering applicants, stu-
dents at a teacher training college, and British Roval Air Force recruits
[Forbes, 1964].)

Problem Difficulty

Although all of the Raven problems share a similar format.
there is substantial variation among them in their difficulty. The
magnitude of the variation is apparent from the error rates
(shown in Figure 3) of 2.256 British adults. including telephone
engineering applicants. students at a teacher training college,
and British Royal Air Force recruits (Forbes, 1964). There is an
almost monotonic increase in difficulty from the initial prob-
lems. which have negligible error rates. to the last few problems,
which have extremely high error rates. (The error rates on the
final problems reflect failures to attempt these problems in the
testing period as well as failures to solve them correctly.) The
considerable range of error rates among problems leads to the
question of what psvchological processes account for the
differences in problem difficulty and for the differences among
people in their ability to solve them.

The test’s origins provide a clue to what the test was intended

. to measure. The Raven Progressive Matrices Test was developed

by John Raven, a student of Spearman. As we previously men-
tioned, Spearman (1927) believed that there was one central
intellectual ability (which he referred to as g). as well as numer-

and Hierarchical Models of Intelligence™ by B. Marshalek, D. F. Lohman. and R. E. Snow, 1983, Intelli-
gence, 7.p. 122. Copyright 1983 by Erlbaum. Reprinted by permission. The bottom panel is from 4dvances
in the Psychology of Human Intelligence [p. 92] by R. E. Snow, P. C. Kyllonen, and B. Marshalek. 1984.
Hillsdale, NJ:Erlbaum. Copyright 1984 by Erlbaum. Reprinted by permission.)
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ous specific abilities. He never precisely defined what g con-
sisted of. but it was thought to involve “‘the eduction of relations
and correlates™ (Spearman. 1927, pp. 165-166). Raven’s con-
ception of what his progressive matrices test measured was
somewhat more articulated. His personal notes, generously
made available to us by his son, J. Raven, indicate that he
wanted to develop a series of overlapping, homogeneous prob-
lems whose solutions required different abilities. However, the
descriptions of the abilities that Raven intended to measure are
primarily characteristics of the problems, not specifications of
the requisite cognitive processes. John Raven constructed prob-
lems that focused on each of six different problem characteris-
tics. which approximately correspond to the different types of
rules that we describe later. He used his intuition and clinical
experience to rank order the difficulty of the six problem types.
Many vears later. normative data from Forbes (1964), shown in
Figure 3, became the basis for selecting problems for retention
in newer versions of the test and for arranging the problems in
order of increasing difficulty. without regard to anv underlving
processing theory. Thus, the version of the test that is examined
in this research is an amalgam of Raven’s implicit theory of the
components of reasoning ability and subsequent item selection
and ordering done on an actuarial basis.

Rule Taxonomy

Across the Raven problems that we have examined. we found
that five different rypes of rules govern the variation among the
entries. Many problems involve multiple rules. which may all
be different rule types or several instances or tokens of the same
type of rule. Table | shows the five types of rules that are illus-
trated by the problems in Figures 2 und 4. Almost all of the
Raven problems in Sets I and II can be classified with respect
to which of these rule types govern its variation, as shown in the
Appendix.’

One qualification to this analysis is that sometimes the set of
rules describing the variation in a problem is not unique. For
example, quantitative pairwise progression is often inter-
changeable with a distribution-of-three-values rule. Consider a
row consisting of three arrows pointing to 12, 4, and 8 o’clock.
This variation can be described as a distribution of three values
or in terms of a quantitative progression, in which the arrow’s
orientation is progressively rotated 120° clockwise, beginning
at 12 o'clock. Similarly, the variation described by a distribu-
tion-of-two-values rule may be alternatively described by a fig-
ure-addition-modulo-2 rule. In the case of alternative rules, the
Appendix lists the rules most often mentioned by the highest
scoring subjects in Experiment la.}

Finding Corresponding Elements

In problems with multiple rules. the problem solver must de-
termine which figural elements or attributes in the three entries
in a row are governed by the same rule, a process that will be
called correspondence finding. For example, given a shaded
square in one entry, the problem solver might have to decide
which figure in another entry. either a shaded triangle or an un-
shaded square, is governed by the same rule. Do the squares
correspond to each other. or do the shaded figures? In this exam-

Table |
A Taxonomy of Rules in the Raven Test

Rule Taxonomy

The same value occurs throughout a
row, but changes down a column.
(See Figure 4b, where the location
of the dark component is constant
within each row: in the top row.
the location is the upper half of
the diamond: in the middle row. it
1s the bottom half of the diamond:
and in the bottom row. it is both
halves.)

A quantitative increment or
decrement occurs between
adjacent entries in an attribute
such as size. position. or number.
(See Figure 4a. where the number
of black squares in each entry
increases along a row from 1 10 2
to 3.)

A figure from one column is added
to (juxtaposed or superimposed)
or subtracted from another figure
to produce the third. (See Figure
4b. where the figural element in
column | juxtaposed to the
element in column 2 produces the
element in column 3.)

Three values from a categorical
attribute (such as figure tvpe) are
distributed through a row. (See
Figure 2, where the three
geometric forms—diamond.
square, and triangle—follow a
distribution rule and the three
line textures—black. striped, and
clear—also follow a distribution
rule.)

Two values from a categorical
attribute are distributed through
a row; the third value is null. (See
Figure 4c. where the various
figural elements, such as the
vertical line. the horizontal line.
and the V in the first row, follow a
distribution of two values.)

Constant in a row

Quantitative pairwise

progression

Figure addition or subtraction

Distribution of three values

Distribution of two values

? This analysis is row oriented. In most problems, the rule types are
the same regardless of whether a row or column organization is applied;
in our experiments, we found that most subjects analyzed the problems
by rows. Two of the problems on the test were unclassifiable within our
taxonomy because the nature of their rules differed from all others.

? This taxonomy finds some converging support from an analysis of
the relations used in figural analogies (both 2 X 2 and 3 X 3 matrices)
from 166 intelligence tests (Jacobs & Vandeventer, 1972). Jacobs and
Vandeventer found that |2 relations accounted for many of the analogi-
cal problems. Five of their relations are closely related to rules we found
in the Raven test: addition and added element (addition or subtraction).
elements of a set (distribution of three values), unique addition (distri-
bution of two values). and identity (constant in a row). Some of the
remaining relations, such as numerical series and movement in a plane,
map onto our quantitative progression rule. The Jacobs and Vande-
venter analysis suggests that relatively few relations are needed to de-
scribe the visual analogies in a large number of such tests.
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Figure 4. Problems illustrating rules of the Raven test. (Panel a: The quantitative pairwise progression rule.
The number of black squares in the top of each row increases by one from the first to the second column
and from the second to the third column. The number of black squares along the left remains constant
within a row but changes between rows from three 10 two 10 one. The correct answer is 3. Panel b: The
figure addition rule. The figural element in the first column is superimposed on the figural element in the
second column to compose the figural element in the third column. The position of the darkened element
remains constant in a row but changes between rows from top to bottom to both. The correct answer is 8.
Panel ¢: The distribution-of-two-values rule. Each figural element, such as the horizontal line, the vertical
line, the V, and so on, occurs twice in a row, and the third value is null. The correct answer is 5.)
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ple, and in some of the Raven problems, the cues to the corre-
spondence are ambiguous, making it difficult to tell a priori
which figural elements correspond to each other. The corre-
spondence-finding process is a subtle source of difficulty be-
cause many problems seem to have been constructed by con-
joining the figural elements governed by several rules, without
much regard for the possible difficulty of conceptually segment-
ing the conjunction.

The difficulty in correspondence finding can be illustrated
with an adaptation of one of the problems (Set II. Problem 28),
shown in Figure 5. A first plausible hypothesis about the corre-
spondences is that the rectangles are governed by one rule, the
curves by another rule, and the straight lines by a third rule.
This hypothesis reflects the use of a matching-names heuristic,
namely that figures with the same name might correspond to
each other. If this hvpothesis is pursued further, it becomes clear
that although each row contains two instances of each figure
type. the number and orientation of the figures vary unsystem-
aticallv. The matching-names heuristic produces an unfruitful
hvpothesis about the correspondences in this problem. A sub-
ject who has tried to applv the heuristic must backtrack and
consider other correspondences that are based on some other
feature. either number or orientation. Number, like figure iden-
tity, does not result in any economical and complete rule that
governs location or orientation. Orientation. the remaining at-
tribute. is the basis for two economical, complete rules. The
horizontal elements in each row can be described in terms of
two distribution-of-three-values rules, one governing number
(one. two. and three elements) and the other governing figure
type (line. curve. and rectangle). Similarly, the vertical elements
in each row are governed by the same two rules. This example
illustrates the complexity of correspondence finding, which,
along with the type of rule in a problem and the number of
rules, can contribute to the difficulty of a problem.

In addition to variation among problems in the difficulty of
correspondence finding, the problems also vary in the number
of rules. Although Raven intended 1o evaluate a test taker’s abil-
ity to induce relations. he apparently tried to make the induc-
tion process more difficult in some problems by including more
examples or tokens of rules. A major claim of our analysis is
that the presence of a larger number of rule tokens taxes not so
much the processes that induce the rules, but the goal-manage-
ment processes that are required to construct, execute, and
maintain a mental plan of action during the solution of those
problems containing multiple rule tokens as well as difficult
correspondence finding.

Experiment 1: Performance in the Raven Test

The purpose of Experiment 1 was to collect more detailed
data about performance in the Raven test to reveal more about
the process and the content of thought during the solving of
each Raven problem. Three types of measures, obtained in Ex-
periments la and 1b. provided the basis for the quantitative
evaluation of the theory.

The first measure was the frequency and pattern of errors,
which were obtained in Experiments la and 1b. The simulation
models account not only for the number of errors that a person
of a given ability will make but also predict which types of prob-

lems he or she will fail to solve. The second type of measure,
obtained in Experiment la, reflects on-line processes used dur-
ing problem solution. One such on-line measure assessed how
the entries in successive rows were visually examined. In partic-
ular. measures of the eye-fixation patterns assessed the number
of times a subject scanned a row of entries and the number of
times he or she looked back and forth (made paired compari-
sons) between entries. Another on-line measure was the time
between the successive statements of rules uttered by subjects
who were talking aloud while solving the problems. These on-
line measures constrain the type of solution processes postu-
lated in the simulations. The third measure, obtained in Experi-
ment 1b, was the subjects’ descriptions of the rules that they
induced in choosing a response to each problem. The subjects’
rules were compared with the rules induced by the simulation
models.

Method

Procedure for Experiment la. In Experiment la, the subjects were
presented with problems from the Raven test while their eve fixations
were recorded. They were asked to talk out loud while they solved the
problems. describing what they noticed and what hypotheses thev were
entertaining. The subjects were given the standard psychometric in-
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Figure 5. A problem to illustrate characteristics that make it difficult to
determine which figural elements correspond. that is. which are oper-
ated on by the same rule. (Subjects initially assume that the rectangles
correspond to each other. the dark curves correspond to each other, and
the straight lines correspond to each other. But to solve the problem,
subjects must backtrack and try other possible bases for correspon-
dence, such as numerosity or orientation. Orientation turns out 1o pro-
vide the correct basis. The horizontal figures correspond to each other:
their form [rectangle, curve. and straight line] and number [1, 3, and 2]
are governed by distribution-of-three-values rules. Similarly, the verti-
cal figures correspond to each other: their form and number are also
governed by distribution-of-three-values rules. The correct answeris 5.)
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structions and shown two simple practice problems. One deviation
from standard psvchometric procedure was that subjects were told to
pace themselves so as to attempt all of the problems in the standard 40-
min tme limit,

Sumudi. Experiment la used 34 of the 48 problems in Sets [ and
11 that could be represented and displaved within the raster graphics
resolution of our display system. which was 512 x 512 pixels (see Just
& Carpenter. 1979. for a description of the video digitization and display
characteristics). The stimuli were created by digitizing the video image
of each problem in the Raven test booklet. The Appendix shows the
sequence number in the Raven test of the problems that were retained.
The problems that could not be adequatelv digitized were those with
very high spatial frequencies in their depiction, such as small grids or
crosshatching (Set I1. Problems 2, 11, 15, 20, 21, 24, 25, 28, and 30).
There was little relation between the presence of high spatial frequencies
and a problem’s difficulty, as indicated by the normative error rate from
Forbes (1964) shown in Figure 3.

Eye fixarions. The subjects’ eye fixations were monitored remotely
with an Applied Science Laboratories corneal and pupil-centered eye
tracker that sampled at 60 Hz, ultimately resulting in an x-y pair of
gaze coordinates expressed in the coordinate system of the display. The
individual x-) coordinates were later aggregated into fixations. Then.
successive fixations on the same one of the nine entries in the problem
matrix or on a single response alternative were aggregated together into
units called gazes. which constituted the main eve-fixation data base.

