Motivating Paradoxes, Puzzles, and R,
Part I

(Why Study Logic?)

Selmer Bringsjord

Intro to *(Formal)* Logic

1/22/18

Selmer.Bringsjord@gmail.com
What is Logic?
What is Logic?

- The key to becoming rational.
What is Logic?

• The key to becoming rational.
• “The science of reasoning.” — so the not-unreasonable slogan goes.
What is Logic?

- The key to becoming rational.
- “The science of reasoning.” — so the not-unreasonable slogan goes.
- The only invincible subject there is.
What is Logic?

• The key to becoming rational.
• “The science of reasoning.” — so the not-unreasonable slogan goes.
• The only invincible subject there is.
• The basis for the formal sciences (from mathematics to game theory to decision theory to probability calculi to axiomatic physics ….) — and hence the basis for disciplines based on the formal sciences (e.g., engineering, computer science).
What is Logic?

• The key to becoming rational.
• “The science of reasoning.” — so the not-unreasonable slogan goes.
• The only invincible subject there is.
• The basis for the formal sciences (from mathematics to game theory to decision theory to probability calculi to axiomatic physics ….) — and hence the basis for disciplines based on the formal sciences (e.g., engineering, computer science).
• The way of escape from shallow content and context to pure, immaterial, and immortal form and structure (which is why the exotic, imaginary, and seemingly non-sensical is so pedagogically useful).
What is Logic?

• The key to becoming rational.
• “The science of reasoning.” — so the not-unreasonable slogan goes.
• The only invincible subject there is.
• The basis for the formal sciences (from mathematics to game theory to decision theory to probability calculi to axiomatic physics ….) — and hence the basis for disciplines based on the formal sciences (e.g., engineering, computer science).
• The way of escape from shallow content and context to pure, immaterial, and immortal form and structure (which is why the exotic, imaginary, and seemingly non-sensical is so pedagogically useful).
• The most challenging subject there is.
What is Logic?

• The key to becoming rational.
• “The science of reasoning.” — so the not-unreasonable slogan goes.
• The only invincible subject there is.
• The basis for the formal sciences (from mathematics to game theory to decision theory to probability calculi to axiomatic physics ….) — and hence the basis for disciplines based on the formal sciences (e.g., engineering, computer science).
• The way of escape from shallow content and context to pure, immaterial, and immortal form and structure (which is why the exotic, imaginary, and seemingly non-sensical is so pedagogically useful).
• The most challenging subject there is.
• One of the chief differentiators between dogs and monkeys versus you (let alone bears and you); and mindless machines (like Deep Blue & Watson) versus you.
What is Logic?

• The key to becoming rational.
• “The science of reasoning.” — so the not-unreasonable slogan goes.
• The only invincible subject there is.
• The basis for the formal sciences (from mathematics to game theory to decision theory to probability calculi to axiomatic physics ….) — and hence the basis for disciplines based on the formal sciences (e.g., engineering, computer science).
• The way of escape from shallow content and context to pure, immaterial, and immortal form and structure (which is why the exotic, imaginary, and seemingly non-sensical is so pedagogically useful).
• The most challenging subject there is.
• One of the chief differentiators between dogs and monkeys versus you (let alone bears and you); and mindless machines (like Deep Blue & Watson) versus you.
• A key to riches.
What is Logic?

• The key to becoming rational.
• “The science of reasoning.” — so the not-unreasonable slogan goes.
• The only invincible subject there is.
• The basis for the formal sciences (from mathematics to game theory to decision theory to probability calculi to axiomatic physics ….) — and hence the basis for disciplines based on the formal sciences (e.g., engineering, computer science).
• The way of escape from shallow content and context to pure, immaterial, and immortal form and structure (which is why the exotic, imaginary, and seemingly non-sensical is so pedagogically useful).
• The most challenging subject there is.
• One of the chief differentiators between dogs and monkeys versus you (let alone bears and you); and mindless machines (like Deep Blue & Watson) versus you.
• A key to riches.
• The key to divining the meaning of life (and other such big questions).
What is Logic?

