Propositional Calculus I: The Formal Language, Rules of Inference (initial), Application to Some Motivating Problems

Selmer Bringsjord

Rensselaer AI & Reasoning (RAIR) Lab
Department of Cognitive Science
Department of Computer Science
Lally School of Management & Technology
Rensselaer Polytechnic Institute (RPI)
Troy, New York 12180 USA

Intro to Logic
2/1/2018
Logistics ...
Logistics ...
Logistics ...

Note: Should now have laptop with you and ready to go with Slate installed — but if not, then certainly on Monday Feb 5!
Logistics ...

Note: Should now have laptop with you and ready to go with Slate installed — but if not, then certainly on Monday Feb 5!
Logistics ...

Note: Should now have laptop with you and ready to go with Slate installed — but if not, then certainly on Monday Feb 5!

And ... HyperGrader will debut in class on Feb 12, led by Rini.
Logistics ...

Note: Should now have laptop with you and ready to go with Slate installed — but if not, then certainly on Monday Feb 5!

And … HyperGrader will debut in class on Feb 12, led by Rini.

http://www.logicamodernapproach.com
Logistics ...

Note: Should now have laptop with you and ready to go with Slate installed — but if not, then certainly on Monday Feb 5!

And … HyperGrader will debut in class on Feb 12, led by Rini.

http://www.logicamodernapproach.com

Cannot use without valid, registered code!
Re the CD
Re the CD
Re the CD
Re the CD

Once seal broken, no return. Remember from first class, can opt for “Stanford” paradigm, with its software instead of LAMA paradigm!
Your code for Slate & HyperGrader for the semester:
Your code for Slate & HyperGrader for the semester:
Save sleeve & CD, snapshot sleeve & archive!!
Save sleeve & CD, snapshot sleeve & archive!!
What’s on the CD?

<table>
<thead>
<tr>
<th>Name</th>
<th>Date Modified</th>
<th>Size</th>
<th>Kind</th>
</tr>
</thead>
<tbody>
<tr>
<td>input_practice1_slit</td>
<td>Jan 22, 2017, 11:09 AM</td>
<td>3 KB</td>
<td>Document</td>
</tr>
<tr>
<td>input_practice1.slt</td>
<td>Jan 22, 2017, 11:09 AM</td>
<td>3 KB</td>
<td>Document</td>
</tr>
<tr>
<td>LAMA-BDLA011818.pdf</td>
<td>Jan 19, 2018, 11:36 AM</td>
<td>17.5 MB</td>
<td>PDF Document</td>
</tr>
<tr>
<td>oracle1_and_oracle2_firsttime.slt</td>
<td>Jan 22, 2017, 11:09 AM</td>
<td>2 KB</td>
<td>Document</td>
</tr>
<tr>
<td>PandQ_from_QandP.slt</td>
<td>Jan 22, 2017, 11:09 AM</td>
<td>456 bytes</td>
<td>Document</td>
</tr>
<tr>
<td>SDL.slt</td>
<td>Jan 22, 2017, 11:09 AM</td>
<td>1 KB</td>
<td>Document</td>
</tr>
<tr>
<td>SDL+.slt</td>
<td>Jan 22, 2017, 11:09 AM</td>
<td>2 KB</td>
<td>Document</td>
</tr>
<tr>
<td>slate_20160105.exe.zip</td>
<td>Jan 22, 2017, 11:37 AM</td>
<td>11.6 MB</td>
<td>ZIP archive</td>
</tr>
<tr>
<td>Slate_20160125.app.zip</td>
<td>Jan 22, 2017, 11:37 AM</td>
<td>11.4 MB</td>
<td>ZIP archive</td>
</tr>
<tr>
<td>snork.tar.gz</td>
<td>Jan 22, 2017, 11:40 AM</td>
<td>277 KB</td>
<td>gzip c...archive</td>
</tr>
<tr>
<td>soft_lic_agree_011818.pdf</td>
<td>Jan 19, 2018, 11:30 AM</td>
<td>54 KB</td>
<td>PDF Document</td>
</tr>
<tr>
<td>syll_intentlog_s18.pdf</td>
<td>Jan 19, 2018, 11:38 AM</td>
<td>248 KB</td>
<td>PDF Document</td>
</tr>
</tbody>
</table>
What’s on the CD?