Procedure for Experiment 1b. Unlike Experiment la, in which sub-
Jects gave verbal protocols while they solved each problem. in Experi-
ment 1b, subjects were asked to work silently, make their response, and
then describe the rules that motivated their final response. This change
in procedure was intended to provide more complete information about
Wit rules the subjects induced. These rule statemen:- were then com-
pared with the rules induced by FAIRAVEN and BETTERAVEN., Subjects
were given 40 problems. approximately half of which were from the
Raven Progressive Matrices Test and half from the Standard Progressive
Matrices Test, involving similar rule types, to increase the number of
problems involving more difficult rules. The subjects in Experiment Ib
were tested in two sessions separated by approximately | week. with 20
items in each session.

Subjects. In Experiment la. the subjects were 12 Carnegie Mellon
students. who participated for course credit. In Experiment 1b. the sub-
Jects were 22 students from Carnegie Mellon and the University of Pitts-
burgh. who participated for a $10 payment. Data were not included
from 3 additional subjects who did not return for the second session to
complete Experiment 1b.

Overview of Results

This overview presents the general patterns of results. partic-
ularly results that influenced the design features of the simula-
tion models. This overview. presented in preliminary and quali-
tative terms. is followed by a more precise analysis of the data
(see Comparing Human Performance to the Theory) after the
presentation of the models.

In Experiment la. over all 34 problems. the number of errors
per subject ranged from 2 to 20, with a mean of 10.5 (3 1%) and
a median of 10.3. Although our college student subjects had a
lower mean error rate than Forbes's ( 1964) more heterogeneous
sample. the correlation between the error rates of our sample
and Forbes’s on the 27 problems in Set 11 was high, r(25) = 91.
In Experiment 1b. the mean number of errors for the 40 Raven
problems was 11.1 (28%), with a median of 10 errors.*

The error rate on a given problem was related to the types of
rules it involved and the number of tokens of each rule type. A

simple linear regression with a single independent variable that
coded the total number of rules in a problem (regardless of
whether they were of similar or different tvpes and excluding
any constant rules) accounted for 57% of the variance among
the mean error rates in Experiment 1a for the 32 problems clas-
sified within our taxonomy. (If constant rules are included in
the number of rule tokens in a problem. then the percentage of
variance accounted for declines to 45%.) The median and mean
response times for correct responses were generally longer for
the problems that had higher error rates (with a correlation of
.87 between the mean times and the errors), suggesting that
problem difficulty affected both performance measures.

Perhaps the most striking facet of the eye fixations and verbal
protocols was the demonstrably incremental nature of the pro-
cessing. The way that the subjects solved a problem was to de-
compose it into successively smaller subproblems and then pro-
ceed to solve each subproblem. The induction of the rules was
incremental in two respects. First of all, in problems containing
more than one rule, the rules were described one at a time. with
long intervals between rule descriptions. suggesting that they
were induced one at a time. Second, the induction of each rule
consisted of many small steps, reflected in the pairwise compar-
ison of elements in adjoining entries. These aspects of incre-
mental processing were ubiquitous characteristics of the prob-
lem solving of all of the subjects and do not appear to be a
source of individual differences. Consequently, the incremental
processing played a large role in the design of both simulation
models.

A typical protocol (in Figure 6) from 1 subject illustrates the
incremental processing. Table 2 shows the sequence of gazes
and verbal comments made by an average subject (41% errors)
solving a problem involving two distribution-of-three-values
rules and a constant-in-a-row rule (Set IL. Problem 1. which is
1somorphic to the problem depicted in Figure 2). The subject’s
comments are transcribed adjacent to the gazes that occurred
during the utterance. (The subject’s actual comments were
translated to refer to the isomorphic attributes depicted in Fig-
ure 2.) The location of each gaze is indicated by labeling the
rows in the matrix from top to bottom as rows 1. 2. and 3 and
the columns from left to right as 1. 2. and 3. such that (1.2)
designates the entry in the top row. middle column. The braces
encompassing a sequence of gazes indicate how the gazes were
classified in the analysis that counted the number of scans of
rows and columns. The duration of each gaze is indicated in
milliseconds next to the location of the gaze.

“ A control study showed that the deviations from conventional ad-
ministration did not alter the basic processing in Experiment la. A sep-
arate group of 19 college students was given the test without recording
eve fixations or requiring concurrent verbal protocols. This control
group produced the same pattern of errors. r(25) = .93, and response
times, r(25) = .89, as the subjects in Experiment la for the 27 problems
from Set II that both groups were presented. Furthermore. the error
rate was slightly higher in Experiment la (33%) than in the control
group (25%). demonstrating that the lower rate in Experiment la (and
1b) compared with Forbes's (1964) sample is probably due 10 our sam-
ple’s comprising exclusively college students, rather than to increased
accuracy in Experiment 1a because of eve-fixation recording or genera-
tion of verbal protocols.
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Figure 6. The sequence of gazes shown in the protocol in Table 2. (Gazes within the same row are connected.
The numbers in parentheses indicate the location of a gaze that followed if it was in a different row.)

Table 2
Gaczes in a Typical Protocol (Subject 5, Raven Set I1, Problem 1)
Gaze Location Duration Subject’s Gaze Location Duration Subject’s
no. (row, column) ‘ms) comments no. (row, column) (ms) comments
1 Pairwise [!, 2 233 31 2,3 167 going from vertical,
2 (LIHL2) | 1,1 367 32 Row 3 | 3,2 133 horizontal,
3 1,2 533 33 3,1 650 oblique,
4 1,1 117 34 3,2 433
5 Row | [I .3 4347 35 3.3 432
6 1,2 367 “Okay, 36 Row3 | 3.2 1677
7 1.1 516 37 L3l 400
8 Row | [l. 2 400 38 2.3 217 and the third one
9 1,3 5177 39 3,2 583 should be—
10 1,2 550 40 Pairwise [ 2,2 583
11 1,1 383 there's diamond, 41 (2,243, 1) [3. 1 334
12 Rowl | 1,2 517 square, triangle, 42 2,2 267
13 1,3 285 43 Row 3 [3.2 383
14 1,2 599 44 3,1 234
15 Pairwise [1, 1 533 45 Answers [7 183
16 (1, 1)(1,2) L1,2 468 46 4 467
17 2,3 284 47 3,3 217
18 3,2 317 48 Row3!:3,2 199
19 1.2 434 and they each 49 3,1 183
20 1,1 533 contain lines 50 ra.2 350
21 2.1 434 through them 51 Diagonal | 1,3 1507
22 Row 2 E..’. 4514 52 L3l 433
23 2.3 467 53 1,2 234
24 2.2 467 54 2.1 117 Okay, it should be a
25 2.1 1677 55 Row 3 [3.2 417 square
26 Row 3 [3.1 233 56 3.1 366
27 13.2 267 with different 57 Answer "I 2507
28 1.2 483 shadings 58 5 1.900 and should have the
2 Column 2 {2.2 599 59 i1 250
30 [ 3.2 30071 60 LS 1847
N black line in them
and the answer’s 5.
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The verbal report shows that the subject mentioned one attri-
bute at a time. with some time interval between the mentions.
suggesting that the representation of the entries was being con-
structed incrementally. Also, the subject described the rules one
at a time. typically with several seconds elapsing between rules.
The subject seemed to construct a complete representation at-
tribute by attribute and induced the rules one at a time.

The incremental nature of the process is also apparent in the
pattern of gazes, particularly the multiple scans of rows and col-
umns and the repeated fixations of pairs of related entries.
These scans are apparent in the sequence of gazes shown in Fig-
ure 6. (The numbers indicating the sequence of gazes have been
placed in columns to the right of the fixated entries, and lines
have been drawn to connect the successive fixations of entries
within rows.) This protocol indicates the large amount of pair-
wise and row-wise scanning. For example, like most of the eye-
fixation protocols, this one began with a sequence of pairwise
gazes on the first two entries in the top row. The subject was
presumably encoding some of the figural elements in these two
entries and comparing their attributes. The subject went on to
compare middle and right entries of the top row. followed by
several scans of the complete row.

The general results. then. are that the processing is incremen-
tal. that the number of rule tokens affects the error rates, and
that there is a wide range of differences among individuals in
their performance on this test.

Experiment 2: Goal Management in Oiier Tasks

The finding that error rates increase with the number of rule
tokens in a problem suggests that the sheer keeping track of
figural attributes and rules might be a substantial source of indi-
vidual differences in the Raven test. “Keeping track™ refers to
the ability 10 generate subgoals in working memory, record the
attainment of subgoals. and set new subgoals as others are at-
tained. Subjects who are successful at goal management in the
Raven test should also perform well on other cognitive tasks
involving extensive goal management. One such task is a puzzle
called the Tower of Hanoi, which can be solved with a strategy
that requires considerable goal management. Most research on
the Tower of Hanoi puzzle has focused on how subjects induce a
correct strategy. By contrast. in the current study. the inductive
aspect of the puzzle was minimized by teaching subjects a strat-
egy beforehand. with extensive instructions and practice. Errors
on the Tower of Hanoi puzzle should correlate with errors on
the Raven test to the extent that both require goal management.

The Tower of Hanoi puzzle consists of three pegs and three
or more disks of increasing size arranged on one of the pegs in
the form of a pyramid, with the largest disk on the bottom and
smallest disk on the top. as shown in the top corner of Figure 7.
The subject’s task is to reconstruct the pyramid, moving one
disk at a time, onto another peg (the goal peg) without putting
a larger disk on a smaller disk. One of the most commonly used
strategies in the puzzle is called the goal-recursion strategy (Ko-
tovsky. Hayes. & Simon, 1985: Simon, 1975). With this strategy,
the puzzle is solved by first setting the goal of moving the largest
disk from the bottom of the pyramid on the source peg to the
goal peg. But before executing that move, the disks constituting
the subpyramid above the largest disk must be moved out of the

way. This goal is recursive because in order to move the subpyra-
mid. its largest disk must be cleared. and so on. Thus. to execute
this strategy. a subject must set up several embedded subgoals.
As the number of disks in a puzzle increases, the subject must
generate a successively larger hierarchy of subgoals and remem-
ber his or her place in the hierarchy while executing successive
moves.

Moves in the Tower of Hanoi puzzle can be organized within
a goal tree that specifies the subgoals that must be generated or
retained on each move, as pointed out by Egan and Greeno
(1974). Figure 7 shows a diagram of the goal tree when the goal-
recursion strategy is used in a four-disk problem. Each branch
corresponds 10 a subgoal, and the terminal nodes correspond
to individual moves. The subject can be viewed as doing a
depth-first search of the goal tree; in the goal-recursion strategy,
the subject is taught to generate the subgoals equivalent to those
listed in the leftmost branch to enable the first move. Subse-
quent moves entail maintaining, generating, or attaining vari-
ous subgoals. In particular, on Moves 1, 5, 9, and 13. the claim
is that the subject should generate one or more subgoals before
executing the move: by contrast, no new subgoals need to be
generated before other moves. Egan and Greeno found that like-
lihood of an error on a move increased with the number of goals
that had to be maintained or generated to enable that move.
Consequently, performance on the Tower of Hanoi goal-recur-
sion strategy should correlate with performance on the Raven
test, to the extent that both tasks rely on generating and main-
taining goals in workinz memory.

Method

Procedure. The subjects were administered the Raven Progressive
Matrices Test, Sets | and I1. using standard psychometric procedures.
Then the subjects were given extensive instruction and practice on the
goal-recursion strategy in two-disk and three-disk versions of the Tower
of Hanoi puzzle. Finally, all subjects were given Tower of Hanoi prob-
lems of increasing size, from three disks to eight disks. although several
subjects were unable to complete the eight-disk puzzle: therefore. the
data analysis concerns only the three-disk to seven-disk problems. The
total number of moves required to solve a puzzle with A disks. using
goal recursion, is 2% — 1. The start and goal pegs for puzzles of each size
were selected at random from trial to trial. Between trials, subjects were
reminded to use the goal-recursion strategy. and they were questioned
at the end of all of the trials to ensure that they had complied. In place
of a physical Tower of Hanoi. subjects saw a computer-generated ( Vax-
station II) graphic display, with disks that moved when a source and
destination peg were indicated with a mouse. Subjects seldom at-
tempted an illegal move (placing a larger disk on a smaller disk), and
such attempts were disallowed by the program. If subjects made a move
that was inconsistent with the goal-recursion strategy (and hence would
not move them toward the goal), the move was signaled as an error by a
computer tone, and the subject was instructed to undo the erroneous
move before making the next move. Thus, subjects could not stray more
than one move from the optimal solution path. The main dependent
measure was the total number of errors, that is. moves that were incon-
sistent with the goal-recursion strategy.

Subjects. The subjects were 45 students from Carnegie Mellon, the
University of Pittsburgh. and the Community College of Allegheny
County who participated for $10 payment. They took the Raven Ad-
vanced Progressive Matrices Test and solved the Tower of Hanoi puz-
zles.
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Figure 7. The goal tree generated by the goal-recursion strategy for the four-disk Tower of Hanoi
puzzle. (The tree is traversed depth first. from left to right. generating the 15 moves.)

