Propositional Calculus III:
Reductio ad Absurdum

Selmer Bringsjord

Rensselaer AI & Reasoning (RAIR) Lab
Department of Cognitive Science
Department of Computer Science
Lally School of Management & Technology
Rensselaer Polytechnic Institute (RPI)
Troy, New York 12180 USA

Intro to Logic
2/8/2018
Logistics ...
Any takers?

Logistics ...
Any takers? NO

Logistics ...
Any takers?

Logistics

[NO]
Any takers?

Logistics ...

Note: Should now have laptop with you and ready to go with Slate installed.
Any takers? NO

Logistics ...

Note: Should now have laptop with you and ready to go with Slate installed.
Any takers? **NO**

Logistics ...

Note: Should now have laptop with you and ready to go with Slate installed.

And ... HyperGrader will debut in class on Feb 12, led by Rini.
Any takers? NO

Logistics ...

Note: Should now have laptop with you and ready to go with Slate installed.

And ... HyperGrader will debut in class on Feb 12, led by Rini.

http://www.logicamodernapproach.com
Logistics ...

Note: Should now have laptop with you and ready to go with Slate installed.

And ... HyperGrader will debut in class on Feb 12, led by Rini.

http://www.logicamodernapproach.com

Plenty of problems there to already learn/practice on!
Your code for Slate & HyperGrader for the semester:
Your code for Slate & HyperGrader for the semester:

18450
Your code for Slate & HyperGrader for the semester:

To submit purportedly correct proofs to HyperGrader, you will authenticate with your email address & your code.
Save sleeve & CD, snapshot sleeve & archive!!
Save sleeve & CD, snapshot sleeve & archive!!
What’s on the CD?

<table>
<thead>
<tr>
<th>Name</th>
<th>Date Modified</th>
<th>Size</th>
<th>Kind</th>
</tr>
</thead>
<tbody>
<tr>
<td>input_practice1_sol.slt</td>
<td>Jan 22, 2017, 11:09 AM</td>
<td>3 KB</td>
<td>Document</td>
</tr>
<tr>
<td>input_practice1.slt</td>
<td>Jan 22, 2017, 11:09 AM</td>
<td>3 KB</td>
<td>Document</td>
</tr>
<tr>
<td>LAMA-BDLA011818.pdf</td>
<td>Jan 19, 2018, 11:36 AM</td>
<td>17.5 MB</td>
<td>PDF Document</td>
</tr>
<tr>
<td>oracle1_and_oracle2_firsttime.slt</td>
<td>Jan 22, 2017, 11:09 AM</td>
<td>2 KB</td>
<td>Document</td>
</tr>
<tr>
<td>PandQ_from_QandP.slt</td>
<td>Jan 22, 2017, 11:09 AM</td>
<td>456 bytes</td>
<td>Document</td>
</tr>
<tr>
<td>SDL.slt</td>
<td>Jan 22, 2017, 11:09 AM</td>
<td>1 KB</td>
<td>Document</td>
</tr>
<tr>
<td>SDL+.slt</td>
<td>Jan 22, 2017, 11:09 AM</td>
<td>2 KB</td>
<td>Document</td>
</tr>
<tr>
<td>slate_20160105.exe.zip</td>
<td>Jan 22, 2017, 11:37 AM</td>
<td>11.6 MB</td>
<td>ZIP archive</td>
</tr>
<tr>
<td>Slate_20160125.app.zip</td>
<td>Jan 22, 2017, 11:37 AM</td>
<td>11.4 MB</td>
<td>ZIP archive</td>
</tr>
<tr>
<td>snark.tar.gz</td>
<td>Jan 22, 2017, 11:40 AM</td>
<td>277 KB</td>
<td>gzip c...archive</td>
</tr>
<tr>
<td>soft_lic_agree_011818.pdf</td>
<td>Jan 19, 2018, 11:30 AM</td>
<td>54 KB</td>
<td>PDF Document</td>
</tr>
<tr>
<td>syll_intlog_s18.pdf</td>
<td>Jan 19, 2018, 11:38 AM</td>
<td>248 KB</td>
<td>PDF Document</td>
</tr>
</tbody>
</table>
What’s on the CD?