• The key to becoming rational.
• “The science of reasoning.” — so the not-unreasonable slogan goes.
• The only invincible subject there is.
• The basis for the formal sciences (from mathematics to game theory to decision theory to probability calculi to axiomatic physics ….) — and hence the basis for disciplines based on the formal sciences (e.g., engineering, computer science).
• The way of escape from shallow content and context to pure, immaterial, and immortal form and structure (which is why the exotic, imaginary, and seemingly non-sensical is so pedagogically useful).
• The most challenging subject there is.
• One of the chief differentiators between dogs and monkeys versus you (let alone bears and you); and mindless machines (like Deep Blue & Watson) versus you.
• A key to riches.
• The key to divining the meaning of life (and other such big questions).
• The better way to program computers; and fundamentally the only way to reliably program computers.
What is Logic?

• The key to becoming rational.
• “The science of reasoning.” — so the not-unreasonable slogan goes.
• The only invincible subject there is.
• The basis for the formal sciences (from mathematics to game theory to decision theory to probability calculi to axiomatic physics ….) — and hence the basis for disciplines based on the formal sciences (e.g., engineering, computer science).
• The way of escape from shallow content and context to pure, immaterial, and immortal form and structure (which is why the exotic, imaginary, and seemingly non-sensical is so pedagogically useful).
• The most challenging subject there is.
• One of the chief differentiators between dogs and monkeys versus you (let alone bears and you); and mindless machines (like Deep Blue & Watson) versus you.
• A key to riches.
• The key to divining the meaning of life (and other such big questions).
• The better way to program computers; and fundamentally the only way to reliably program computers.
• One of two fundamental approaches to studying minds, and replicating/simulating minds in machines…
What is Logic?

• The key to becoming rational.
• “The science of reasoning.” — so the not-unreasonable slogan goes.
• The only invincible subject there is.
• The basis for the formal sciences (from mathematics to game theory to decision theory to probability calculi to axiomatic physics ….) — and hence the basis for disciplines based on the formal sciences (e.g., engineering, computer science).
• The way of escape from shallow content and context to pure, immaterial, and immortal form and structure (which is why the exotic, imaginary, and seemingly non-sensical is so pedagogically useful).
• The most challenging subject there is.
• One of the chief differentiators between dogs and monkeys versus you (let alone bears and you); and mindless machines (like Deep Blue & Watson) versus you.
• A key to riches.
• The key to divining the meaning of life (and other such big questions).
• The better way to program computers; and fundamentally the only way to reliably program computers.
• One of two fundamental approaches to studying minds, and replicating/simulating minds in machines…
• The thing many creatures of fiction have mastered — have you (as a New Yorker)? …
What is Logic?

• The key to becoming rational.
• “The science of reasoning.” — so the not-unreasonable slogan goes.
• The only invincible subject there is.
• The basis for the formal sciences (from mathematics to game theory to decision theory to probability calculi to axiomatic physics ….) — and hence the basis for disciplines based on the formal sciences (e.g., engineering, computer science).
• The way of escape from shallow content and context to pure, immaterial, and immortal form and structure (which is why the exotic, imaginary, and seemingly non-sensical is so pedagogically useful).
• The most challenging subject there is.
• One of the chief differentiators between dogs and monkeys versus you (let alone bears and you); and mindless machines (like Deep Blue & Watson) versus you.
• A key to riches.
• The key to divining the meaning of life (and other such big questions).
• The better way to program computers; and fundamentally the only way to reliably program computers.
• One of two fundamental approaches to studying minds, and replicating/simulating minds in machines…
• The thing many creatures of fiction have mastered — have you (as a New Yorker)? …
What is Logic?

• The key to becoming rational.
• “The science of reasoning.” — so the not-unreasonable slogan goes.
• The only invincible subject there is.
• The basis for the formal sciences (from mathematics to game theory to decision theory to probability calculi to axiomatic physics …) — and hence the basis for disciplines based on the formal sciences (e.g., engineering, computer science).
• The way of escape from shallow content and context to pure, immaterial, and immortal form and structure (which is why the exotic, imaginary, and seemingly non-sensical is so pedagogically useful).
• The most challenging subject there is.
• One of the chief differentiators between dogs and monkeys versus you (let alone bears and you); and mindless machines (like Deep Blue & Watson) versus you.
• A key to riches.
• The key to divining the meaning of life (and other such big questions).
• The better way to program computers; and fundamentally the only way to reliably program computers.
• One of two fundamental approaches to studying minds, and replicating/simulating minds in machines…
• The thing many creatures of fiction have mastered — have you (as a New Yorker)?
What is Logic?