Results and Discussion

Because of its extensive dependence on goal management,
overall performance of the goal-recursion strategy in the Tower
of Hanoi puzzle was predicted to correlate highly with the Ra-
ven test. Consistent with this hypothesis, the correlation be-
tween errors on the Raven test and total number of errors on
the six Tower of Hanoi puzzles was r(43) = .77, p < .01, a corre-
lation that is close to the test-retest reliability typically found
for the Raven test (Court & Raven, 1982). A subanalysis of the
higher scoring subjects was also performed because many anal-
yses presented later in this article deal primarily with students
who scored in the upper half of our college sample on the Raven
test. The subanalysis was restricted to subjects whose Raven
scores were within 1 SD of the mean Raven score in Experiment
la or above, eliminating 9 low-scoring subjects (scores between
12 and 17 points on the Raven test).® Even with this restricted
range. the correlation between errors on the Tower of Hanoi
puzzles and the Raven test for the 34 students with scores of 20
or higher was highly significant, r(32) = .57. These correlations
support the thesis that the execution of the goal-recursion strat-
egy in the Tower of Hanoi puzzle and performance on the Raven
test are both related to the ability to generate and maintain
goals in working memory.

A more specific prediction of the theory is that errors on the
Tower of Hanoi puzzle should occur on moves that impose a
greater burden on working memory and that the effect should
depend. in part. on the capacity to maintain goals in working

memory, as assessed by the Raven test. These predictions were
supported, as shown in Figure 8, which shows the probability
of an error on moves that require the generation of zero, one,
or two or more subgoals; the four curves are for subjects who
are classified according to their Raven test score. The error rates
were low and comparable for moves that did not require the
generation of additional subgoals; by contrast, lower scoring
subjects made significantly more errors as the number of sub-
goals to be generated increased, as reflected in an interaction
between the subject groups and whether there were zero or one

5 As expected, subjects with low Raven test scores (12-17 points)
made more errors than other groups as the number of subgoals to be
generated increased (their error rate was .13, .66, and .59 for moves
involving the generation of zero, one, and two or more subgoals, respec-
tively). Their data were better fit by a model that assumed a more lim-
ited-capacity working memory and more goal generation. even for the
smallest subpyramid. Also. the lowest scoring subjects were more likely
to make multiple errors at a single move than were other subject groups.
The lowest scoring subjects made an average of 17.2 of such errors while
solving the five puzzles, compared with only 4 such errors by the next
lowest scoring group (those with Raven test scores of 20-24 points).
Multiple errors at a move suggest considerable difficulty in executing
the strategy because only 2 errors were possible at each move. and 1 of
the 2 consisted of retracting the previous correct move. Later in the
article we discuss evidence that subjects in the bottom half of the distri-
bution are more influenced than those in the upper half by extraneous
processes while performing the Raven test as well.
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Figure 8. The probability of an error for moves in the Tower of Hanoi
puzzle as a function of the number of subgoals that are generated to
enable that move. (The curves represent subjects in Experiment 2 sorted
according to their Raven test scores, from best [33-36 points] to low-
median [20-25 points] performance.)

or more subgoals to be generated, F(3, 32) = 3.57, p < .05.
Figure 8 also shows that the best performance was obtained by
subjects with the best Raven test performance, F(3, 32) = 3.53,
p < .05, and that the probability of an error increases with the
number of subgoals to be generated in working memory, F2,
o4t = 77.04. p < .01. This pattern of resul:- supports the hy-
pothesis that errors in the Tower of Hanoi puzzle reflect the
constraints of working memory: consequently. its correlation
with the Raven test supports the theory that the Raven test also
reflects the ability to generate and maintain goals in working
memory.

The high correlation between the two tasks accounts for most
of the reliable variance in the Raven test, raising the question
of whether there is any need to postulate other processes. such
as abstraction. as additional sources of individual differences in
the Raven test. But using goal recursion in the Tower of Hanoi
involves some abstraction to recognize each of the many con-
figurations of subpyramids to which the strategy should be ap-
plied. Thus. the high correlation may reflect some shared ab-
straction processes. as well as goal generation and management.

The Raven test correlates with other cognitive tests that differ
from it in form and content but, like the Raven test. appear to
require considerable goal management. One example of such a
test is an alphanumeric series-completion test, which requires
the subject to determine which letter or number should occur
nextinaseries,asin / B3ID5G 7K ?? (The answeris 9 P)

Such correlations may reflect the fact that both tasks involve
considerable goal generation and management. A theoretical
analysis of the series-completion task by Kotovsky and Simon
(1973:Simon & Kotovsky, 1963: Williams, 1972) indicated that
the series-completion test. like the Raven test, requires corre-
spondence finding. pairwise comparison of adjacent corre-
sponding elements, and the induction of rules based on patterns
of pairwise similarities and differences. The general similarity
of the underlying processes leads to the prediction of correlated
performance in the two tasks despite the minimal visuospatial
pattern analysis in the series-completion task. This construal of

the correlation is further supported by the fact that some of the
sources of individual differences in the series-completion task
are known and converge with our analysis of individual differ-
ences in the Raven test. Applying the Simon and Kotovsky
(1963: Kotovsky & Simon., 1973) model to analyze the working
memory load imposed by different types of series-completion
problems. it was found that problems involving larger working
memory loads differentiated between bright and average-1Q
children more than did easier problems: this difference suggests
that the ability to handle larger memory loads in the series-com-
pletion task correlates with 1Q (Holzman, Pellegrino, & Glaser,
1983). These correlations, as well as the correlation between the
Raven test and the Tower of Hanoi puzzle, strongly suggest that
amajor source of individual differences in the Raven test derives
from the generation and maintenance of goals in working
memory.

The Simulation Models

In this section, we first describe the FAIRAVEN model. which
performs comparably to the median college student in our sam-
ple. who is already at a rather high level of performance relative
to the population norms. Then, we describe the changes re-
quired to improve FAIRAVEN’s performance to the highest level
attained by our subjects, as instantiated by the BETTERAVEN
model.

Overview

The primary goal in developing the simulation models was to
specify the processes required to solve the Raven problems. In
particular, the simulations should make explicit what distin-
guishes easier problems from harder problems. and corre-
spondingly, what distinguishes among individuals of different
ability levels. The simulations were designed to perform in a
manner indicated by the performance characteristics observed
in Experiment la, namely incremental, reiterative representa-
tion and rule induction.

The general outline of how the model should perform is as
follows. The model encodes some of the figures in the first row
of entries. starting with the first pair of entries. The attributes
of the corresponding figures are compared. the remaining entry
is encoded and compared with one of the other entries. and then
the pattern of similarities and differences that emerges from the
pairwise comparisons is recognized as an instance of a rule. In
problems involving more than one rule, the model must deter-
mine which figural elements are governed by a common rule.
The representation is constructed incrementally, and the rules
are induced one by one. This process continues until a set of
rules has been induced that is sufficient to account for all the
variation among the entries in the top row. The second row is
processed similarly, and in addition, a mapping is found be-
tween the rules for the second row and their counterparts in
the first row. The rules for the top two rows are expressed in a
generalized form and applied to the third row to generate the
figural elements of the missing entry, and the generated missing
entry is selected from the response alternatives.
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Figure 9. A block diagram of FAIRAVEN. (The perceptual-analysis productions, conceptual-analvsis produc-
tions. and response-generation productions all interact through the contents of working memory. The per-
ceptual-analysis productions accept stimulus descriptions and generate a list of simulated fixations. fig =
figure: pos = position: attr = attribute; perc = percept; desc = description: diff = different: val = value:

distr = distribution.)

The Programming Architecture

Both FAIRAVEN and BETTERAVEN are written as production
systems. a formalism that was first used for psychological mod-
eling by Newell and Simon (Newell, 1973; Newell & Simon,
1972) and their colleagues. In a production system, procedural
knowledge is contained in modular units called productions,
each of which specifies what actions are to be taken when a
given set of conditions arises in working memory. If the condi-
tions of one or more productions match the current contents of
working memory. the productions are enabled to execute their
actions, and they thereby change the contents of working mem-
ory (by modifving or adding to the contents). The new status of
working memory then enables another set of productions, and
so another cycle of processing starts. All production systems
share these control principles, although they may differ along
many other dimensions (see Klahr, Langley, & Neches, 1987).

The particular production-system architecture used for these
simulations is CAPS (for Concurrent, Activation-Based Produc-
tion System: Just & Carpenter, 1987; Just & Thibadeau, 1984
Thibadeau. Just. & Carpenter. 1982). Even though CaPS was
constructed on top of a conventional system. ops4 (Forgy & Mc-
Dermott. 1977). it deviates in several ways from conventional
production systems. One distinguishing property is that on any
given cycle. CAPS permits all the productions whose conditions
are satisfied to be enabled in parallel with each other. Thus.
CAPS has the added capability of parallelism. along with the in-
herent seriality of a production system. By contrast. conven-
tional production svstems enable only one production per cy-
cle. regardless of how many of them have had their conditions
mel. requiring some method for arbitrating among satisfied
productions. Another distinguishing property of CAPS is that

knowledge elements can have varying degrees of activation.
whereas in conventional systems. elements are either present or
absent from working memory. Other properties of CAPS. not
used in the present applications, are described elsewhere (Just
& Thibadeau, 1984; Thibadeau et al., 1982).

FAIRAVEN

The FAIRAVEN model consists of 121 productions that can
be roughly divided into three categories: perceptual analysis,
conceptual analysis. and responding. These three categories,
which respectively account for approximately 48%, 40%, and
12% of all the productions, are indicated in the block diagram
in Figure 9. The productions that constitute the perceptual an-
alyzer simulate some aspects of the visual inspection of the stim-
ulus. These productions access information about the visual
display from a stimulus description file and bring this informa-
tion into working memory as percepts. These productions also
notice some relations among percepts. The productions in the
conceptual analyzer try to account for the variation among the
entries in one or more rows by inducing rules that relate the
entries. The responder uses the induced rules to generate a hy-
pothesis about what the missing matrix entry should be, and it
then determines which of the eight response alternatives best
fits that hypothesis. The next sections describe each of the three
categories in more detail. This description is followed by an
example of how FAIRAVEN solved the problem shown in Fig-
ure 2.

Perceptual Analysis

The FAIRAVEN model operates on a stimulus description that
consists of a hand-coded, symbolic description of each matrix
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entry. Thus. the visual encoding processes that generate the
svmbolic representation lie outside the scope of the model. This
incompleteness does not compromise our analy sis of individual
differences. for three reasons. First, the high correlations be-
tween the Raven test and other nonvisual tests (such as letter-
series completion and verbal analogies, shown in Figure 1. bot-
tom panel) indicate that visual encoding processes are not a
major source of individual differences. Second, our protocol
studies of the Raven test suggest that subjects have no difficulty
perceiving and encoding the figures in each entry of a problem,
such as squares, lines. angles. and so on. Third. the protocols
indicate that the subjects have difficulty determining the corre-
spondences among figures and their attributes, a process that
lies within the scope of the model.

Stimulus descriptions. The perceptual-analysis productions
operate on a symbolic description of each matrix entry and re-
sponse alternative. To generate these descriptions, an indepen-
dent group of subjects was asked to describe the entries in each
problem. one entry at a time. without any problem-solving
goal. The modal verbal descriptions served as the basis for the
stimulus descriptions. The typical descriptions were in terms of
basic-level figures (e.g.. a square or a line) and their attributes
(e.g.. striped: Rosch. 1975). For example, the entry in the upper
left of the matrix shown in Figure 2 would be described as a
concatenation of two figures, a diamond and a line, with the
line having the attributes of orientation (vertical) and texture
(dark). The stimulus description of some figures contained an
additional level of detail that was accessed if the base-level de-
scripuon was insufficient to establish correspondences. as in the
case of embedded figures.

The perceptual analysis is done by three subgroups of pro-
ductions that (a) encode the information about the figures, (b)
determine the correspondences. and (¢) compare the figures in
adjacent entries to obtain a pattern of pairwise similarities and
differences. Each subgroup is described in turn.

Encoding productions. These productions. the only access
path to the stimulus information. transfer some or all of the
information from the description file into working memory
when such information is requested. If the entries in a given
problem contain figures with several attributes, then FAIRAVEN
will go through multiple cycles of perceptual analysis of the en-
tries in a row until all the attributes have been analyzed. This
behavior of the model was intended to express the incremental
processing and reiterative scanning of the entries that was evi-
dent in the human eve-fixation patterns. Some of the simulated
inspections of the stimulus. like the initial inspection of an en-
try. are data driven. If an entry’s position in the matrix is speci-
fied. one of the encoding productions returns the names of each
figure in that entry and the number of figures, but not any attri-
bute information. Other inspections can be driven by a specific
conceptual goal, such as the need to determine attributes of a
particular figure. If an entry’s position and the name of a figure
are specified. one of the encoding productions returns an attri-
bute of the figure and, if requested. its value. These encoding
productions, which are more conceptually driven, are evoked
after hypotheses are formulated in the course of induci ng and
verifying rules.