<table>
<thead>
<tr>
<th>Name</th>
<th>Date Modified</th>
<th>Size</th>
<th>Kind</th>
</tr>
</thead>
<tbody>
<tr>
<td>input_practice1_sol.slt</td>
<td>Jan 22, 2017, 11:09 AM</td>
<td>3 KB</td>
<td>Document</td>
</tr>
<tr>
<td>input_practice1.slt</td>
<td>Jan 22, 2017, 11:09 AM</td>
<td>3 KB</td>
<td>Document</td>
</tr>
<tr>
<td>LAMA-BDLA011818.pdf</td>
<td>Jan 19, 2018, 11:36 AM</td>
<td>17.5 MB</td>
<td>PDF Document</td>
</tr>
<tr>
<td>oracle1_and_oracle2_firsttime.slt</td>
<td>Jan 22, 2017, 11:09 AM</td>
<td>2 KB</td>
<td>Document</td>
</tr>
<tr>
<td>PandQ_from_QandP.slt</td>
<td>Jan 22, 2017, 11:09 AM</td>
<td>456 bytes</td>
<td>Document</td>
</tr>
<tr>
<td>SDL.slt</td>
<td>Jan 22, 2017, 11:09 AM</td>
<td>1 KB</td>
<td>Document</td>
</tr>
<tr>
<td>SDL+.slt</td>
<td>Jan 22, 2017, 11:09 AM</td>
<td>2 KB</td>
<td>Document</td>
</tr>
<tr>
<td>slate_20160105.exe.zip</td>
<td>Jan 22, 2017, 11:37 AM</td>
<td>11.6 MB</td>
<td>ZIP archive</td>
</tr>
<tr>
<td>Slate_20160125.app.zip</td>
<td>Jan 22, 2017, 11:37 AM</td>
<td>11.4 MB</td>
<td>ZIP archive</td>
</tr>
<tr>
<td>snark.tar.gz</td>
<td>Jan 22, 2017, 11:40 AM</td>
<td>277 KB</td>
<td>gzip c...archive</td>
</tr>
<tr>
<td>soft_lan_agree_011818.pdf</td>
<td>Jan 19, 2018, 11:30 AM</td>
<td>54 KB</td>
<td>PDF Document</td>
</tr>
<tr>
<td>syll(intlog_s18).pdf</td>
<td>Jan 19, 2018, 11:38 AM</td>
<td>248 KB</td>
<td>PDF Document</td>
</tr>
</tbody>
</table>
What’s on the CD?

<table>
<thead>
<tr>
<th>Name</th>
<th>Date Modified</th>
<th>Size</th>
<th>Kind</th>
</tr>
</thead>
<tbody>
<tr>
<td>input_practice1_sol.slt</td>
<td>Jan 22, 2017, 11:09 AM</td>
<td>3 KB</td>
<td>Document</td>
</tr>
<tr>
<td>input_practice1.slt</td>
<td>Jan 22, 2017, 11:09 AM</td>
<td>3 KB</td>
<td>Document</td>
</tr>
<tr>
<td>LAMA-BDLA011818.pdf</td>
<td>Jan 19, 2018, 11:36 AM</td>
<td>17.5 MB</td>
<td>PDF Document</td>
</tr>
<tr>
<td>oracle1_and_oracle2_firsttime.slt</td>
<td>Jan 22, 2017, 11:09 AM</td>
<td>2 KB</td>
<td>Document</td>
</tr>
<tr>
<td>PandQ_from_QandP.slt</td>
<td>Jan 22, 2017, 11:09 AM</td>
<td>456 bytes</td>
<td>Document</td>
</tr>
<tr>
<td>SDL.slt</td>
<td>Jan 22, 2017, 11:09 AM</td>
<td>1 KB</td>
<td>Document</td>
</tr>
<tr>
<td>SDL+.slt</td>
<td>Jan 22, 2017, 11:09 AM</td>
<td>2 KB</td>
<td>Document</td>
</tr>
<tr>
<td>slate_20160105.exe.zip</td>
<td>Jan 22, 2017, 11:37 AM</td>
<td>11.6 MB</td>
<td>ZIP archive</td>
</tr>
<tr>
<td>Slate_20160125.exe.zip</td>
<td>Jan 22, 2017, 11:37 AM</td>
<td>11.4 MB</td>
<td>ZIP archive</td>
</tr>
<tr>
<td>snark.tar.gz</td>
<td>Jan 22, 2017, 11:40 AM</td>
<td>277 KB</td>
<td>gzip c...archive</td>
</tr>
<tr>
<td>soft_lic_agree_011818.pdf</td>
<td>Jan 19, 2018, 11:30 AM</td>
<td>54 KB</td>
<td>PDF Document</td>
</tr>
<tr>
<td>syll_intlog_s18.pdf</td>
<td>Jan 19, 2018, 11:38 AM</td>
<td>248 KB</td>
<td>PDF Document</td>
</tr>
</tbody>
</table>
What’s on the CD?