• The key to becoming rational.
• “The science of reasoning.” — so the not-unreasonable slogan goes.
• The only invincible subject there is.
• The basis for the formal sciences (from mathematics to game theory to decision theory to probability calculi to axiomatic physics ….) — and hence the basis for disciplines based on the formal sciences (e.g., engineering, computer science).
• The way of escape from shallow content and context to pure, immaterial, and immortal form and structure (which is why the exotic, imaginary, and seemingly non-sensical is so pedagogically useful).
• The most challenging subject there is.

• One of the chief differentiators between dogs and monkeys versus you (let alone bears and you); and mindless machines (like Deep Blue & Watson) versus you.
• A key to riches.
• The key to divining the meaning of life (and other such big questions).
• The better way to program computers; and fundamentally the only way to reliably program computers.
• One of two fundamental approaches to studying minds, and replicating/simulating minds in machines…
• The thing many creatures of fiction have mastered — have you (as a New Yorker)?...
What is Logic?

• The key to becoming rational.

• “The science of reasoning.” — so the not-unreasonable slogan goes.

• The only invincible subject there is.

• The basis for the formal sciences (from mathematics to game theory to decision theory to probability calculi to axiomatic physics ….) — and hence the basis for disciplines based on the formal sciences (e.g., engineering, computer science).

• The way of escape from shallow content and context to pure, immaterial, and immortal form and structure (which is why the exotic, imaginary, and seemingly non-sensical is so pedagogically useful).

• The most challenging subject there is.

• One of the chief differentiators between dogs and monkeys versus you (let alone bears and you); and mindless machines (like Deep Blue & Watson) versus you.

• A key to riches.

• The key to divining the meaning of life (and other such big questions).

• The better way to program computers; and fundamentally the only way to reliably program computers.

• One of two fundamental approaches to studying minds, and replicating/simulating minds in machines…

• The thing many creatures of fiction have mastered — have you (as a New Yorker)?...
Watch brainy zoo animals figure out a box puzzle to get at food
Plenty of Tests Out There for Nonhuman Animals

E.g. search in your browser for …

trap-tube task
Background Claim

Humans, at least neurobiologically normal ones, are fundamentally rational, where rationality is constituted by certain logico-mathematically based reasoning and decision-making in response to real-world stimuli, including stimuli given in the form of focused tests; but mere animals are not fundamentally rational, since, contra Darwin, their minds are fundamentally qualitatively inferior to the human mind. As to whether computing machines/robots are fundamentally rational, the answer is “No.” For starters, if x can’t read, write, and create, x can’t be rational; computing machines/robots can neither read nor write nor create; ergo, they aren’t fundamentally rational.
Humans, at least neurobiologically normal ones, are fundamentally rational, where rationality is constituted by certain logico-mathematically based reasoning and decision-making in response to real-world stimuli, including stimuli given in the form of focused tests; but mere animals are not fundamentally rational, since, *contra* Darwin, their minds are fundamentally qualitatively inferior to the human mind. As to whether computing machines/robots are fundamentally rational, the answer is “No.” For starters, if x can’t read, write, and create, x can’t be rational; computing machines/robots can neither read nor write nor create; ergo, they aren’t fundamentally rational.
Background Claim

Humans, at least neurobiologically normal ones, are fundamentally rational, where rationality is constituted by certain logico-mathematically based reasoning and decision-making in response to real-world stimuli, including stimuli given in the form of focused tests; but mere animals are not fundamentally rational, since, contra Darwin, their minds are fundamentally qualitatively inferior to the human mind. As to whether computing machines/robots are fundamentally rational, the answer is “No.” For starters, if x can’t read, write, and create, x can’t be rational; computing machines/robots can neither read nor write nor create; ergo, they aren’t fundamentally rational.

