Gödel’s First Incompleteness Theorem
(excerpted from Gödel’s Great Theorems)

Selmer Bringsjord
Intro to Logic
May 2 2016
RPI
Troy NY USA
Thursday:

Can a machine match Gödel?

Grade roundup (not today; let us sort out the recent mis-sendings first), & contest “outflow.”
Thursday:

Can a machine match Gödel?

Grade roundup (not today; let us sort out the recent mis-sendings first), & contest “outflow.”
Goal: Put you in position to prove Gödel’s first incompleteness theorem!
Goal: Put you in position to prove Gödel’s first incompleteness theorem!

We have the background (if).
Remember …
“The (Economical) Liar” …
which will be our guide!
Remember …
“The (Economical) Liar” …
which will be our guide!

L: This sentence is false.
Remember …
“The (Economical) Liar” …
which will be our guide!

\[L: \text{This sentence is false.} \]

Suppose that \(T(L) \); then \(\neg T(L) \).
Remember …
“The (Economical) Liar” …
which will be our guide!

L: This sentence is false.

Suppose that $T(L)$; then $\neg T(L)$.

Suppose that $\neg T(L)$ then $T(L)$.
Remember …
“The (Economical) Liar” … which will be our guide!

L: This sentence is false.

Suppose that $T(L)$; then $\neg T(L)$.

Suppose that $\neg T(L)$ then $T(L)$.

Hence: $T(L)$ iff (i.e., if & only if) $\neg T(L)$.
Remember …
“The (Economical) Liar” …
which will be our guide!

L: This sentence is false.

Suppose that $T(L)$; then $\neg T(L)$.

Suppose that $\neg T(L)$ then $T(L)$.

Hence: $T(L)$ iff (i.e., if & only if) $\neg T(L)$.

Contradiction!
Next, recall:

PA (Peano Arithmetic):

\[
\begin{align*}
A1 \quad & \forall x (0 \neq s(x)) \\
A2 \quad & \forall x \forall y (s(x) = s(y) \rightarrow x = y) \\
A3 \quad & \forall x (x \neq 0 \rightarrow \exists y (x = s(y))) \\
A4 \quad & \forall x (x + 0 = x) \\
A5 \quad & \forall x \forall y (x + s(y) = s(x + y)) \\
A6 \quad & \forall x (x \times 0 = 0) \\
A7 \quad & \forall x \forall y (x \times s(y) = (x \times y) + x)
\end{align*}
\]

And, every sentence that is the universal closure of an instance of

\[
([\phi(0) \land \forall x (\phi(x) \rightarrow \phi(s(x)))] \rightarrow \forall x \phi(x))
\]

where \(\phi(x)\) is open wff with variable \(x\), and perhaps others, free.
Arithmetic is Part of All Things Sci/Eng/Tech!

and courtesy of Gödel: We can’t even prove all truths of arithmetic!

Each circle is a larger part of the formal sciences.
Definition of Richard’s N:

“The real number whose whole part is zero, and whose n-th decimal is p plus one if the n-th decimal of the real number defined by the n-th member of E is p and p is neither eight nor nine, and is simply one if this n-th decimal is eight or nine.”

Proof: N is defined by a finite string taken from the English alphabet, so N is in the sequence E. But on the other hand, by definition of N, for every m, N differs from the m-th element of E in at least one decimal place; so N is not any element of E. Contradiction! QED
Definition of Richard’s N:

“The real number whose whole part is zero, and whose n-th decimal is p plus one if the n-th decimal of the real number defined by the n-th member of E is p and p is neither eight nor nine, and is simply one if this n-th decimal is eight or nine.”

Proof: N is defined by a finite string taken from the English alphabet, so N is in the sequence E. But on the other hand, by definition of N, for every m, N differs from the m-th element of E in at least one decimal place; so N is not any element of E. Contradiction! **QED**
Definition of Richard’s N:

“The real number whose whole part is zero, and whose n-th decimal is p plus one if the n-th decimal of the real number defined by the n-th member of E is p and p is neither eight nor nine, and is simply one if this n-th decimal is eight or nine.”