- LAMA-BDLA
- Slate
- HyperGrader

Files on the CD:
- soft_lic_agree_011818.pdf
- syll_intlog_s18.pdf
What’s on the CD?

- Mac OS
- LAMA-BDLA
- Slate
- HyperGrader

![Folder contents]

Example files:
- `input_practice1_sol.slt`
- `input_practice1.slt`
- `LAMA-BDLA011818.pdf`
- `larry_lucy_preview.slt`
- `oracle1_and_oracle2_firsttime.slt`
- `Pand-RandQ_2-PandQ-andR.slt`
- `PandQ_from_QandP.slt`
- `SDL.slt`
- `SDL+.slt`
- `oracle1_and_oracle2_firsttime.slt`
- `Pand-RandQ_2-PandQ-andR.slt`
- `PandQ_from_QandP.slt`
- `SDL.slt`
- `SDL+.slt`
- `oracle1_and_oracle2_firsttime.slt`
- `Pand-RandQ_2-PandQ-andR.slt`
- `PandQ_from_QandP.slt`
- `SDL.slt`
- `SDL+.slt`
- `oracle1_and_oracle2_firsttime.slt`
- `Pand-RandQ_2-PandQ-andR.slt`
- `PandQ_from_QandP.slt`
- `SDL.slt`
- `SDL+.slt`
- `oracle1_and_oracle2_firsttime.slt`
What’s on the CD?

- Mac OS
- Windows
- LAMA-BDLA
- Slate
- HyperGrader

File System View:

```
Name                      | Date Modified     | Size     | Kind       
---------------------------|-------------------|----------|------------
input_practice1_sol.slt    | Jan 22, 2017, 11:09 AM | 3 KB    | Document   
input_practice1.slt        | Jan 22, 2017, 11:09 AM | 3 KB    | Document   
LAMA-BDLA011818.pdf       | Jan 19, 2018, 11:36 AM | 17.5 MB | PDF Document 
oracle1_and_oracle2_firsttime.slt | Jan 22, 2017, 11:09 AM | 2 KB    | Document   
PandQ_from_QandP.slt       | Jan 22, 2017, 11:09 AM | 456 bytes | Document   
SDL.slt                    | Jan 22, 2017, 11:09 AM | 1 KB    | Document   
SDL+.slt                   | Jan 22, 2017, 11:09 AM | 2 KB    | Document   
slate_20160105.exe.zip    | Jan 22, 2017, 11:37 AM | 11.6 MB | ZIP archive 
slate_20160125.app.zip   | Jan 22, 2017, 11:37 AM | 11.4 MB | ZIP archive 
soft_llic_agree_011818.pdf | Jan 19, 2018, 11:40 AM | 277 KB  | gzip c...archive 
syll_intlog_s18.pdf       | Jan 19, 2018, 11:30 AM | 54 KB   | PDF Document 
```
What's on the CD?

- LAMA-BDLA
- Slate
- HyperGrader
- Windows
- Mac OS
- textbook
- soft_lic_agree_011818.pdf
What’s on the CD?

- Mac OS
- Windows
- textbook
- LAMA-BDLA
- Slate
- HyperGrader

Soft lic agree 011818.pdf
What’s on the CD?