To infinity and beyond! — routinely
Humans, at least neurobiologically normal ones, are fundamentally rational, where rationality is constituted by certain logico-mathematically based reasoning and decision-making in response to real-world stimuli, including stimuli given in the form of focused tests; but mere animals are not fundamentally rational; since, \textit{contra} Darwin, their minds are fundamentally qualitatively inferior to the human mind. As to whether computing machines/robots are fundamentally rational, the answer is “No.” For starters, if \(x \) can’t read, write, and create, \(x \) can’t be rational; computing machines/robots can neither read nor write nor create; ergo, they aren’t fundamentally rational.

\textbf{self-reference}

\textbf{To infinity and beyond! — routinely}
Humans, at least neurobiologically normal ones, are fundamentally rational, where rationality is constituted by certain logico-mathematically based reasoning and decision-making in response to real-world stimuli, including stimuli given in the form of focused tests; but mere animals are not fundamentally rational, since, contra Darwin, their minds are fundamentally qualitatively inferior to the human mind. As to whether computational or logical minds are fundamentally rational, the answer is “No.” For starters, if a mind is purely artificial, x cannot be rational; computing machines/robots can neither read nor write nor create; ergo, they aren’t fundamentally rational.

To infinity and beyond! — routinely
Background Claim

intensional reasoning

Humans, at least neurobiologically normal ones, are fundamentally rational, where rationality is constituted by certain logico-mathematically based reasoning and decision-making in response to real-world stimuli, including stimuli given in the form of focused tests; but mere animals are not fundamentally rational, since contra Darwin, their minds are fundamentally qualitatively inferior to the human mind. As to whether computers and robots are fundamentally rational, the answer is “No.” For starters, if they cannot read nor write nor create, x can't be rational; computing machines/robots can neither read nor write nor create; ergo, they aren’t fundamentally rational.

recursion

self-reference

To infinity and beyond! — routinely
To infinity and beyond! — routinely
abstract-and-valid inference schemata

quantification

intensional reasoning

recursion

self-reference

To infinity and beyond! — routinely
Problem!
Problem!
$< \theta, \pi > \to_{L_i} \text{answer } \oplus \text{ "proof" }$
\(< \vartheta, \pi > \rightarrow_{\text{Li}} \text{"proof"}\)
$< \vartheta, \pi > \rightarrow_{\text{Li}} " \text{proof}"$
Context: Assembly (Seriated)
Selmer’s Seriated Cup Challenge, Part 1

Suppose you have at your disposal a “factory” that, upon hearing you announce a number \(j\), can quickly output a cup having a diameter of precisely \(j\) units. Can you insert a new cup between two of the seriated cups in the tower shown here? — where the \(j\) you send in must be a positive integer, \(m\) is likewise a positive integer, and every cup in every tower must be more in diameter than the one immediately above it, and less in diameter than the one immediately below it?** Prove that your answer is correct.

**E.g., if \(m = 3\), the tower in that case will have a base cup 4 units in diameter, immediately above that a cup 3 units in diameter, then a cup 2 units in diameter, and then finally a top cup of 1 unit in diameter.
Selmer’s Seriated Cup Challenge, Part I

Suppose you have at your disposal a “factory” that, upon hearing you announce a number j, can quickly output a cup having a diameter of precisely j units. Can you insert a new cup between two of the seriated cups in the tower shown here? — where the j you send in must be a positive integer, m is likewise a positive integer, and every cup in every tower must be more in diameter than the one immediately above it, and less in diameter than the one immediately below it?** Prove that your answer is correct.

**E.g., if $m = 3$, the tower in that case will have a base cup 4 units in diameter, immediately above that a cup 3 units in diameter, then a cup 2 units in diameter, and then finally a top cup of 1 unit in diameter.
Selmer’s Seriated Cup Challenge, Part II

Suppose you have at your disposal a “factory” that, upon hearing you announce a number \(j \), can quickly output a cup having a diameter of precisely \(j \) units. Can you insert a new cup between two of the seriated cups in the tower shown here? — where the \(j \) you send in must be a positive rational number; \(k, k', k'', k''' \ldots \) are likewise positive rational numbers, and every cup in every tower must be more in diameter than the one immediately above it, and less in diameter than the one immediately below it?** Prove that your answer is correct.