<table>
<thead>
<tr>
<th>Name</th>
<th>Date Modified</th>
<th>Size</th>
<th>Kind</th>
</tr>
</thead>
<tbody>
<tr>
<td>input_practice1_sol.slt</td>
<td>Jan 22, 2017, 11:09 AM</td>
<td>3 KB</td>
<td>Document</td>
</tr>
<tr>
<td>input_practice1.slt</td>
<td>Jan 22, 2017, 11:09 AM</td>
<td>3 KB</td>
<td>Document</td>
</tr>
<tr>
<td>LAMA-BDLA011818.pdf</td>
<td>Jan 19, 2018, 11:36 AM</td>
<td>17.5 MB</td>
<td>PDF Document</td>
</tr>
<tr>
<td>oracle1_and_oracle2_firsttime.slt</td>
<td>Jan 22, 2017, 11:09 AM</td>
<td>2 KB</td>
<td>Document</td>
</tr>
<tr>
<td>PandQ_from_QandP.slt</td>
<td>Jan 22, 2017, 11:09 AM</td>
<td>456 bytes</td>
<td>Document</td>
</tr>
<tr>
<td>SDL.slt</td>
<td>Jan 22, 2017, 11:09 AM</td>
<td>1 KB</td>
<td>Document</td>
</tr>
<tr>
<td>SDL+.slt</td>
<td>Jan 22, 2017, 11:09 AM</td>
<td>2 KB</td>
<td>Document</td>
</tr>
<tr>
<td>slate_20160105.exe.zip</td>
<td>Jan 22, 2017, 11:37 AM</td>
<td>11.6 MB</td>
<td>ZIP archive</td>
</tr>
<tr>
<td>Slate_20160125.exe.zip</td>
<td>Jan 22, 2017, 11:37 AM</td>
<td>11.4 MB</td>
<td>ZIP archive</td>
</tr>
<tr>
<td>snark.tar.gz</td>
<td>Jan 22, 2017, 11:40 AM</td>
<td>277 KB</td>
<td>gzip c...archive</td>
</tr>
<tr>
<td>soft lic agree_011818.pdf</td>
<td>Jan 19, 2018, 11:30 AM</td>
<td>54 KB</td>
<td>PDF Document</td>
</tr>
<tr>
<td>syll_intlog_s18.pdf</td>
<td>Jan 19, 2018, 11:38 AM</td>
<td>248 KB</td>
<td>PDF Document</td>
</tr>
</tbody>
</table>
What’s on the CD?

Mac OS
What’s on the CD?

Windows

Mac OS
What’s on the CD?

- Mac OS: `soft_lic_agree_011818.pdf`
- Windows: `textbook`
What's on the CD?

<table>
<thead>
<tr>
<th>Name</th>
<th>Date Modified</th>
<th>Size</th>
<th>Kind</th>
</tr>
</thead>
<tbody>
<tr>
<td>input_practice1_sol.slt</td>
<td>Jan 22, 2017, 11:09 AM</td>
<td>3 KB</td>
<td>Document</td>
</tr>
<tr>
<td>input_practice1.slt</td>
<td>Jan 22, 2017, 11:09 AM</td>
<td>3 KB</td>
<td>Document</td>
</tr>
<tr>
<td>LAMA-BDLASLATE011818.pdf</td>
<td>Jan 19, 2018, 11:36 AM</td>
<td>17.5 MB</td>
<td>PDF Document</td>
</tr>
<tr>
<td>oracle1_and_oracle2_firsttime.slt</td>
<td>Jan 22, 2017, 11:09 AM</td>
<td>2 KB</td>
<td>Document</td>
</tr>
<tr>
<td>PandQ_from_QandP.slt</td>
<td>Jan 22, 2017, 11:09 AM</td>
<td>456 bytes</td>
<td>Document</td>
</tr>
<tr>
<td>SDL.slt</td>
<td>Jan 22, 2017, 11:09 AM</td>
<td>1 KB</td>
<td>Document</td>
</tr>
<tr>
<td>SDL+_slt</td>
<td>Jan 22, 2017, 11:09 AM</td>
<td>2 KB</td>
<td>Document</td>
</tr>
<tr>
<td>slate_20160105.exe.zip</td>
<td>Jan 22, 2017, 11:37 AM</td>
<td>11.6 MB</td>
<td>ZIP archive</td>
</tr>
<tr>
<td>Slate_20160125.app.zip</td>
<td>Jan 22, 2017, 11:37 AM</td>
<td>11.4 MB</td>
<td>ZIP archive</td>
</tr>
<tr>
<td>snark.tar.gz</td>
<td>Jan 22, 2017, 11:40 AM</td>
<td>277 KB</td>
<td>gzip archive</td>
</tr>
<tr>
<td>soft_lic_agree_011818.pdf</td>
<td>Jan 19, 2018, 11:30 AM</td>
<td>54 KB</td>
<td>PDF Document</td>
</tr>
<tr>
<td>syll_intlog_s18.pdf</td>
<td>Jan 19, 2018, 11:38 AM</td>
<td>248 KB</td>
<td>PDF Document</td>
</tr>
</tbody>
</table>

The CD contains a **textbook** for Mac OS and Windows.
What's on the CD?