Proof: N is defined by a finite string taken from the English alphabet, so N is in the sequence E. But on the other hand, by definition of N, for every m, N differs from the m-th element of E in at least one decimal place; so N is not any element of E. Contradiction! **QED**
Definition of Richard’s N:

“The real number whose whole part is zero, and whose n-th decimal is p plus one if the n-th decimal of the real number defined by the n-th member of E is p and p is neither eight nor nine, and is simply one if this n-th decimal is eight or nine.”

Proof: N is defined by a finite string taken from the English alphabet, so N is in the sequence E. But on the other hand, by definition of N, for every m, N differs from the m-th element of E in at least one decimal place; so N is not any element of E. Contradiction! **QED**
Definition of Richard’s N:

“The real number whose whole part is zero, and whose n-th decimal is p plus one if the n-th decimal of the real number defined by the n-th member of E is p and p is neither eight nor nine, and is simply one if this n-th decimal is eight or nine.”

Proof: N is defined by a finite string taken from the English alphabet, so N is in the sequence E. But on the other hand, by definition of N, for every m, N differs from the m-th element of E in at least one decimal place; so N is not any element of E. Contradiction! QED
And remember the “dictionary” sequence in Richard’s Paradox.

Definition of Richard’s N:

“The real number whose whole part is zero, and whose \(n\)-th decimal is \(p\) plus one if the \(n\)-th decimal of the real number defined by the \(n\)-th member of \(E\) is \(p\) and \(p\) is neither eight nor nine, and is simply one if this \(n\)-th decimal is eight or nine.”

Proof: \(N\) is defined by a finite string taken from the English alphabet, so \(N\) is in the sequence \(E\). But on the other hand, by definition of \(N\), for every \(m\), \(N\) differs from the \(m\)-th element of \(E\) in at least one decimal place; so \(N\) is not any element of \(E\). Contradiction! **QED**
Definition of Richard’s N:

“The real number whose whole part is zero, and whose n-th decimal is p plus one if the n-th decimal of the real number defined by the n-th member of E is p and p is neither eight nor nine, and is simply one if this n-th decimal is eight or nine.”

Proof: N is defined by a finite string taken from the English alphabet, so N is in the sequence E. But on the other hand, by definition of N, for every m, N differs from the m-th element of E in at least one decimal place; so N is not any element of E. Contradiction! QED
And remember the “dictionary” sequence in Richard’s Paradox.

Definition of Richard’s N:

“The real number whose whole part is zero, and whose n-th decimal is p plus one if the n-th decimal of the real number defined by the n-th member of E is p and p is neither eight nor nine, and is simply one if this n-th decimal is eight or nine.”

Proof: N is defined by a finite string taken from the English alphabet, so N is in the sequence E. But on the other hand, by definition of N, for every m, N differs from the m-th element of E in at least one decimal place; so N is not any element of E. Contradiction! \textbf{QED}
And remember the “dictionary” sequence in Richard’s Paradox.

Definition of Richard’s N:

“The real number whose whole part is zero, and whose n-th decimal is p plus one if the n-th decimal of the real number defined by the n-th member of E is p and p is neither eight nor nine, and is simply one if this n-th decimal is eight or nine.”

Proof: N is defined by a finite string taken from the English alphabet, so N is in the sequence E. But on the other hand, by definition of N, for every m, N differs from the m-th element of E in at least one decimal place; so N is not any element of E. Contradiction! QED
Definition of Richard’s N:

“The real number whose whole part is zero, and whose n-th decimal is p plus one if the n-th decimal of the real number defined by the n-th member of E is p and p is neither eight nor nine, and is simply one if this n-th decimal is eight or nine.”

Proof: N is defined by a finite string taken from the English alphabet, so N is in the sequence E. But on the other hand, by definition of N, for every m, N differs from the m-th element of E in at least one decimal place; so N is not any element of E. Contradiction! **QED**
Gödel Numbering, the Easy Way

Easy peasy: Just realize that every entry in a dictionary is named by a number n, and by the same basic lexicographic ordering, every computer program, formula, etc. is named by a number m in a lexicographic ordering going from 1, to 2, to …
Easy peasy: Just realize that every entry in a dictionary is named by a number \(n \), and by the same basic lexicographic ordering, every computer program, formula, etc. is named by a number \(m \) in a lexicographic ordering going from 1, to 2, to …

So, \textit{gimcrack} is named by some positive integer \(k \). Hence, I can just refer to this word as “\(k \)".
Gödel’s First Incompleteness Theorem

Suppose that elementary arithmetic (i.e., PA) is consistent (no contradiction can be derived in it) and program-decidable (there’s a program \(P \) that, given as input an arbitrary formula \(p \), can decide whether or not \(p \) is in PA). Then there is sentence \(g^* \) in the language of elementary arithmetic which is such that:

\(g^* \) can’t be proved from PA (i.e., not PA \(|- g^* \))!