**E.g., if \(k = \frac{1}{7} \), the tower in that case will have a base cup \(\frac{1}{7} \) units in diameter, immediately above that there could be a cup \(\frac{2}{7} \) units in diameter, then perhaps a cup \(\frac{3}{7} \) units in diameter, and then perhaps finally a top cup of \(\frac{4}{7} \) units in diameter.
Selmer’s Seriated Cup Challenge, Part II

Suppose you have at your disposal a “factory” that, upon hearing you announce a number \(j \), can quickly output a cup having a diameter of precisely \(j \) units. Can you insert a new cup between two of the seriated cups in the tower shown here? — where the \(j \) you send in must be a positive rational number; \(k, k', k'', k''' \ldots \) are likewise positive rational numbers, and every cup in every tower must be more in diameter than the one immediately above it, and less in diameter than the one immediately below it?** Prove that your answer is correct.

\[j \in \mathbb{Q}^+ \text{(desired diameter of cup)} \]

\[\frac{1}{2} \]

\[\frac{1}{3} \]

\[\frac{1}{4} \]

**E.g., if \(k = \frac{1}{7} \), the tower in that case will have a base cup \(\frac{1}{7} \) units in diameter, immediately above that there could be a cup \(\frac{2}{7} \) units in diameter, then perhaps a cup \(\frac{3}{7} \) units in diameter, and then perhaps finally a top cup of \(\frac{1}{2} \) units in diameter.
What is Logic?

- The key to becoming rational.
- “The science of reasoning.” — so the not-unreasonable slogan goes.
- The only invincible subject there is.
- The basis for the formal sciences (from mathematics to game theory to decision theory to probability calculi to axiomatic physics ….) — and hence the basis for disciplines based on the formal sciences (e.g., engineering, computer science).
- The way of escape from shallow content and context to pure, immaterial, and immortal form and structure (which is why the exotic, imaginary, and seemingly nonsensical is so pedagogically useful).
- The most challenging subject there is.
- One of the chief differentiators between dogs and monkeys versus you (let alone bears and you); and mindless machines (like Deep Blue & Watson) versus you.
- A key to riches.
- The key to divining the meaning of life (and other such big questions).
- The better way to program computers; and fundamentally the only way to reliably program computers.
- One of two fundamental approaches to studying minds, and replicating/simulating minds in machines…
- The thing many creatures of fiction have mastered — have you (as a New Yorker)?…
- …
What is Logic?

• The key to becoming rational. Or are you already rational? …

• “The science of reasoning.” — so the not-unreasonable slogan goes.

• The only invincible subject there is.

• The basis for the formal sciences (from mathematics to game theory to decision theory to probability calculi to axiomatic physics ….) — and hence the basis for disciplines based on the formal sciences (e.g., engineering, computer science).

• The way of escape from shallow content and context to pure, immaterial, and immortal form and structure (which is why the exotic, imaginary, and seemingly nonsensical is so pedagogically useful).

• The most challenging subject there is.

• One of the chief differentiators between dogs and monkeys versus you (let alone bears and you); and mindless machines (like Deep Blue & Watson) versus you.

• A key to riches.

• The key to divining the meaning of life (and other such big questions).

• The better way to program computers; and fundamentally the only way to reliably program computers.

• One of two fundamental approaches to studying minds, and replicating/simulating minds in machines…

• The thing many creatures of fiction have mastered — have you (as a New Yorker)?…

• …
It’s White’s turn. What move did Black just make?
Aha! (Beyond Deep Blue?)
Aha! (Beyond Deep Blue?)
Simple Selection Task

E T 4 7

Suppose I claim that the following rule is true.

If a card has a vowel on one side, it has an even number on the other side.

Which card or cards, if any, should you turn over in order to try to efficiently decide whether the rule is true or false?
Simple Selection Task

Suppose I claim that the following rule is true.

If a card has a vowel on one side, it has an even number on the other side.

Which card or cards, if any, should you turn over in order to try to efficiently decide whether the rule is true or false?
Suppose I claim that the following rule is true.

If a card has a vowel on one side, it has an even number on the other side.

Which card or cards, if any, should you turn over in order to try to efficiently decide whether the rule is true or false?
Given the statements

\(\neg a \lor \neg b \)
\(b \)
\(c \rightarrow a \)

which one of the following statements must also be true?