- **Mac OS**: LAMA-BDLASLATE011818.pdf
- **Windows**: soft_lic_agree_011818.pdf
- **textbook**: LAMA-BDLASLATE011818.pdf

Complete, sign, email pdf to Selmer.Bringsjord@gmail.com
Initial Steps
Initial Steps

• Snapshot sleeve with code, and archive.
Initial Steps

- Snapshot sleeve with code, and archive.
- Copy the folder from CD to your laptop.
Initial Steps

• Snapshot sleeve with code, and archive.
• Copy the folder from CD to your laptop.
• Eject CD and “bank-vault”-save both!
Initial Steps

• Snapshot sleeve with code, and archive.
• Copy the folder from CD to your laptop.
• Eject CD and “bank-vault”-save both!
• Depending upon whether you’re Windows or MacOS, expand the relevant zipped file to obtain Slate.
Initial Steps

• Snapshot sleeve with code, and archive.
• Copy the folder from CD to your laptop.
• Eject CD and “bank-vault”-save both!
• Depending upon whether you’re Windows or MacOS, expand the relevant zipped file to obtain Slate.
• Open Slate
Initial Steps

• Snapshot sleeve with code, and archive.
• Copy the folder from CD to your laptop.
• Eject CD and “bank-vault”-save both!
• Depending upon whether you’re Windows or MacOS, expand the relevant zipped file to obtain Slate.
• Open Slate
• & today I’ll explain and show some simple moves in Slate (though of course I’ve already shown some moves in class).
Propositional Calculus I: The Formal Language, Rules of Inference (initial), Application to Some Motivating Problems

Selmer Bringsjord

Rensselaer AI & Reasoning (RAIR) Lab
Department of Cognitive Science
Department of Computer Science
Lally School of Management & Technology
Rensselaer Polytechnic Institute (RPI)
Troy, New York 12180 USA

Intro to Logic
2/1/2018
Note:

skipping to ~ p. 34!
Note:

skipping to ~ p. 34!
Note:

skipping to ~ p. 34!

M. Chi: Self-testers end up being self-made.
Note:

skipping to ~ p. 34!

M. Chi: Self-testers end up being self-made.
Note:

skipping to ~ p. 34!

M. Chi: Self-testers end up being self-made.

“What category of English sentences does logic focus on?”
CHAPTER 2. PROPOSITIONAL CALCULUS

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Formula Type</th>
<th>Sample Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P, P_1, P_2, Q, Q_1, \ldots$</td>
<td>Atomic Formulas</td>
<td>“Larry is lucky.” as L_l</td>
</tr>
<tr>
<td>$\neg \phi$</td>
<td>Negation</td>
<td>“Gary isn’t lucky.” as $\neg L_g$</td>
</tr>
<tr>
<td>$\phi_1 \land \ldots \land \phi_n$</td>
<td>Conjunction</td>
<td>“Both Larry and Carl are lucky.” as $L_l \land L_c$</td>
</tr>
<tr>
<td>$\phi_1 \lor \ldots \lor \phi_n$</td>
<td>Disjunction</td>
<td>“Either Billy is lucky or Alvin is.” as $L_b \lor L_a$</td>
</tr>
<tr>
<td>$\phi \rightarrow \psi$</td>
<td>Conditional (Implication)</td>
<td>“If Ron is lucky, so is Frank.” as $L_r \rightarrow L_f$</td>
</tr>
<tr>
<td>$\phi \leftrightarrow \psi$</td>
<td>Biconditional (Equivalence)</td>
<td>“Tim is lucky if and only if Kim is.” as $L_t \leftrightarrow L_k$</td>
</tr>
</tbody>
</table>

Table 2.1: Syntax of the Propositional Calculus. Note that ϕ, ψ, and ϕ_i stand for arbitrary formulas.
The Formal Language

CHAPTER 2. PROPOSITIONAL CALCULUS

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Formula Type</th>
<th>Sample Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P, P_1, P_2, Q, Q_1, \ldots)</td>
<td>Atomic Formulas</td>
<td>“Larry is lucky.” as (L_l)</td>
</tr>
<tr>
<td>(\neg \phi)</td>
<td>Negation</td>
<td>“Gary isn't lucky.” as (\neg L_g)</td>
</tr>
<tr>
<td>(\phi_1 \land \ldots \land \phi_n)</td>
<td>Conjunction</td>
<td>“Both Larry and Carl are lucky.” as (L_l \land L_c)</td>
</tr>
<tr>
<td>(\phi_1 \lor \ldots \lor \phi_n)</td>
<td>Disjunction</td>
<td>“Either Billy is lucky or Alvin is.” as (L_b \lor L_a)</td>
</tr>
<tr>
<td>(\phi \rightarrow \psi)</td>
<td>Conditional (Implication)</td>
<td>“If Ron is lucky, so is Frank.” as (L_r \rightarrow L_f)</td>
</tr>
<tr>
<td>(\phi \leftrightarrow \psi)</td>
<td>Biconditional (Coimplication)</td>
<td>“Tim is lucky if and only if Kim is.” as (L_t \leftrightarrow L_k)</td>
</tr>
</tbody>
</table>

Table 2.1: Syntax of the Propositional Calculus. Note that \(\phi, \psi, \) and \(\phi_i \) stand for arbitrary formulas.