Finding correspondences between figures. In most problems,
because more than one rule is operating, it is necessary to con-

ceptually group the figures in a row that are operated on by each
rule. The main heuristic procedure that subjects seem to use is
to hypothesize that figures having the same name (e.g.. line)
should be grouped together. Similarly. FAIRAVEN uses a match-
ing-names heuristic, which hypothesizes that figures having the
same name correspond to each other. A second heuristic rule
used by FAIRAVEN is the matching-leftovers heuristic. which hv-
pothesizes that if all but one of the figures (or attributes) in two
adjacent entries have been grouped. then those leftover figures
(or attributes) correspond to each other. For exam ple, for
the problem depicted in Figure 2, the matching-names heuris-
tic hypothesizes the correspondence among the three lines, and
the matching-leftovers heuristic hypothesizes correspondence
among the geometric figures that are leftover in each entry.

The FAIRAVEN model also tries to establish correspondences
between the figures in different rows by expressing how the rules
from a previous row account for the variation in the new row,
usually by generalizing the rule.

FPairwise comparison. The pairwise comparison productions
perform the fundamental perceptual comparisons between
figures or attributes that are hypothesized to correspond to each
other and thus provide the data base for the conceptual process-
ing. These productions determine whether the elements are the
same or different with respect to one of their attributes. For
example, consider a row of three entries consisting of successive
sets of circles: 0 00 00o. By comparing the circle in the first
entry with the two circles in the second entry, these productions
would establish that the: differ in the attribute of numerosity.
such that the second entry has one more circle. These produc-
tions would then determine that this difference also character-
1zes the relation between the second and third entries. Both of
these differences would be noted in working memory and would
serve as the input to a production that hypothesizes a system-
atic variation in the numerosity of the circles across the three
columns. The human counterpart of the pairwise comparison
processes may be responsible for the one or more pairs of gazes
between two related entries in the eve-fixation protocols.

Conceptual Analysis

The conceptual-analysis productions induce the rules that
account for the variation among the figures and attributes in
each of the first two rows. For example. if the numerosity of an
element is one in column 1, two in column 2, and three in col-
umn 3, then a rule-induction production would hypothesize
that the variation in numerosity is governed by a rule that says
"“add one as you progress rightward from column to column.”
These are the types of rules FAIRAVEN knows:

® constant in a row

® quantitative pairwise progression
e distribution of three values

* figure addition or subtraction.

Note that this list of rules does not include the distribution-
of-two-values rule even though it is one of the rules governing
the variation in some of the problems. The reason for omitting
this rule is that problems containing this rule could not be
solved with FAIRAVEN’s limited correspondence-finding ability.
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Also, problems containing this rule were often unsolved by the
median subjects whom FAIRAVEN was intended to simulate.®

The main information on which the rule-induction produc-
tions operate are the patterns of pairwise similarities and
differences. When a particular pattern of variation in the entries
has been encoded in working memory, it directly evokes the
appropriate rule-inducing production. Some of the productions
in this module induce a rule to account for just one row at a
time, whereas others induce a generalized form of the rule by
combining the rules that apply to corresponding figures in both
the first and the second rows. The generalization is made by
expressing the rules in terms of variables rather than using the
actual values encountered in the first two rows. The more gen-
eral form of the rules induced by the model are intended to be
counterparts of the human subjects’ verbal statements of the
rules. In a later section. the simulation’s and human subjects’
statements of rules are compared with respect to their content
and the time in the trial at which they occur.

The perceptual analysis and the conceptual analysis are ap-
plied to the second row much as to the first row, except that
the processing of the second row includes one additional step,
namely establishing correspondences between the figures in the
first and second rows. The perceptual analysis of the first two
entries in the third row is similar to the analysis of the second
row, including encoding, finding correspondences, and doing
pairwise comparisons to determine which figures or values vary
and which are constant in the first two entries. When this pro-
cessing has been done, the response-generation productions
take over.

Response Generation and Selection

The productions in this moduie use the hypothesized rules
and the information in the first two columns of the third row to
generate the missing entry in the third column. The general
form of the rule that applies to the first two rows must be instan-
tiated in terms of the specific values encountered in the first two
entries in the third row. In problems containing more than one
rule. the interrow correspondence between figures indicates
which rules to associate with which figures. The instantiated
rule (or rules) is applied to generate the missing entry, and then
FAIRAVEN searches through the response alternatives for one
that adequately matches the generated missing entry.

The model’s strategy of generating the figures and attributes
of the missing entry and then finding it among the alternatives
closely corresponds to what the higher scoring subjects did. The
lower scoring subjects sometimes scanned the response alterna-
tives before inducing the rules, particularly in the case of the
more difficult problems. Other researchers have also found that
lower scoring subjects are more likely to use response-elimina-
tion strategies for geometric analogy problems. whereas higher
scoring subjects are more likely to determine the properties of
the desired response before examining the response alternatives
(Bethell-Fox. Lohman. & Snow. 1984: Dillon & Stevenson-
Hicks. 1981).

An Example of FAIR4VEN's Performance

The processes of FAIRAVEN can be illustrated by describing
how it solves the problem depicted in Figure 2. The model starts

by examining the top row. The variation among the three en-
tries in a row is found by examining the pairwise similarities
and differences between the figures and attributes found in adja-
cent columns. The first pairwise comparison is between the en-
tries in the first and second columns of the top row. The encod-
ing productions determine that the first entry contains a dia-
mond and line and the second entry contains a square and line.
The productions that find correspondences use the matching-
names heuristic to postulate a correspondence between the
lines that occur in the two entries. Once a correspondence is
found between the lines, the matching-leftovers heuristic is used
to postulate a second correspondence between the diamond and
the square. Then FAIRAVEN compares the entries in the second
and third columns. The lines in the second and third columns
are postulated to correspond to each other, and the square is
postulated to correspond to the triangle. The pattern of varia-
tion among the lines evokes the induction of a rule requiring
that each entry in a row contain a line. Note that this is not the
final form of the rule. The pattern of variation among the other
figures in correspondence, namely the diamond. square, and
triangle, evokes the induction of a distribution-of-three-values
rule, such that each row contains one each of a diamond.
square, and triangle in its three entries.

After these two rules have been induced. there is a second
iteration of inspecting the entries in the first row. In the second
iteration, the variation in the texture of the lines is noted, and
this evokes the rule that each set of lines in a row has a texture
that is either black, striped, or clear. On this and subsequent
iterations, one attribute (and its value) per figure is perceived.
Thus. the total number of iterations on a row depends on the
maximum number of attributes possessed by any of the figures.
As the variation in each additional attribute is discoverzd. one
or more additional rules are induced to account for the varia-
tion. Thus, the perceptual and conceptual analyses are tempo-
rally interwoven.

The order in which the various attributes are processed is
determined by the order in which they are encoded, which in
turn is determined by their order in the stimulus description
file. which in turn was guided by their order of mention by the
subjects who only described the entries. So on the next iteration,
FAIRAVEN encodes the orientation of the line. The value is verti-
cal for each line, so FAIRAVEN hypothesizes a constant-in-a-row
rule. The final (null) iteration reveals no further percepts to be
accounted for, so FAIRAVEN proceeds to the second row. Note
the similarity of FAIRAVEN’s processing to the protocol of the
human subject shown in Table 2, reflecting the incremental reit-
erative nature of the processing. For both the model and the
subject, there are multiple visual scans of the first row, and in

° This list also omits another rule, so obvious as to be overlooked in
our task analyses and the subjects’ verbal reports, but not by the simula-
tion model. The overlooked rule is the constant-everywhere rule. An
example of this rule can be found in the problem shown in Figure 4b,
in which every entry contains a diamond outline. In this particular ex-
ample. the constant-evervwhere rule does not discriminate among the
response alternatives because they all contain a diamond outline. Both
FAIRAVEN and BETTERAVEN used a constant-evervwhere rule where ap-
plicable, but we do not discuss it further because of the minor role it
plays in problem difficulty and individual differences.
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both cases. there is a considerable time interval between the in-
duction of the different rules.

The processing of the second row closely resembles that of
the first row. in that the lines and geometric shapes are encoded
and the correspondence among the lines and among the shapes
1s noticed. The rules governing the geometric shapes, line tex-
tures. and line orientation are induced. In addition. the corre-
spondences between the geometric shapes in the first two rows
is noticed. as is the correspondence between the lines, and a
mapping is made between the rules for the two rows. The model
notes that the rules governing line orientation are different in
the two rows (constant vertical orientation in the first row and
horizontal in the second row). Note that the subject’s eye-fixa-
tion protocol in Table 2 shows a scan of row 2 interspersed with
scattered inspections of row 1, which may reflect the mappings
from one row to another.

The model proceeds to row 3, having formulated a general-
ized form of the rules, namely distribution of the three geomet-
ric shapes. distribution of the three line textures. and a constant
orientation of lines in all the entries in a row. The inspection of
the geometric figures in the first two columns of row 3 indicates
which one of the triplet of shapes is missing (the square). In-
spection of the line textures indicates which is missing (the
black). Finally. the orientation of the lines in the first two col-
umns indicates that the constant value of line orientation will
be slanted from upper left to lower right.

The application of the three rules to the knowledge about the
firs two entries of row 3 is sufficient to correctlv generate the
missing entry. a square and a line. Only the three response alter-
natives that contain a square and line (2. 5. and 8) are consid-
ered further. The generated missing entry contains a black
slanted (from upper left to lower right) line that matches Alter-
native 5. which is chosen as the answer.

The FAIRAVEN model solved 23 of the 34 problems it was
given. the same as the median score of the 12 Carnegie Mellon
students in Experiment la. Like the median subjects it was in-
tended to simulate. FAIRAVEN solved the easier problems and
could not solve most of the harder problems. The point-biserial
correlation between the error rate for each problem in Experi-
ment la and a dichotomous coding of FAIRAVEN's success or
failure on the problem was r(32) = .67. p < .01. indicating that
the model was more likely to succeed on the same problems that
were solved by more of the human subjects. The performance of
FAIRAVEN on each problem is given in the Appendix. However.
we postpone a detailed analvsis of the errors to the next section.

For the present purposes. the important point is that FAIRA-
VEN performed credibly. but at the same time, it had several
limitations that prevented it from solving more problems. First,
FAIRAVEN had no ability to induce rules that do not contain
corresponding arguments (figures or attributes) in all three col-
umns. Consequently, FAIRAVEN could not solve the problems
involving the distribution-of-two-values rule. Second. FAIRA-
VEN had difficulty with problems in which the correspondence
among figural elements is not discovered by either the match-
ing-names heuristic or the matching-leftovers heuristic, such as
correspondences based on location or texture. In these cases,
the initially hypothesized correspondences based on figure
names did not result in a correct rule, but FAIRAVEN had no
way to backtrack. Third, FAIRAVEN had difficulty when too

many high-level goals arose at the same time, and FAIRAVEN
tried to pursue them concurrently. This situation occurred in
problems with three or four rule tokens. when the perceptual
evidence to support the multiple rules emerged simultaneously.
The model tried to confirm all the rules in parallel. as CAPS
permits, but the resulting bookkeeping load was unmanageable.
In spite of these limitations, this program was able to perform
on an intelligence test as well as some college students, using
strategies similar to theirs and exhibiting behavior similar to
theirs.

BETTERAVEN

The higher scoring subjects in our experiments performed
better than FAIRAVEN; what psychological processes distinguish
them from the median-scoring subjects and from FAIRAVEN?
The BETTERAVEN model is our best current answer. The devel-
opment of BETTERAVEN used FAIRAVEN as a starting point and
did as little reorganization and addition as possible. The result-
ing model, BETTERAVEN, exercises more direct strategic control
over its processes. Also, BETTERAVEN can induce more abstract
rules on the basis of more abstract correspondences permitting
null arguments).

To improve BETTERAVEN's strategic control required the ad-
dition of a fourth category of productions, as shown in the block
diagram in Figure 10. The new category is a goal monitor that
sets strategic and tactical goals, monitors progress toward them,
and adjusts the goals if necessary. In addition. the control struc-
ture of BETTERAVEN, as governed by the goal monitor, is some-
what changed. In BETTERAVEN, onlv one category of produc-
tions can be operating at a given time. The BETTERAVEN model
also had some changes made to the perceptual and conceptual
analyzers. The correspondence-finding processes are more so-
phisticated, allowing BETTERAVEN to handle rules applying to
null arguments, such as a distribution-of-two-values rule. The
conceptual analyzer also has more rules in its repertoire and
uses the goal monitor to control the order in which rules
are induced. The responder is effectively unchanged from
FAIRAVEN,

The Goal Monitor

A module containing 15 productions sets main goals and
subgoals for the model. The main purposes of the goal monitor
are to ensure that higher level processes (namely rule induction)
occur serially and not concurrently to provide an effective serial
order for inducing rules (i.e., conflict resolution), to maintain
an accounting of the model’s progress toward its goals. and to
appropriately modify its path to the solution when a difficulty
is encountered. The goal monitor has a knowledge base that
contains the goal structure for this task. For example, when
starting 1o work a new problem, the goal monitor might set the
following goals and subgoals and keep a record of their satisfac-
tion or nonsatisfaction:

Top goal: Solve problem.
Subgoal 1: Find all rules in top row.
Subgoal 2: Do a first scan of top row.
Subgoal 3: Compare adjacent entries.
Subgoal 4: Find what aspects are the same or different or have
no relation.
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GOAL MONITOR
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Figure 10. A block diagram of BETTERAVEN. (The distinction from FAIRAVEN visible from the block dia-
gram is the inclusion of a goal monitor that generates and keeps track of progress in a goal tree. fig = figure:
pos = position: attr = attribute: perc = percept: desc = description: diff = different: val = value: distr =

distribution.)