- Mac OS
- Windows
- textbook
- LAMA-BDLA
- Slate
- HyperGrader

Complete, sign, email pdf to Selmer.Bringsjord@gmail.com
Again: Initial Steps
Again: Initial Steps

- Snapshot sleeve with code, and archive.
Again: Initial Steps

- Snapshot sleeve with code, and archive.
- Copy the folder from CD to your laptop.
Again: Initial Steps

• Snapshot sleeve with code, and archive.
• Copy the folder from CD to your laptop.
• Eject CD and “bank-vault”-save both!
Again: Initial Steps

- Snapshot sleeve with code, and archive.
- Copy the folder from CD to your laptop.
- Eject CD and “bank-vault”-save both!
- Depending upon whether you’re Windows or MacOS, expand the relevant zipped file to obtain Slate.
Again: Initial Steps

• Snapshot sleeve with code, and archive.
• Copy the folder from CD to your laptop.
• Eject CD and “bank-vault”-save both!
• Depending upon whether you’re Windows or MacOS, expand the relevant zipped file to obtain Slate.
• Open Slate
Again: Initial Steps

• Snapshot sleeve with code, and archive.
• Copy the folder from CD to your laptop.
• Eject CD and “bank-vault”-save both!
• Depending upon whether you’re Windows or MacOS, expand the relevant zipped file to obtain Slate.
• Open Slate
• Today I’ll continue to explain and show inference rules in Slate.
Propositional Calculus III:
Reductio ad Absurdum

Selmer Bringsjord

Rensselaer AI & Reasoning (RAIR) Lab
Department of Cognitive Science
Department of Computer Science
Lally School of Management & Technology
Rensselaer Polytechnic Institute (RPI)
Troy, New York 12180 USA

Intro to Logic
2/8/2018
Reductio ...
“Reductio ad absurdum, which Euclid loved so much, is one of a mathematician's finest weapons. It is a far finer gambit than any chess gambit: a chess player may offer the sacrifice of a pawn or even a piece, but a mathematician offers the game.”

—G. H. Hardy
A Greek-shocking Example …
Suppose $\sqrt{2}$ is rational. That means it can be written as the ratio of two integers p and q

$$\sqrt{2} = \frac{p}{q} \quad (1)$$

where we may assume that p and q have no common factors. (If there are any common factors we cancel them in the numerator and denominator.) Squaring in (1) on both sides gives

$$2 = \frac{p^2}{q^2} \quad (2)$$

which implies

$$p^2 = 2q^2 \quad (3)$$

Thus p^2 is even. The only way this can be true is that p itself is even. But then p^2 is actually divisible by 4. Hence q^2 and therefore q must be even. So p and q are both even which is a contradiction to our assumption that they have no common factors. The square root of 2 cannot be rational!
And recall: Euclidean "Magic"

Theorem: There are infinitely many primes.

Proof: We take an indirect route. Let $\Pi = p_1 = 2, p_2 = 3, p_3 = 5, \ldots, p_k$ be a finite, exhaustive consecutive sequence of prime numbers. Next, let M_{Π} be $p_1 \times p_2 \times \cdots \times p_k$, and set M'_{Π} to $M_{\Pi} + 1$. Either M'_{Π} is prime, or not; we thus have two (exhaustive) cases to consider.

C1 Suppose M'_{Π} is prime. In this case we immediately have a prime number beyond any in Π — contradiction!

C2 Suppose on the other hand that M'_{Π} is not prime. Then some prime p divides M'_{Π}. (Why?) Now, p itself is either in Π, or not; we hence have two sub-cases. Supposing that p is in Π entails that p divides M_{Π}. But we are operating under the supposition that p divides M'_{Π} as well. This implies that p divides 1, which is absurd (a contradiction). Hence the prime p is outside Π.

Hence for any such list Π, there is a prime outside the list. That is, there are infinitely many primes. **QED**
And recall: Euclidean “Magic”

Theorem: There are infinitely many primes.

Proof: We take an indirect route. Let $\Pi = p_1 = 2, p_2 = 3, p_3 = 5, \ldots, p_k$ be a finite, exhaustive consecutive sequence of prime numbers. Next, let M_{Π}' be $p_1 \times p_2 \times \cdots \times p_k$, and set M_{Π}' to $M_{\Pi} + 1$. Either M_{Π}' is prime, or not; we thus have two (exhaustive) cases to consider.

C1 Suppose M_{Π}' is prime. In this case we immediately have a prime number beyond any in Π — contradiction!