Exercise: Is this language Roger-decidable? Prove it!
Given the statements

\neg a \lor \neg b
b
c \rightarrow a

which one of the following statements must also be true?

c
\neg b
\neg c
h
a
none of the above
“NYS I” Revisited

Given the statements

¬a ∨ ¬b
b
c → a

which one of the following statements must also be true?

c
¬b
¬c
h
a
none of the above
Our First Rule of Inference: PC (Entailment) Oracle
Our First Rule of Inference: PC (Entailment) Oracle
Our First Rule of Inference: PC (Entailment) Oracle
The Rules of Inference: PC (Consequence) Oracle

Premise 1. \(\neg A \lor \neg B \)
 (Premise 1) Assume \(\checkmark \)

Premise 2. \(B \)
 (Premise 2) Assume \(\checkmark \)

Premise 3. \(C \rightarrow A \)
 (Premise 3) Assume \(\checkmark \)

Intermediary Conclusion. \(\neg A \)
 PC \(\not\vdash x \)

Option 1. \(C \)
 (Premise 1, Premise 2, Premise 3)

Counterexample

The following truth assignment makes all of the premises true and the conclusion false.

- Premises
 - \(\neg A \lor \neg B \)
 - \(B \)
 - \(C \rightarrow A \)

- True Literals
 - \(B \)

- False Literals
 - \(A \)
 - \(C \)

Conclusion

- Option 2. \(\neg B \)
 PC \(\not\vdash x \)

- Option 4. \(H \)
 PC \(\not\vdash x \)

- Option 5. \(A \)
 PC \(\not\vdash x \)

Conclusion (Option 3). \(\neg C \)
 PC \(\not\vdash x \)
The Rules of Inference:
PC (Consequence) Oracle

Premise 1. \(\neg A \lor \neg B \) (Premise 1) Assume
Premise 2. \(B \) (Premise 2) Assume
Premise 3. \(C \rightarrow A \) (Premise 3) Assume

Intermediate Conclusion. \(\neg A \)
\(PC \vdash x \)

Option 1. \(C \) (Premise 1, Premise 2, Premise 3)

Counterexample
The following truth assignment makes all of the premises true and the conclusion false.

Premises
\(\neg A \lor \neg B \)
\(B \)
\(C \rightarrow A \)
Conclusion
\(C \)

True Literals
\(B \)
False Literals
\(A \)

Conclusion (Option 3). \(\neg C \)
\(PC \vdash x \)

Option 2. \(\neg B \)
\(PC \vdash x \)

Option 4. \(H \)
\(PC \vdash x \)

Option 5. \(A \)
\(PC \vdash x \)
The Problem in Slate

Premise 1. \(\neg A \lor \neg B \)
Premise 2. \(B \)
Premise 3. \(C \rightarrow A \)

Conclusion (Option 3). \(\neg C \)

Option 1. \(C \)
\(PC = x \)

Option 2. \(\neg B \)
\(PC = x \)

Option 4. \(H \)
\(PC = x \)

Option 5. \(A \)
\(PC = x \)
The Problem in Slate

Premise 1. \(\neg A \lor \neg B \)
(Premise 1) Assume

Premise 2. \(B \)
(Premise 2) Assume

Premise 3. \(C \rightarrow A \)
(Premise 3) Assume

Conclusion (Option 3). \(\neg C \)
\(PC \models X \)

Option 1. \(C \)
\(PC \models X \)

Option 2. \(\neg B \)
\(PC \models X \)

Option 4. \(H \)
\(PC \models X \)

Option 5. \(A \)
\(PC \models X \)
“NYS 3” Revisited

Given the statements
\[-\neg c\]
c \implies a
\[-a \vee b\]
b \implies d
\[-(d \vee e)\]

which one of the following statements must also be true?

\[-c\]
\[e\]
\[h\]
\[-a\]
all of the above
“NYS 3” Revisited

Given the statements
\(\neg \neg c \)
\(c \rightarrow a \)
\(\neg a \lor b \)
\(b \rightarrow d \)
\(\neg(d \lor e) \)

which one of the following statements must also be true?

\(\neg c \)
e
h
\(\neg a \)
all of the above
Given the statements
\neg \neg c
\neg a \lor b
b \rightarrow d
\neg (d \lor e)

which one of the following statements must also be true?

\neg c
e
h
\neg a
all of the above

Exercise: Show in Slate that each of the first four options can be proved using the PC entailment oracle.