To attain these goals, each row is reiteratively scanned, and rules
are induced to account for the variation, with the number of
iterations increasing with the complexity of the entries. This
behavior of the model is motivated by the reiterative nature of
the eve-fixation data and by the concurrent verbal protocols.

The management of the goal stack is under the exclusive con-
trol of the goal monitor. When it is appropriate to change the
model’s level of analysis. the goal monitor changes the current
goal to either a parent goal or a subgoal. The consequence of
setting a particular goal is to evoke some subset (module) of
productions, such as the perceptual-analysis module or the re-
sponse-generation module. The monitor keeps a record of goals
that have been set and the current goal. This knowledge makes
it possible to backtrack where necessary. Four backtracking
productions take back specific hypothesized rules that have
proved unfruitful, as well as taking back hypotheses about what
the relevant attribute is and which elements correspond to each
other. It is important to note that both BETTERAVEN and FAIRA-
VEN have goal-management capability, but BETTERAVEN’s ca-
pability was enhanced as described.

Changes in the Perceptual Analyzer

The major change to the perceptual analyzer is that the heu-
ristics for finding correspondences among figures are more gen-
eral. overcoming several difficulties encountered by FAIRAVEN's
heuristics. One type of difficulty arose when the number of fig-

ures per entry was not the same in each of the entries in a row,
This difficulty occurs in problems containing a distribution-of-
two-values rule, as well as figure addition and subtraction, in
which a figure in one entry has no counterpart in another entry.
Because FAIRAVEN assigned a counterpart to every figure in ev-
ery entry, it would err in such problems (as did many of the
lower scoring subjects). To deal with such rules, BETTERAVEN'S
new correspondence-finding productions in the perceptual an-
alyzer assign a leftover element in one of a pair of entries to a
null counterpart in another entry.

A second type of difficulty arose when the correspondence
was based on an attribute other than the figure’s name (such as
two different figures having the same texture or position). When
the matching-names (or any other) heuristic fails to lead to a
satisfactory rule, BETTERAVEN’s goal monitor can backtrack,
postulate a correspondence based on an alternative attribute,
and proceed thenceforth. By contrast, FAIRAVEN kept no rec-
ord of choosing a correspondence heuristic and had no way of
backing up to it if the choice turned out incorrect.

Rule Induction

Rule induction in BETTERAVEN was improved over FAIRA-
VEN's by virtue of serial rule induction (imposed by the goal
monitor). the presence of a new rule (distribution of two val-
ues), and more general rules for figure addition and subtraction
(enabled by the improved correspondence finding). Further-
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more, the goal monitor permits BETTERAVEN to backtrack
when a postulated rule fails to account for the variation.

In problems containing more difficult rules and a larger num-
ber of rules. FAIRAVEN's concurrent postulation of multiple
rules led to several difficulties. First, there were competing at-
tempts to simultaneously account for the same variation with
two or more rules. which made the bookkeeping requirements
unacceptably large in FAIRAVEN. Second, in problems with
many figures, there was so much variation in figures that some
of the arcane variation did not become evident unless the more
mundane variation was first accounted for or in some sense re-
moved. For example, in one of the problems containing two
rules, it is much easier for the program (and human subjects)
to induce a distribution-of-two-values rule after the other fig-
ures have been accounted for with a figure-addition rule. Fi-
nally, the human verbal protocols strongly suggested that the
subjects attempted to fit only one rule at a time to the figures.
Although CAPS permits parallelism at all levels, attempts at par-
allelism at FAIRAVEN's higher conceptual levels (namely rule
induction) wreaked havoc. whereas parallelism at the lower per-
ceptual levels caused no difficulty.

To improve BETTERAVEN's performance, the model was per-
mitted to induce only one rule at a time, and furthermore. pro-
ductions from the different modules were not permitted to fire
concurrently. So the perceptual and conceptual modules of BET-
TERAVEN differ from each other in two respects: the time at
which they dominate (early in the trial for the perceptual mod-
tle vs. late for the conceptual) and whether thev can tolerate
concurrence (concurrence for the perceptual vs. seriality for the
conceptual).

The seriality of rule induction and consequent processing in
BETTERAVEN is enforced by conflict-resolution rules that arbi-
trate between any of the rule types that are hypothesized con-
currently. The priorities prevent the later rules from firing until
the earlier rules have had a chance 1o try 1o account for the
variation. The priority among the rule types in the model is the
following:

. constant in a row

. quantitative pairwise progression
. distribution of three values

. higure addition or subtraction

. distribution of two values.

L S P

The design of BETTERAVEN required that there be an order-
ing. 50 that only one rule would be induced at a time. as it was
in the human performance. However, BETTERAVEN’s design did
not dictate what that ordering should be. Three partial order-
ings were derived. largely on the basis of several empirical re-
sults and logical considerations. First, the priority accorded to
the constant-in-a-row rule is based on the fact that it accounts
for the most straightforward, null variation and is so relatively
easy that it sometimes goes unmentioned in the human proto-
cols. However. recall that the data do not eliminate the possibil-
ity that this rule can be induced in parallel with others. so the
ordering of this rule type should not be overinterpreted. Sec-
ond, figure addition or subtraction has priority over the distri-
bution-of-two-values rule because it accounts for more figures
in a row (each of the addends plus the sum, for a total of four
figural components), whereas the distribution-of-two-values

rule accounts for only two figural components. Finally. quanti-
tative pairwise progression is given priority over the distribu-
tion-of-two-values rule by human subjects, as we learned from
a study briefly described below.

Jan Maarten Schraagen performed a study in our laboratorv
that compared the relative time of mention of quantitative pair-
wise progression rules and that of distribution-of-two-values
rules. To control for the possibility that the order in which rules
are induced depends primarily on the relative salience of the
figural components to which they apply, two isomorphs of each
problem were constructed, differing in which rule applied to
which figural elements. For example, in one isomorph, a quanti-
tative pairwise progression rule might apply to the numerosity
of lines, and a distribution-of-two-values rule might apply to
some triangles. In the other isomorph, the quantitative pairwise
progression rule would apply to the triangles, whereas the distri-
bution-of-two-values rule would apply to the numerosity of
lines. There were 86 observations (interpretable verbal proto-
cols in correctly solved problems). and in 83% of these observa-
tions, the pairwise quantitative rule was induced before the dis-
tribution-of-two-values rule. This empirical finding confirms
that at least part of the order in which the simulation induces
the rules corresponds to the order in which people do.

Comparing Human Performance to the Theory

In this section, we compare the human performance to the
simulation models for three types of performance measures: er-
ror patterns. the content of the rules that were induced. and on-
line measures, specifically, patterns of eve fixations and verbal
reports.

Error Patterns

As described earlier, FAIRAVEN solved 23 of the 34 problems,
which is the median score of the 12 subjects in Experiment la.
(Recall that only 32 of the problems were classifiable within
our taxonomy.) The BETTERAVEN model lived up to its name,
solving all but the two unclassifiable problems, similar to the
performance of the best subject in Experiment la. Thus. the
performance of FAIRAVEN and BETTERAVEN resembles the me-
dian and best performance, respectively. The patterns of human
errors are analyzed in more detail later. to determine what char-
acteristics of the problems are associated with the variation in
error rates. After this analysis, a more detailed comparison is
made between the human error patterns and those of the simu-
lation models.

Interpretable patterns of errors emerge when the problems
are grouped according to the properties in our taxonomy. The
error rates of problems grouped this way are given in Table 3.
The rows of the table correspond to different problem types that
are distinguished by the type of rule involved, the number of
different types of rules, and the total number of rules (of any
type) and whether some of the problems in that group involved
difficult correspondence finding. The error patterns in Experi-
ments la and 1b are generally consistent with each other, even
though the two experiments are not exact replications, because
only half of the problems in Experiment 1b are from the Raven
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Table 3
Error Rate (in Percent) for Different Problem Types
Experiment
No. rule No. rule la 1b
tvpes tokens Rule type (n=12) (n=22)

1 1 Pairwise progression 6 9
1 1 Addition or subtraction 17 13
1 | Distribution of 3 values 29 25
1 2 Dastribution of 3 values 29 21
2 2 Two different rules*® 48 54
1 3.4 Distribution of 2 values® 56 42
2 4 Distribution of 2 & 3 values® 59 54
1 3 Distribution of 3 values® 66 77

* This category is a miscellany of problems that contain two different rule tvpes. such as addition and
distribution of three values, or quantitative pairwise progression and distribution of three values.
" Corresponding elements are ambiguous or misleading for some or all of the problems in these categories.

Advanced Progressive Matrices Test and half are similar prob-
lems from the Standard Progressive Matrices Test.

In general. the error rates increase down the column as the
number of rules in a problem increases. The lowest error rate.
6% in Experiment la and 9% in Experiment 1b, is associated
with problems containing only a pairwise quantitative progres-
sion rule. indicating how easy this rule type was for our sample
of subjects. Problems with pairwise quantitative progression
rules may be relatively easv because, unlike all the other rules.
this rule can be inferred from a pairwise comparison of only
two figures. Repeated pairwise fixations between adjacent en-
tries occurred frequently, even for lowcr scoring subjects. Pair-
wise comparison may be a basic building block of cognition,
and consequently, it was made a basic architectural feature of
the simulations.

The next lowest error rate is associated with problems that
contain a single token of a figure addition or subtraction rule,
or a distribution-of-three-values rule. shown in the second and
third rows of Table 3. The rules relating the three entries in
these problem types require that the subject consider all three
arguments simultaneously, rather than only generalize one of
the pairwise relations. To induce these types of rules, the subject
must reason at a higher level of abstraction than that needed for
pairwise similarities and differences. The verbal protocols in
these problems indicated that the subjects who were having
difficulty often persisted in searching for a single pairwise rela-
tion that accounted for the variation among all three entries.

The number of rule tokens appears to be a powerful determi-
nant of error rate. The effect is seen clearly in the contrast be-
tween the refativelv low error rate for problems with only one
token (in the first three rows). averaging 16%. versus the error
rate for problems with three or four tokens (in the last three
rows). averaging 59%. One reason why inducing multiple rule
tokens is harder is that it requires a greater number of iterations
of rule induction to account for all of the variation. Moreover,
keeping track of the variation associated with a first rule while
inducing the second rule (or third rule) imposes an additional
load on working memory. Approximately 50% of the errors on
problems with multiple rules may arise from an incomplete

analysis of the variation, as indicated in the ongoing verbal re-
ports by a failure to mention at least one attribute or rule.” Such
incompleteness may be partially attributed to failing to main-
tain the goal structures in working memory that keep track of
what variation is accounted for and what variation remains un-
explained. Another process made more difficult by multiple
rules is correspondence finding. As the number of rules in-
creases, so does the number of figural elements or the number
of attributes that vary across a row. This. in turn. increases the
difficulty of conceptually grouping the elements that are gov-
erned by each rule token.

The difficulties of correspondence finding were particularly
apparent for problems with multiple possible correspondences
and misleading cues to correspondences (like the problem in
Figure 5 described earlier). An analysis of the subjects’ verbal
reports in all the problems identified as having misleading or
ambiguous correspondence cues indicates that the correspon-
dence-finding process was a source of significant difficulty, The
reports accompanying 74% of the errors in these problems indi-
cated that the subject had either postulated incorrect corre-
spondences among figural elements or was not able to deter-
mine which elements corresponded. Sometimes subjects indi-
cated this latter difficulty by saying that they could not see a
pattern, even after extensive visual search or after having ini-
tially postulated and retracted various incorrect correspon-
dences and rules.

In contrast to the types of rules listed in Table 3, the presence

" This estimate is based on problems containing either two or three
tokens of the distribution-of-three-values rule. On 20% of the correct
trials and 59% of the error trials, the verbal reports contained no evi-
dence of the subject’s having noticed at least one of the critical attri-
butes: that is, neither the rule itself nor any attribute or value associated
with that rule was mentioned. We assume that 20% is an estimate of
how often the verbal reports do not reflect an encoded attribute. Conse-
quently, we can estimate that 80% (the complement of 20%) of the 59%
of the error trials with incomplete verbal reports (or approximately
50%) may be attributed 1o incomplete encoding or analysis. not just an
omission in the verbal report.
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of a constant-in-a-row rule had a small or negligible impact on
performance. The mean error rate and response time for six
problems containing the constant rule (involving distribution-
of-three-values or figure addition or subtraction rules) were
30% and 38.9 s, respectively. which are similar to the measures
for eight comparable problems that did not involve a constant
rule (28% and 41.9 s). One possible reason for the minimal im-
pact of a constant-in-a-row rule is that unlike any other type of
rule. it requires storing only one value (i.¢.. the constant) for an
attribute.