C2 Suppose on the other hand that M_{Π}' is not prime. Then some prime p divides M_{Π}'. (Why?) Now, p itself is either in Π, or not; we hence have two sub-cases. Supposing that p is in Π entails that p divides M_{Π}. But we are operating under the supposition that p divides M_{Π}' as well. This implies that p divides 1, which is absurd (a contradiction). Hence the prime p is outside Π.

Hence for any such list Π, there is a prime outside the list. That is, there are infinitely many primes. **QED**
And recall: Euclidean “Magic”

Theorem: There are infinitely many primes.

Proof: We take an indirect route. Let \(\Pi = p_1 = 2, p_2 = 3, p_3 = 5, \ldots, p_k \) be a finite, exhaustive consecutive sequence of prime numbers. Next, let \(M_\Pi' \) be \(p_1 \times p_2 \times \cdots \times p_k \), and set \(M_\Pi' \) to \(M_\Pi + 1 \). Either \(M_\Pi' \) is prime, or not; we thus have two (exhaustive) cases to consider.

C1 Suppose \(M_\Pi' \) is prime. In this case we immediately have a prime number beyond any in \(\Pi \) — contradiction!

C2 Suppose on the other hand that \(M_\Pi' \) is not prime. Then some prime \(p \) divides \(M_\Pi' \). (Why?) Now, \(p \) itself is either in \(\Pi \), or not; we hence have two sub-cases. Supposing that \(p \) is in \(\Pi \) entails that \(p \) divides \(M_\Pi \). But we are operating under the supposition that \(p \) divides \(M_\Pi' \) as well. This implies that \(p \) divides \(1 \), which is absurd (a contradiction). Hence the prime \(p \) is outside \(\Pi \).

Hence for *any* such list \(\Pi \), there is a prime outside the list. That is, there are infinitely many primes. **QED**
And recall: Euclidean “Magic”

Theorem: There are infinitely many primes.

Proof: We take an indirect route. Let $\Pi = p_1 = 2, p_2 = 3, p_3 = 5, \ldots, p_k$ be a finite, exhaustive consecutive sequence of prime numbers. Next, let M'_Π be $p_1 \times p_2 \times \cdots \times p_k$, and set M'_Π to $M_\Pi + 1$. Either M'_Π is prime, or not; we thus have two (exhaustive) cases to consider.

C1 Suppose M'_Π is prime. In this case we immediately have a prime number beyond any in Π — contradiction!

C2 Suppose on the other hand that M'_Π is *not* prime. Then some prime p divides M'_Π. (Why?) Now, p itself is either in Π, or not; we hence have two sub-cases. Supposing that p is in Π entails that p divides M_Π. But we are operating under the supposition that p divides M'_Π as well. This implies that p divides 1, which is absurd (a contradiction). Hence the prime p is outside Π.

Hence for *any* such list Π, there is a prime outside the list. That is, there are infinitely many primes. **QED**
Theorem: There are infinitely many primes.

Proof: We take an indirect route. Let $\Pi = p_1 = 2, p_2 = 3, p_3 = 5, \ldots, p_k$ be a finite, exhaustive consecutive sequence of prime numbers. Next, let M_{Π} be $p_1 \times p_2 \times \cdots \times p_k$, and set M'_{Π} to $M_{\Pi} + 1$. Either M'_{Π} is prime, or not; we thus have two (exhaustive) cases to consider.

C1 Suppose M'_{Π} is prime. In this case we immediately have a prime number beyond any in Π — contradiction!

C2 Suppose on the other hand that M'_{Π} is not prime. Then some prime p divides M'_{Π}. (Why?) Now, p itself is either in Π, or not; we hence have two sub-cases. Supposing that p is in Π entails that p divides M_{Π}. But we are operating under the supposition that p divides M'_{Π} as well. This implies that p divides 1, which is absurd (a contradiction). Hence the prime p is outside Π.

Hence for any such list Π, there is a prime outside the list. That is, there are infinitely many primes. QED
And recall: Euclidean “Magic”

Theorem: There are infinitely many primes.