And, not-\(g^* \) can’t be proved from PA either (i.e., not PA \(|- \text{not-}g^* \))!
Proof Kernel for Theorem Gl

Part I: Recipe R

Let $q(x)$ be an arbitrary formula of arithmetic with one open variable x. (E.g., $x + 3 = 5$. And here $q(2)$ would be $2 + 3 = 5$.)

Gödel invented a recipe R that, given any $q(x)$ as an ingredient template that you are free to choose, produces a self-referential formula g such that:

$$\text{PA } \vdash g \iff q(\text{"g"})$$

(i.e., a formula g that says: “I have property q!”)
First, for $q(x)$ we choose a formula q^* that holds of any “s” if and only if s can be proved from PA; i.e.,

$$\text{PA} \vdash q^*("s") \iff \text{PA} \vdash s \quad (1)$$

Next, we follow Gödel’s Recipe R to build a g^* such that:

$$\text{PA} \vdash g^* \iff \neg q^*("g^*"), \quad (2)$$
Proof Kernel for Theorem GI

Part 2: Follow Recipe R, Guided by The Liar

First, for $q(x)$ we choose a formula q^* that holds of any “s” if and only if s can be proved from PA; i.e.,

$$\text{PA} \vdash q^*("s") \iff \text{PA} \vdash s \quad (1)$$

Next, we follow Gödel’s Recipe R to build a g^* such that:

$$\text{PA} \vdash g^* \iff \neg q^*("g^*)" \quad (2)$$

g^* thus says: “I’m not true!” And so, the key question (assignment!): $\text{PA} \vdash g^*?!?$
Austin Hardyesque Indirect Proof

GI: \(g^* \) isn’t provable from PA; nor is the negation of \(g^* \! \\

Proof: Let’s follow The Liar: Suppose that \(g^* \) is provable from PA; i.e., suppose \(\text{PA} \vdash g^* \). Then by (1), with \(g^* \) substituted for \(s \), we have:

\[
\text{PA} \vdash q^*(“g^*”) \iff \text{PA} \vdash g^* \quad (1’)
\]

From our supposition and working right to left by *modus ponens* on (1’) we deduce:

\[
\text{PA} \vdash q^*(“g^*”) \quad (3.1)
\]

But from our supposition and the earlier (see previous slide) (2), we can deduce by *modus ponens* that from PA the opposite can be proved! I.e., we have:

\[
\text{PA} \vdash \text{not-}q^*(“g^*”) \quad (3.2)
\]

But (3.1) and (3.2) together means that PA is inconsistent, since it generates a contradiction. Hence by indirect proof \(g^* \) is *not* provable from PA.
Austin Hardy-esque Indirect Proof

GI: g^* isn’t provable from PA, nor is the negation of g^*.

Proof: Let’s follow The Liar: Suppose that g^* is provable from PA; i.e., suppose $\text{PA} |- g^*$. Then by (1), with g^* substituted for s, we have:

$$\text{PA} |- q^*\left(\text{“}g^*\text{”}\right) \iff \text{PA} |- g^* \quad (1')$$

From our supposition and working right to left by modus ponens on (1’) we deduce:

$$\text{PA} |- q^*\left(\text{“}g^*\text{”}\right) \quad (3.1)$$

But from our supposition and the earlier (see previous slide) (2), we can deduce by modus ponens that from PA the opposite can be proved! I.e., we have:

$$\text{PA} |- \neg q^*\left(\text{“}g^*\text{”}\right) \quad (3.2)$$

But (3.1) and (3.2) together means that PA is inconsistent, since it generates a contradiction. Hence by indirect proof g^* is not provable from PA.

What about the second option? Can you follow The Liar to show that supposing that the negation of g^* (i.e., not-g^*) is provable from PA also leads to a contradiction, and hence can’t be? (Good Test 3 question?)
finis