The analysis of the human error patterns can be compared
with those of the simulation models. To make this comparison,
the problems shown in Table 3 can be grouped further, dividing
the table into the first four rows consisting of the easier prob-
lems and the last four rows consisting of the harder problems,
namely those involving multiple rules, more abstract rules,
misleading correspondences, or a combination of the three. The
subjects to whom FAIRAVEN should be most similar are those
with scores close to the median. The 6 subjects in Experiment
la whose total score was within 10% of the median had a 17%
error rate on the easier problems and a 70% error rate on the
harder problems. In comparison, FAIRAVEN has a 0% error rate
on the easier problems and a 90% error rate on the harder prob-
lems. Thus. the FAIRAVEN model has an error profile similar to
the subjects it was intended to simulate, appropriately matching
the difficulty these subjects have with problems containing mul-
tiple rule tokens and difficult correspondences. The BETTERA-
VEN model and the subjects to whom it should be similar
(namely the best subjects) can solve almost all of the problems.
so they have similar (essentially null) error profiles. The Appen-
dix indicates the performance on each problem of Experiment
la by the human subjects and by the two simulation models.

Modifications of BETTERAVEN

In addition to comparing FAIRAVEN and BETTERAVEN 10 the
human performance. it is possible to degrade various abilities
of BETTERAVEN and examine the resulting changes in perfor-
mance. A demonstration that degraded versions of BETTERA-
VEN account for intermediate levels of performance between
the levels of FAIRAVEN and BETTERAVEN can provide converg-
ing support for the present analvsis of individual differences.
Graceful degradation of BETTERAVEN also provides a sensitiv-
ity analysis that can indicate which of the new features of BET-
TERAVEN contributed to its improved performance. “Cognitive
lesions™ were made in BETTERAVEN 1o assess how its added fea-
tures contributed to its superiority over FAIRAVEN. The two fea-
tures of BETTERAVEN that were modified pertained to (a) ab-
straction. particularly the ability to induce the distribution-of-
two-values rule. and (b) goal management.

Lesioning Abstraction Ability

One source of BETTERAVEN's advantage over FAIRAVEN is its
ability to form abstract correspondences (involving null argu-
ments) and hence induce the distribution-of-two-values rule.
The BETTERAVEN model used this rule in 9 of the 11 most
difficult problems: these were all problems that FAIRAVEN did
not solve and BETTERAVEN did. Because the abstraction ability

was firmly enmeshed with BETTERAVEN's processing. it was not
possible to lesion it without disabling BETTERAVEN entirely.
However, it was possible to lesion (eliminate) the distribution-
of-two-values rule from BETTERAVEN's repertoire. in a model
called BETTERAVEN-without-distribution-of-2-rule. Not sur-
prisingly. this modified model did not correctly solve the 9
problems in which the rule had been used by BETTERAVEN (as
shown in the Appendix), degrading its performance to the level
of FAIRAVEN. However. it would be incorrect to conclude that
this rule is the only property on which BETTERAVEN'S superior-
ity over FAIRAVEN is based, for two reasons. First. the ability to
correctly induce the distribution-of-two-values rule depends on
BETTERAVEN's ability to induce abstract correspondences, in-
cluding the absence of an element, Second, this rule was evoked
in problems involving multiple rules, and consequently, prob-
lems that taxed BETTERAVEN’s goal management. As the next
section demonstrates, the ability to manage goals also played a
central role in BETTERAVEN'S improvement over FAIRAVEN.

Lesioning Goal Management

To examine how BETTERAVEN's performance is influenced
by goal-management capabilities. impaired versions of BETTER-
AVEN were created in which goal management competed with
the ability to maintain and apply rules, to the extent that goal
information was displaced from working memory. For exam-
ple, in one of the lesioned models, if the problem required more
than three rules to be induced and applied to the last row. then
the extra rules (beyond three) displaced some of the remaining
subgoals stored in the goal tree and resulted in an erroneous
response in which only three rules were used to generate the
response. This behavior corresponds to the human errors that
are based on an incomplete set of rules. The modified versions
of BETTERAVEN. which could maintain and apply either three,
four. or five rules before displacing goals from working memory,
are called BETTER4VEN-3-rules. BETTERAVEN-4-rules, and BET-
TERAVEN-3-rules, respectively. The performance of these modi-
fied versions is shown in the Appendix, along with the per-
formance of the unmodified BETTERAVEN. In general, as the
goal-management information in BETTERAVEN was increas-
ingly displaced by information about the rules, its ability to
solve problems was degraded. The BETTERAVEN-3-rules model
solved 11 fewer problems than did the unmodified BETTERA-
VEN. The BETTERAVEN-4-rules model solved 8 fewer problems,
and BETTERAVEN-5-rules solved 4 fewer problems than did the
unmodified BETTERAVEN. The failures of the modified versions
occurred primarily on problems with more rule tokens, namely
the problems that require more goal management.

The cognitive lesioning experiments produced intermediate
levels of performance. accounting for the continuum of perfor-
mance that lies between FAIRAVEN and BETTERAVEN. More-
over. the relation between the particular lesions and the result-
ing patterns of errors confirms the importance of abstraction
and goal management in performing the Raven test.

The Rules That Were Induced

The simulations can be evaluated in terms of the specific
rules that they induce, in comparison with the rules of the sub-
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Jjects in Experiment 1b, who were instructed to try to solve each
problem and then explicitly describe the rules they induced.
The main comparison is based on rule descriptions provided by
a plurality of the 12 (of 22) subjects modeled by FAIRAVEN and
BETTERAVEN, namely those 12 who attained at least the median
score. Across the 28 problems in Experiment 1b, there was a
total of 59 attributes for which at least | subject gave a rule that
was classifiable by our taxonomy.?

The main finding is that for 52 of the 59 attributes, BETTERA-
VEN induced the same rule as the plurality of the subjects. Four
of the seven disagreements arose in cases where BETTERAVEN
induced a distribution-of-two-values rule, whereas the subjects
induced figure addition or subtraction.® The fit for FAIRAVEN
was similar. except for problems involving the distribution-of-
two-values rule. which FAIRAVEN did not solve. Thus, the simu-
lation models match the subjects not only in which problems
they solve but also in the rules that they induce.

In problems in which alternative rules can account for the
same variation. there is a suggestion that higher scoring subjects
induced different rules than did lower scoring subjects. Con-
sider again the earlier example of how two different rules might
describe a series of arrows pointing to 12, 4, and 8 o’clock; the
variation can be described as distribution of three values or as
a pairwise quantitative progression of an arrow's orientation,
namely a clockwise rotation of 120°, beginning at 12 o’clock.
Although both rules are sufficient to solve the problem. the
transformational rule is preferable because it is typically more
compact and generative; knowing the transformation and one
of the values of an attribute is sufficient to generate the other
two values (in the case of a quantitative progression rule), and
the transformational rule usually applies more directly to suc-
cessive rows. The verbal protocols were ¢xamined to determine
whether transformational rules were more closely associated
with correct solutions than distributional rules in the particular
problems in which they were induced and whether more gener-
ally. higher scoring subjects were more likely to use transforma-
tional rules than distributional rules, compared with the lower
scoring subjects.

Twenty-one of the 34 problems in Experiment la(Set 1. Prob-
lem 12; Set I, Problems 1, 3, 8, 10, 13, 16, 17, 22, 23, 26, 27,
29, and 31-36) evoked a mixture of transformational and dis-
tributional rules from different subjects. Each protocol for these
problems was categorized as describing a transformation or dis-
tribution of values, including partial descriptions. A descrip-
tion that had both transformational and distributional charac-
teristics was counted as transformational. There were 156
transformational responses, 90 distributional responses, and 6
that could not be classified in Experiment 1a. For the problems
in question. the transformational responses were associated
with considerably better performance (error rate of 31%) than
were the distributional responses (53% error rate). In a separate
analysis limited to only those problems in which a correct final
response was made. 71% of the problems were accompanied by
a transformational rule, whereas 29% were accompanied only
by a distributional rule. Transformational descriptions were
not only associated with success in the problem in which they
occurred. they were also associated with subjects who did well
on the test as a whole. Higher scoring subjects were more likely
to give transformational rules and less likely 1o give distribu-

tional rules. The ratio of transformational descriptions to dis-
tributional was 3.6:1 for the highest scoring subjects but only 1:
1 for the lowest scoring subjects. These results associate trans-
formational rules with better performance.

The rule ordering in BETTERAVEN (e.g., giving precedence of
the pairwise quantitative progression rule over the distribution-
of-three-values rule) provides a tentative account for the finding
that a transformational rule was strongly associated with better
performance. It is possible that only the higher scoring subjects
have systematic preferences for some rule types over others. as
BETTERAVEN does. By contrast, the choice among alternative
rules may be random or in a different order for the lower scoring
subjects. Thus, the differences in preferences among alternative
rules between the higher and lower scoring subjects can be ac-
commodated by an existing mechanism in BETTERAVEN.,

On-Line Measures

The preliminary description of the results in Experiment la
indicated that what was common to most of the problems and
most of the subjects was the incremental problem solving. The
incremental nature of the processing was evident in both the
verbal reports and eye fixations. In problems containing more
than one rule, the rules are described one at a time, with sub-
stantial intervals between rules. Also, the induction of each rule
consists of many small steps, reflected in the pairwise compari-
son of related entries. We now examine the incremental pro-
cessing in the human performance in more detail in light of the
theoretical models, and we compare the human performance
with the simulations’ performance. The analyses focus on the
effects of the number of rules in a problem on the number and
timing of the reiterations of a behavior. To eliminate the effects
of differences among types of rules, the analyses are limited to
those problems that contained one, two, or three tokens of a
distribution-of-three-values rule, and no other types of rules.

Inducing One Rule at a Time: Verbal Statements

The first way in which the rule induction is incremental is
that in problems with multiple rules, only one rule is described

® The 12 subjects fully described a classifiable rule in only 51% of the
708 (12 X 59) cases. The agreement among subjects who described a
rule for a given attribute was very high (only 7% of the 708 cases were
disagreements with a plurality); however, in 37% of the cases, the rule
descriptions were absent or incomplete, so the pluralities are sometimes
small.

® The reason for BETTERAVEN’S not using figure addition or subtrac-
tion in these cases is that they required a more general form of addition
or subtraction than BETTERAVEN could handle. In one problem. the
horizontal position of the figural element that was being subtracted was
also being changed (operated on by another rule) from one column to
the next. In the other problem, some figural elements had to be sub-
tracted in one row but added in another row, so both types of variation
would have to have been recognized as a form of a general figure addi-
tion or subtraction. Because BETTERAVEN's addition and subtraction
rules were too specific to apply to these two situations, its distribution-
of-two-values rule applied instead. The human subjects’ ability to use
an addition or subtraction rule testifies to the greater generality of their
version of the rule compared with BETTERAVEN.
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Figure 11 The elapsed time from the beginning of the trial to the
verbal description of each of the rules in a problem.

at a time. The subjects appear to develop a description of one
of the attributes in a row of entries. formulate it as a rule. verify
whether it fits, and then go on to consider other unaccounted-
for variation. This psychological process is a little like a stepwise
regression. accounting for the variance with one rule. then re-
turning to account for the remaining variance with another
- rule. and so on.

An analysis of the times at which the subjects report the rules
in their verbal protocols strongly supports the interpretation
that the rules are induced one at a time. In problems involving
multiple rules. subjects generally stated each rule separately.
with an approximately equal time interval separating the state-
ments of the different rules. In the scoring of the verbal proto-
cols. if a subject stated only the value of the attribute specified
by the correct rule (e.g.. “need a horizontal line™) without stat-
ing the rule itself. this was counted as a statement of the rule.
The descriptive statistic plotted in Figure 11 indicates the
elapsed time from the beginning of the trial until the statement
of the first rule. the second rule. and if there was one. the third
rule. The verbal reports show a clear temporal separation be-
tween the statements of successive rules. The interval is much
longer than the time needed to just verbalize the rules and seems
most likely to reflect the fact that subjects induce the rules one
at a time. The statement of a rule may lag behind the induction
processes. but the long time between the rule statements
strongly suggests that induction processes are serially executed.
The time from the beginning of the trial until the first rule was
stated was approximately 10 s for the five problems that had
two rules per row; it then took another 10s, on average, until the
subject stated the second rule. Thus. it took an approximately
similar amount of time to induce each of the rules. For the two
more difficult problems. those involving three rules, the average
time between each statement was close to 24 s. The fact that the

interstatement times were longer for the latter group of prob-
lems indicates that a rule takes longer to induce if there is addi-
tional variation among the entries (variation that eventually was
accounted for by the additional rules). Several of the processes
would be made more difficult by the additional variation. par-
ticularly correspondence finding and goal management.