Proof: We take an indirect route. Let $\Pi = p_1 = 2, p_2 = 3, p_3 = 5, \ldots, p_k$ be a finite, exhaustive consecutive sequence of prime numbers. Next, let M_{Π} be $p_1 \times p_2 \times \cdots \times p_k$, and set M'_{Π} to $M_{\Pi} + 1$. Either M'_{Π} is prime, or not; we thus have two (exhaustive) cases to consider.

C1 Suppose M'_{Π} is prime. In this case we immediately have a prime number

C2 Suppose on the other hand that M'_{Π} is not prime. Then some prime p
which divides M'_{Π}. (Why?) Now, p itself is either in Π, or not; we hence have
two sub-cases. Supposing that p is in Π entails that p divides M_{Π}. But
we are operating under the supposition that p divides M'_{Π} as well. This
implies that p divides 1, which is absurd (a contradiction). Hence the
prime p is outside Π.

Hence for any such list Π, there is a prime outside the list. That is, there are
infinitely many primes. QED

Study it word by word until you endorse it with your very soul!
From Algebra 2 in High School ...
(Pearson Common-Core Compliant Textbook)
A proof involving indirect reasoning is an **indirect proof**. Often in an indirect proof, a statement and its negation are the only possibilities. When you see that one of these possibilities leads to a conclusion that contradicts a fact you know to be true, you can eliminate that possibility. For this reason, indirect proof is sometimes called **proof by contradiction**.

TAKE NOTE Key Concept

Writing an Indirect Proof

Step 1 State as a temporary assumption the opposite (negation) of what you want to prove.

Step 2 Show that this temporary assumption leads to a contradiction.

Step 3 Conclude that the temporary assumption must be false and that what you want to prove must be true.
Problem 3 Writing an Indirect Proof

Proof

Given: \(\triangle ABC \) is scalene.

Prove: \(\angle A, \angle B, \) and \(\angle C \) all have different measures.

THINK

Assume temporarily the opposite of what you want to prove.

Show that this assumption leads to a contradiction.

Conclude that the temporary assumption must be false and that what you want to prove must be true.

WRITE

Assume temporarily that two angles of \(\triangle ABC \) have the same measure. Assume that \(m \angle A = m \angle B \).

By the Converse of the Isosceles Triangle Theorem, the sides opposite \(\angle A \) and \(\angle B \) are congruent. This contradicts the given information that \(\triangle ABC \) is scalene.

The assumption that two angles of \(\triangle ABC \) have the same measure must be false. Therefore, \(\angle A, \angle B, \) and \(\angle C \) all have different measures.
Problem 3 Writing an Indirect Proof

Proof

Given: \(\triangle ABC \) is scalene.

Prove: \(\angle A, \angle B, \) and \(\angle C \) all have different measures.

THINK

Assume temporarily the opposite of what you want to prove.

Show that this assumption leads to a contradiction.

Conclude that the temporary assumption must be false and that what you want to prove must be true.

WRITE

Assume temporarily that two angles of \(\triangle ABC \) have the same measure. Assume that \(m\angle A = m\angle B \).

By the Converse of the Isosceles Triangle Theorem, the sides opposite \(\angle A \) and \(\angle B \) are congruent. This contradicts the given information that \(\triangle ABC \) is scalene.

The assumption that two angles of \(\triangle ABC \) have the same measure must be false. Therefore, \(\angle A, \angle B, \) and \(\angle C \) all have different measures.

@article{moore.proof,
Author = {R. C. Moore},
Journal = {Educational Studies in Mathematics},
Pages = {249-266},
Title = {Making the Transition to Formal Proof},
Volume = {27.3},
Year = 1994}
Explosion

GIVEN. \(\varphi \land \neg \varphi \)
\{GIVEN\} Assume ✓

PC ⊢ ✓

GOAL. \(\psi \)
\{GIVEN\}
Explosion: Partial Proof Plan
GIVEN. \(\neg (P \rightarrow (Q \rightarrow P)) \)
{GIVEN} Assume ✓

PC ← ✓

GOAL. G
{GIVEN}
GreenCheeseMoon1: Partial Proof Plan

GIVEN. \(\neg (P \rightarrow (Q \rightarrow P)) \)
(GIVEN) Assume √

4. \(\neg G \)
(4) Assume √

3. \(P \rightarrow (Q \rightarrow P) \)
PC ⊨ √

5. P
(5) Assume √

Sub-Proof Here