\(c \)
\(\neg b \)
\(\neg c \)
\(h \)
\(a \)
none of the above
Given the statements

\(\neg a \lor \neg b \)
\(b \)
\(c \rightarrow a \)

which one of the following statements must also be true?

\(c \)
\(\neg b \)
\(\neg c \)
\(h \)
\(a \)
none of the above
Which one of the following statements is logically equivalent to the following statement: “If you are not part of the solution, then you are part of the problem.”

If you are part of the solution, then you are not part of the problem.

If you are not part of the problem, then you are part of the solution.

If you are part of the problem, then you are not part of the solution.

If you are not part of the problem, then you are not part of the solution.
Which one of the following statements is logically equivalent to the following statement: "If you are not part of the solution, then you are part of the problem."

If you are part of the solution, then you are not part of the problem.

If you are not part of the problem, then you are part of the solution.

If you are part of the problem, then you are not part of the solution.

If you are not part of the problem, then you are not part of the solution.
Given the statements
¬¬c
¬¬c
¬¬c → a
¬a ∨ b
b → d
¬(d ∨ e)

which one of the following statements must also be true?

¬c
e
h
¬a
all of the above
Given the statements
\neg \neg c
\neg a \lor b
b \rightarrow d
\neg (d \lor e)

which one of the following statements must also be true?

\neg c
e
h
\neg a
all of the above
The Original King-Ace

Suppose that the following premise is true:

If there is a king in the hand, then there is an ace in the hand, or else if there isn’t a king in the hand, then there is an ace.

What can you infer from this premise?
The Original King-Ace

Suppose that the following premise is true:

If there is a king in the hand, then there is an ace in the hand, or else if there isn’t a king in the hand, then there is an ace.

What can you infer from this premise?

There is an ace in the hand.
The Original King-Ace

Suppose that the following premise is true:

If there is a king in the hand, then there is an ace in the hand, or else if there isn’t a king in the hand, then there is an ace.

What can you infer from this premise?

There is an ace in the hand.
The Original King-Ace

Suppose that the following premise is true:

If there is a king in the hand, then there is an ace in the hand, or else if there isn’t a king in the hand, then there is an ace.

What can you infer from this premise?

NO! There is an ace in the hand.
The Original King-Ace

Suppose that the following premise is true:

If there is a king in the hand, then there is an ace in the hand, or else if there isn’t a king in the hand, then there is an ace.

What can you infer from this premise?

NO! There is an ace in the hand. NO!
The Original King-Ace

Suppose that the following premise is true:

If there is a king in the hand, then there is an ace in the hand, or else if there isn’t a king in the hand, then there is an ace.

What can you infer from this premise?

NO! There is an ace in the hand. NO!

In fact, what you can infer is that there isn’t an ace in the hand!
Suppose that the following premise is true:

If there is a king in the hand, then there is an ace in the hand; or if there isn’t a king in the hand, then there is an ace; but not both of these if-then statements are true.

What can you infer from this premise?
Suppose that the following premise is true:

If there is a king in the hand, then there is an ace in the hand; or if there isn’t a king in the hand, then there is an ace; but not both of these if-then statements are true.

What can you infer from this premise?

There is an ace in the hand.
Suppose that the following premise is true:

If there is a king in the hand, then there is an ace in the hand; or if there isn’t a king in the hand, then there is an ace; but not both of these if-then statements are true.

What can you infer from this premise?

- There is an ace in the hand.
King-Ace 2

Suppose that the following premise is true:

If there is a king in the hand, then there is an ace in the hand; or if there isn’t a king in the hand, then there is an ace; but not both of these if-then statements are true.

What can you infer from this premise?

NO! There is an ace in the hand.
Suppose that the following premise is true:

If there is a king in the hand, then there is an ace in the hand; or if there isn’t a king in the hand, then there is an ace; but not both of these if-then statements are true.

What can you infer from this premise?

NO! There is an ace in the hand. **NO!**
Suppose that the following premise is true:

If there is a king in the hand, then there is an ace in the hand; or if there isn’t a king in the hand, then there is an ace; but not both of these if-then statements are true.

What can you infer from this premise?

NO! There is an ace in the hand. **NO!**

In fact, what you *can* infer is that there isn’t an ace in the hand!