In contrast to the data just presented. which were based on
33 observations, there were four other trials in which subjects
stated two rules together. In three of these cases. the time inter-
val preceding the statement of the two rules together was ap-
proximately twice the time interval preceding the statement of
single rules. We interpret this to mean that even when two rules
are stated together, they may have still been induced serially,
although we cannot rule out parallel processing of two rules at
a slower rate on these four occasions.

The assertion that the rules are induced one at a time must
be qualified to allow for the possibility that a constant-in-a-row
rule might be processed on the same iteration as another rule.
Most of the problems in the subset analvzed earlier contained
a constant-in-a-row rule, but there was no systematic difference
discernible in this small sample between problems that did or
did not contain a constant rule. (Recall that a linear regression
accounted for more of the variance among the mean error rates
of problems if the count of rules excluded any constant rule.)
Moreover, a constant-in-a-row rule was verbalized far less often
than were the other types of rules. The structure of the stimulus
set does not permit us to draw strong conclusions about the way
the constant-in-a-row rule was processed.

The BETTERAVEN model is similar to the human subjects in
inducing one rule at a time. in that there is a separation between
the times at which the rules in a problem are induced. On aver-
age, there are 23 CAPs cycles (with range 22-24) between the
time of inducing successive rule tokens. However. BETTERAVEN
is unlike the students in several ways. First. the time between
inducing rules is not affected by the number of rules (i.e.. the
amount of variation) in a problem: The 23-cycle interval ap-
plies equally to problems with two rule tokens and those with
three rule tokens. By contrast. human subjects take longer to
state a rule in problems with three rule tokens than in problems
with two rule tokens. as shown in Figure 11. This difference
suggests that BETTERAVEN's goal management is too efficient.
relative to the human subjects. The model also differs from the
students in its nonparallel induction of a constant rule (the 23-
cycle time between rules disregards any induction of constant
rules). In this respect, BETTERAVEN seems less efficient than the
human subjects, who may be able to induce a constant rule in
parallel with another rule.

Inducing One Rule at a Time: Eve-Fixation Patterns

Another way to demonstrate that the rules are induced one at
a time is to compare the eve-fixation performance on problems
containing increasing numbers of rules, looking for evidence of
reiterations for problems with different numbers of rules. One
of the most notable properties of the visual scan was its row-
wise organization, consisting of repeated scans of the entries in
a row. There was a strong tendency to begin with a scan of the
top row and to proceed downward to horizontally scan each of
the other two rows, with only occasional looks back to a pre-
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Figure 12. Top: The number of row scans and pairwise scans increases
with the number of rule tokens in the problem. Bottom: Length of the
pairwise scans (i.e.. the number of alternating gazes between a pair of
entries) is unaffected by the number of rule tokens.

viously scanned row. (This description applies particularly well
to problems involving quantitative pairwise progression rules
or addition or subtraction rules and slightly less well to the
problems in the subset that is being analyzed here, involving
multiple distribution-of-three-values rules. In the latter prob-
lems, subjects also used a row organization, but they sometimes
looked back to previously scanned rows.) So it is reasonable to
ask whether there is a dependence between the number of scans
through the rows and the number of rules.

The data indicate that in general, the number of times that
subjects visually scanned a row (or a column, or occasionally, a
diagonal) increased with the number of rules in the problem. A
scan of a row was defined as any uninterrupted sequence of
gazes on all three of the entries in that row, allowing refixation
of any of the entries (and was similarly defined for a column
scan).'® The analysis showed that as the number of rule tokens
in a problem increases from one to two to three, the number of
row scans increases from 7.2 to 11 to 25, as shown in the top
panel of Figure 12. It is likely that the rule is being induced and
verified during the multiple scans associated with each rule.

Incremental Processing in Inducing a Rule

There are many small steps in inducing each rule. For exam-
ple, in a problem containing a quantitative pairwise progression
rule. BETTERAVEN can induce the rule in a tentative form after
a pairwise comparison between the entries in the first two col-
umns in the row. Then the second and third columns can be
compared. and a tentative rule can be induced, followed by a

higher order comparison that verifies or disconfirms the cor-
rectness of the tentative rules. In the case of disconfirmations,
all of the preceding processes must be reexecuted. generating
additional pairwise comparisons. Thus, there are reiterative cy-
cles of encoding stimulus properties, comparing properties be-
tween entries, inducing a rule, and verifving the rule’s ade-
quacy.

As the number of rules increases, so should the number of
pairwise similarities and differences to be encoded and. conse-
quently. the number of pairwise comparisons. The eve-fixation
data provide clear evidence supporting this prediction. A pair-
wise scan was defined as any uninterrupted sequence of at least
three gazes alternating between any two entries, excluding those
that were part of a row or column scan because they had already
been included in the row-scanning measures described earlier.
Consistent with the theoretical prediction. as the number of
rule tokens in a problem increased from one to two to three,
the mean number of pairwise scans (of any length) increased
from 2.3 instances to 6 to 16.2, as shown in the top panel of
Figure 12.

We can also determine whether the difficulty of making a
pairwise comparison (as indicated by the sequence length of a
pairwise scan) also increases in the presence of additional varia-
tion between the entries (as indicated by the number of rules).
As shown in the bottom panel of Figure 12, the number of rules
in the problem had no effect on the mean sequence length of
the pairwise scans. Thus, the pairwise scans may reflect some
primitive comparison process that pertains to the induction of
asingle rule token and is uninfluenced by the presence of addi-
tional variation between the entries. This result is consistent
with a theory that says that difficult problems are dealt with
incrementally, by decomposing the solution into simple sub-
processes. So some subprocesses, like the comparison of attri-
butes of two elements, should remain simple in the face of com-
plexity (Figure 12, bottom panel), even as other performance
measures show complexity effects (Figure 12, top panel). The
decomposition implied by the various forms of incremental
processing observed here is probably a common way of dealing
with complexity.

Limitations of the Model

At both the micro and macro levels, FAIRAVEN and BETTERA-
VEN perform comparably to the college students that they were
intended to model. The models solve approximately the same

' The gaze analyses of the problems containing different numbers of
tokens of distribution-of-three-values rules was applied to the protocols
of 6 of 7 scorable subjects (who happened 1o be the higher scoring sub-
Jects), eliminating trials on which subjects made an error. or when the
eye-fixation data were lost due to measurement noise. The seventh scor-
able eve-fixation protocol was excluded because it came from the lowest
scoring subject. who had too few correct trials to contribute. The data
in Figure 12 are from 10 observations of problems in Set I. Problem
7. and Set II, Problem 17. each of which contains one rule token: 25
observations of problems in Set I, Problems 8 and 9, and Set 11, Prob-
lems 1. 13. and 27. which contain two rule tokens: and 5 observations
of problems in Set 11. Problems 29 and 34. which contain three rule
tokens.
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subsets of problems as the corresponding students. and they in-
duce similar sets of rules. Also. the simulations resemble the
students 1n their rehance on pairwise comparisons and in their
sequential induction of the rules. The simulations are both
sufficient and plausible descriptions of the organization of pro-
cesses needed 10 solve these types of problems. The commonali-
ties of the two programs. namelv the incremental. reiterative
processing. express some of the fundamental characteristics of
problem solving. The differences between the programs.
namely the nature of the goal management and abstraction. ex-
press the main differences among the individuals with respect
to the processing tapped by this task. Although the simulations
match the human data along many dimensions of performance,
there are also differences. In this section, we address four such
differences and their possible relation to individual differences
in analytic intelligence.

Perhaps the most obvious difference between the simulations
and the human performance is that the simulations lack the per-
ceptual capabilities to visually encode the problems. However.
as we argued earlier. this does not compromise our analysis of
the nature of individual differences because numerous psvcho-
metric studies suggest that the visual encoding processes are not
sources of individual differences in the Raven test. This is not
to sav that visual encoding and visual parsing processes do not
contribute to the Raven test’s difficulty, but only that such pro-
cesses are not a primary source of individual differences. In ad-
dition, the success of the simulation models suggests that the
strictly visual quality of the problem: is not an important
source of individual differences: analogous problems in other
modalities containing haptic or verbal stimuli would be ex-
pected to similarly tax goal management and abstraction.

A second difference is that the simulations. unlike the stu-
dents. do not read the instructions and organize their processes
to solve the problems. Although this mobilization of processes
is clearly an important part of the task and an important part
of'intelligence. 1t is an unlikely source of individual differences
for this population. All of the college students could perform
this task sufficiently well to solve the easier. quantitative pair-
wise comparison problems. Moreover. even though the meta-
processes that assemble and organize the processes lie outside
the scope of the current simulation. they could be incorporated
without fundamentally altering the programs or their architec-
ture (e.g.. see Williams. 1972).

A third feature that might appear 1o differentiate the simula-
tions from human subjects is the difference between rule induc-
tion and rule recognition. Both FAIRAVEN and BETTERAVEN
are given a set of possible rules. and they only have to recognize
which ones are operating in a given problem. rather than induc-
ing the rules from scratch. However. with the notable exception
of the distribution-of-two-values rule, the other rules are com-
mon forms of variation that were correctly verbally described
by all subjects in some problems. Hence. the individual differ-
ences were not in the knowledge of a particular rule so much as
in recognizing it among other variation in problems with multi-
ple rule tokens. By contrast, knowledge of the distribution-of-
two-values rule appeared to be a source of individual differ-
ences. We account for its unique status in terms of its abstract-
ness and unfamiliarity. In fact. we express the better abstraction
capabilities of BETTERAVEN both in terms of its abilityv to han-

dle a larger set of patterns of differences and its explicit knowl-
edge of this rule. Thus. the difference between the two simula-
tions expresses one sense in which knowledge of the rules distin-
guishes among individuals. On the other hand. BETTERAVEN
does not have the generative capability of inducing all of the
various types of abstract rules that one might encounter in these
types of tasks: in this sense. it falls far short of representing the
full repertoire of human induction abilities.

A fourth limitation of the models is that thev are based on a
sample of college students who represent the upper end of the
distribution of Raven scores. and so the theoretical analysis can-
not be assumed to generalize throughout the distribution. We
would argue, however, that the characteristics that differentiate
college students, namely goal management and abstraction,
probably continue to characterize individual differences
throughout the population. But there is also evidence that low-
scoring subjects sometimes use very different processes on the
Raven test, which could obscure the relationship between Ra-
ven test performance and working memory for such individu-
als. For example, as mentioned previously. low-scoring subjects
rely more on a strategy of eliminating some of the response al-
ternatives. fixating the alternatives much sooner than high-scor-
ing subjects (Bethell-Fox et al., 1984: Dillon & Stevenson-
Hicks, 1981). Moreover, the types of errors made by low-scoring
adults frequently differ from those made by high-scoring sub-
Jects (Forbes, 1964) and may reflect less analysis of the problem.

If such extraneous processes are decreased and low-scoring
subjects are trained to use the analytic strategies of high-scoring
subjects. the validity of the Raven test increases. The study. with
425 Navy recruits. found that for low-scoring subjects. the cor-
relation between the Raven test and a wide-ranging aptitude
battery increased significantly (from .08 to .43) when the Raven
problems were presented in a training program that was de-
signed 1o reduce nonanalytic strategies (Larson, Alderton. &
Kaupp. 1990). The training did not alter the correlation be-
tween the Raven test and the aptitude battery for subjects in the
upper half of the distribution. The fact that the performance
of the trained low-scoring and all of the high-scoring subjects
correlated with the same aptitude battery suggests that after
training. the Raven test drew on similar processes for each
group. Thus, it is plausible to suppose that the current model
could be generalized to account for the performance of subjects
in the lower half of the distribution if they are given training to
minimize the influence of extraneous processes.

Cognitive Processes and Human Intelligence

In this part of the article. we discuss the implications of the
model for analytic intelligence. In the first sections, we examine
how abstraction and goal management are realized in other cog-
nitive tasks. These sections are focused primarily on goal man-
agement rather than abstraction, in part because abstraction
is implicitly or explicitly incorporated into many theories of
analytic intelligence, whereas goal management has received
less attention. In the final section. we examine what the Raven
simulations suggest about processes that are common across
people and across different domains.
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Abstraction

Most intuitive conceptions of intelligence include an ability
to think abstractly, and certainly solving the Raven problems
involves processes that deserve that label. Abstract reasoning
consists of the construction of representations that are only
loosely tied to perceptual inputs and instead are more depen-
dent on high-level interpretations of inputs that provide a gener-
alization over space and time. In the Raven test, more difficult
problems tended to involve more abstract rules than the less
difficult problems. (Interestingly. the level of abstraction of even
the most difficult rule. distribution of two values, does not seem
particularly great compared with the abstractions that are
taught and acquired in various academic domains. such as
physics or political science.) The level of abstraction also ap-
pears to differentiate the tests intended for children from those
intended for adults. For example, one characterization of the
easy problems found in the practice items of Set I and in the
Coloured Progressive Matrices Test is that the solutions are
closely tied to the perceptual format of the problem and conse-
quently can be solved by perceptual processes (Hunt, 1974). By
contrast, the problems that require analysis. including most of
the problems in Set II of the Advanced Progressive Matrices
Test. are not as closely tied to the perceptual format and require
a more abstract characterization in terms of dimensions and
attributes.

Abstract reasoning has been a component of most formal the-
ories of intelligence, including those of traditional psychometri-
cians. such as Thurstone (1938). and more recent researchers
ofindividual differences (Sternberg, 1985). Also. Piaget's theory
of intelligence characterizes childhood intellectual develop-
ment as the progression from the concrete to the symbolic and
abstract. We can now see precisely where the Raven test re-
quires abstraction and how people differ in their ability to rea-
son at various levels of abstraction in the Raven problems.

Goal Management

One of the main distinctions between higher scoring subjects
and lower scoring subjects was the ability of the better subjects
to successfully generate and manage their problem-sol ving
goals in working memory. In this view, a key component of ana-
Iytic intelligence is goal management, the process of spawning
subgoals from goals, and then tracking the ensuing successful
and unsuccessful pursuits of the subgoals on the path to satisfy-
ing higher level goals. Goal management enables the problem
solver to construct a stable intermediate form of knowledge
about his or her progress (Simon, 1969). In Simon’s words,
“complex systems will evolve from simple systems much more
rapidly if there are stable intermediate forms than if there are
not. The resulting complex forms in the former case will be
hierarchic™ (1969, p. 98). The creation and storage of subgoals
and their interrelations permit a person to pursue tentative so-
lution paths while preserving any previous progress. The de-
composition of the complexity in the Raven test and many other
problems consists of the recursive creation of solvable subprob-
lems. The benefit of the decomposition is that an incremental
iterative attack can then be applied to the simplified subprob-
lems. A failure in one subgoal need not jeopardize previous sub-

goals that were successfully attained. Moreover, the record of
failed subgoals minimizes fruitless reiteration along previously
failed paths. But the cost of creating embedded subproblems,
each with their own subgoals, is that they require the manage-
ment of a hierarchy of goals.

Goal management probably interacts with another determi-
nant of problem difficulty, namely the novelty of the problem.
A novel task may require the organization of high-level goals.
whereas the goals in a routine task have already been used to
compile a set of procedures to satisfv them. and the behavior
can be much more stimulus driven (Anderson. 1987). The use
or organization of goals is a strategic level of thought. possibly
involving metacognition or requiring reflection. In the BETTER-
AVEN model. additional goal-management mechanisms. such
as selection among multiple goals. a goal monitor, and backup
from goals, had to be included to solve the more difficult prob-
lems. However. if people had extensive practice or instruction
on Raven problems, the goal management would become rou-
tine, thereby making the problems easier. Instruction of sixth
graders in the use of the type of general strategy used by FAIRA-
VEN and BETTERAVEN improves their scores on Set I of the Ra-
ven test (Lawson & Kirby, 1981).

This analysis of the source of individual differences in the
Raven test should apply to other complex cognitive tasks as
well. The generality of the analysis is supported by Experiment
2, which showed a large correlation between the Raven test and
the execution of a Tower of Hanoi puzzle strategy that places
a large burden on goal generation and goal management. Our
analysis is also consistent with the high correlations among
complex reasoning tasks with diverse content, such as the data
cited in the introduction (Marshalek et al., 1983; Snow et al..
1984). These researchers and others have suggested that the cor-
relations among reasoning tasks may reflect higher level pro-
cesses that are shared, such as executive assembly and control
processes (see also Carroll, 1976; Sternberg, 1985). The contri-
bution of the current analysis is to specify these higher level
processes and instantiate them in the context of a widely used
and complex psychometric test.

The Raven Test's Relation to Other Analogical
Reasoning Tasks

The analogical nature of the Raven problems suggests that
the Raven processing models should bear some resemblance
to other models of analogical reasoning. One of the earliest
such artificial intelligence projects was Evans's (1968) ANAL-
OGY program, which solved geometric analogies of the form
(A:B::C:[five choices]). Evans's program had three main steps.
The program computed the spatial transformation that would
transform A into B by using specific knowledge of analvtic ge-
ometry. It then determined the transformation necessary to
transform C into each of the five possible answers. Finally, it
compared and identified which solution transformation was
most similar to that for transforming A into B and returned
the best choice. A major contribution of ANALOGY was that it
specified the content of the relations and processes that were
sufficient to solve problems from the American Council on Ed-
ucation examination. Although ANALOGY was not initially in-
tended to account for human performance, Mulholland, Pelle-
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grino. and Glaser (1980) found that aspects of the model ac-
counted for the pattern of response times and errors in solving
2 x 2 geometric analogies. Errors and response times increased
with the number of processing operations. which Mulholland
et al. attributed to the increased burden on working memory
incurred by tracking elements and transformations. Thus,
much simpler analogical reasoning tasks can reflect working
memory constraints.'’

Analogical reasoning in the context of simple 2 X 2 matrices
has also been analyzed from the perspective of individual
differences. The theoretical issue has been whether individual
differences in the speed of specific processes (e.g., inferencing,
mapping, and verifying) account for individual differences in
more complex induction tasks, like the Raven test. For exam-
ple, Sternberg and Gardner (1983) found that a speed measure
based on various inference processes used in simple analogical
and induction tasks was correlated with psychometrically as-
sessed reasoning ability. However, several other studies have
failed to find significant correlations between the speed of spe-
cific inference processes and performance in a more complex
reasoning task (Mulholland et al.. 1980: Sternberg. 1977). The
overall pattern of results suggests that the speed of any specific
inference process is unlikely to be a major determinant of goal
management. This conclusion is also supported by the high cor-
relation between the Raven test and the Tower of Hanoi puzzle,
a task that required very little induction. Nevertheless, some
degree of efficiency in the more task-specific processes may be
a necessary (if not sufficient) condition to free up working-
memory resources for goal generation and management. The
analysis of reasoning in simple analogies illuminates the task-
specific inference processes but is unlikely to account for the
individual differences in the more complex reasoning tasks.

What Aspects of Intelligence Are Common to Everyone?

The Raven test grew out of a scientific tradition that empha-
sizes the analysis of intelligence through the study of individual
differences. The theoretical goal of the psychometric or differ-
ential approach (in contrast to its methodological reliance on
factor analysis) is to account for individual performance, not
simply some statistical average of group performance. The neg-
ative consequence of this approach is that it can conceptually
and empirically exclude processes that are necessary for intelli-
gent behavior. but are common to all people. and hence not the
source of significant differences among individuals. Computa-
tional models such as the Raven simulations must include both
the processes that are common across individuals and those that
are sources of significant differences. Consequently, the models
provide insights into some of the important aspects of intelli-
gence, such as the incremental and reiterative nature of rea-
soning.

Cognitive accounts of other kinds of ability, such as models
of spatial ability (e.g., Just & Carpenter, 1985; Kosslyn, 1980:
Shepard & Cooper, 1982) and language ability (e.g.. Just & Car-
penter, 1987: van Dijk & Kintsch, 1983), also contribute to the
characterizations of intelligence. Newell (in press) has argued
that psychology is sufficiently mature to warrant the construc-
tion of unified theories of cognition that encompass all of the
kinds of thinking included in intelligence and offers the SOAR

model as his candidate. Although the collection of models for
diverse tasks that we have developed is far more modest in scope.
all of the models have been expressed in the same theoretical
language (CAPS), making the commonalities and differences rel-
atively discernible. All of these models share a production-sys-
tem control structure, a capacity for both seriality and parallel-
ism, a representational scheme that permits different activation
levels, and an information accumulation function (effectively.
an activation integrator). One interesting difference among
tasks is that some types of processes are easy to simulate with
parallelism and others are not (easy in the sense that the models
can perform the task and still retain essential human perfor-
mance characteristics). The processes that seem to operate well
in parallel in the simulation models are highly practiced pro-
cesses and lower level perceptual processes. The simulation of
higher level conceptual processes is accomplished more easily
with seriality, unless extensive increments to goal management
are included.

What the theory postulates about the commonalities of
different people and different tasks reflects some of the observed
performance commonalities. Many of the performance com-
monalities occur at the microstructure of the processing, which
is revealed in the eye-fixation patterns. The time scale of this
analysis is approximately 300-700 ms per gaze. Such processes
are too fast for awareness or for including in a verbal report.
The eye-fixation analysis reveals iterations through small units
of processing: the task is decomposed into manageable units of
processing, each governed by a subgoal. Then. the subgoals are
attacked one at a time. The problem decomposition and sub-
goaling reflect how people handle complexity bevond their ex-
isting operators in a number of domains, including text compre-
hension, spatial processing, and problem solving. For example,
in a mental rotation task, subjects decomposed a cube into
smaller units that they then rotated one unit at a time (Just &
Carpenter, 1985). Similarly. in the Raven test, even the simplest
types of figural analogies were decomposed and incrementally
processed through a sequence of pairwise comparisons. This
segmentation appears to be an inherent part of problem solving
and a facet of thinking that is common across domains in vari-
ous tasks requiring analytic intelligence.

Thus. what one intelligence test measures, according to the
current theory. is the common ability to decompose problems
into manageable segments and iterate through them, the differ-
ential ability to manage the hierarchy of goals and subgoals gen-
erated by this problem decomposition. and the differential abil-
ity to form higher level abstractions.

'" Although there has been a large amount of subsequent artificial
intelligence research on analogical reasoning. most of the work has fo-
cused on knowledge representation. knowledge retrieval. and knowl-
edge utilization rather than inferential and computational processes (see
the summary by Hall. 1989). Analogical reasoning is viewed as a boot-
strapping process to promote learning and the application of old infor-
mation in new domains (Becker. 1969; McDermott, 1979). In psvchol-
ogy, this view of analogical reasoning has resulted in research that exam-
ines the conditions under which subjects recognize analogous problem
solutions (Gick & Holyoak. 1983) and the contribution of analogical
reasoning to learning (Gentner, 1983).
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Appendix

Classification of Raven Problems by Rule Type

Lesioned model
Working
% error memory limit
by no. rules
Taxonomy of rules No. rule Exp. la Exp. 1b No D2Val

Raven no. in a row tokens (n=12) (n=22) FAIRAVEN BETTERAVEN rule 3 4 5
1-2 Pairwise, constant 2 0 N/A + + + + + +
I-6 Pairwise, constant 2 8 N/A + - + - + +
1-7 Distribution of 3, constant 2 42 14 + + + - - +
I-8 Distribution of 3 2 17 18 + - + + + +
19 Distribution of 3, constant 3 42 5 + + + + o+ o+
I-10 Addition, constant 2 25 14 + + + + o+ o+
1-12 Subtraction 1 42 9 + + + + + o+
1l-1 Distribution of 3. constant 3 8 9 + + + - - 4
II-3 Pairwise. constant 2 0 9 = + + - - +
1-4 Pairwise. constant 2 8 5 + - - + o+ o+
I1-5 Pairwise. constant 2 8 0 + - + + + +
11-6 Pairwise. constant 2 0 0 + + + + o+ o+
11-7 Addition 1 17 14 + - + - - +
11-8 Distribution of 3 2 17 18 + + + -+ 4+
11-9 Addition, constant 2 0 9 + + + + + +
11-10 Pairwise. constant 2 17 5 + + + + + +
1I-12 Subtraction 1 0 9 + + + + o+ 4
1-13 Distribution of 3. constant 3 50 32 - + + - - _
11-14 Pairwise. constant 2 8 9 + + + + + +
11-16 Subtraction 1 17 41 + + + + + +
1n-17 Distribution of 3, constant 2 17 23 + + + + o+ +
11-18 Unclassified® N/A 42 N/A - - - - — —
1I-19 Unclassified® N/A 33 N/A - - - - - -
11-22 Distribution of 2 3 42 45 - + - + + +
11-23 Distribution of 2 4 33 32 - + = - + +
1I-26 Pairwise, distribution of 3 2 50 67 - + - + + 4
11-27 Distribution of 3 2 42 36 + - + + + +
11-29 Distribution of 3 3 75 95 - + - + + +
11-31 Distribution of 3 & 2 4 42 55 - + - -+ 4
11-32 Distribution of 3 & 2 4 75 73 - + - + o+ o+
11-33 Addition, subtraction 2 50 63 — + - - _ -
11-34 Distribution of 3, constant 4 58 73 + + + + + +
11-35 Distribution of 2, constant 4 67 27 - + - - - _
11-36 Distribution of 2, constant 5 83 N/A -~ + - - — _

Nore. D2Val = distribution of two values: N/A = not applicable; plus signs indicate correct solution: minus signs indicate incorrect solution.
* Problem was not classifiable by our taxonomy:
¥
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