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“The Proportionality Principle makes the various Monty Hall
variants easy.”

Monty Hall, Monty Fall,

Monty Crawl

Jeffrey S. Rosenthal
University of Toronto

Hall problem to the general public. Her asserted answer set

off a storm of controversy in which she received thousands
of letters. Numerous professional mathematicians and others
insisted that she was wrong, some using rather strong language
(“you are utterly incorrect™; “1 am in shock™ “you are the
goat”). Vos Savant had the last laugh, when she called upon
“math classes all across the country™ to estimate the probabil-
itics using pennies and paper cups, and they reported with
astonishment that vos Savant was correct.

Despite all the publicity, most people have at best a vague
understanding of why vos Savant’s answer is correct, and the
extent to which it does or does not also apply to variants of the
problem. In this paper, we discuss the Proportionality Princi-
ple. which allows this and many related problems to be solved
easily and confidently.

The Monty Hall Problem and Variants

The original Monty Hall problem may be summarized as fol-
lows:

Monty Hall Problem: A car is equally likely to be behind any
one of three doors. You select one of the three doors (say, Door
#1). The host then reveals one non-selected door (say, Door
#3) which does not contain the car. At this point, you choose
whether to stick with your original choice (i.e. Door #1), or
switch to the remaining door (i.¢. Door #2). What are the prob-
abilities that you will win the car if you stick, versus if you
switch?

| n 1990, Marilyn vos Savant introduced the infamous Monty

Most people believe. upon first hearing this problem, that the
car is equally likely to be behind either of the two unopened
doors, so the probability of winning is 1/2 regardless of
whether you stick or switch. However, in fact the probabilities
of winning are 1/3 if you stick, and 2/3 if you switch. This fact
is often justified as follows:

Shaky Solution: When you first selected a door, you had a 1/3
chance of being correct. You knew the host was going to open
some other door which did not contain the car, so that doesn’t
change this probability. Hence, when all is said and done, there

is 4 1/3 chance that your original selection was correct, and
hence a 1/3 chance that you will win by sticking. The remain-
ing probability, 2/3, is the chance you will win by switching.

This solution is actually correct, but | consider it “shaky™
because it fails for slight variants of the problem. For example,
consider the following:

Monty Fall Problem: In this variant, once you have selected
one of the three doors, the host slips on a banana peel and acci-
dentally pushes open another door, which just happens not 1o
contain the car, Now what are the probabilities that you will
win the car if you stick with your original selection, versus if
you switch to the remaining door?

In this case, it is still true that originally there was just a 1/3
chance that your original selection was correct. And yet, in the
Monty Fall problem, the probabilities of winning if you stick
or switch are both 172, not 1/3 and 2/3, Why the difference?
Why doesn’t the Shaky Solution apply equally well to the
Monty Fall problem?

Another variant is as follows:

Monty Crawl Problem: As in the original problem, once you
have selected one of the three doors, the host then reveals one
non-selected door which does not contain the car. However,
the host is very tired, and crawls from his position (near Door
#1) 1o the door he is to open. In particular, if he has a choice of
doors to open (i.e., if your original selection happened to be
correct), then he opens the smallest number available door.
(For example, if you selected Door #1 and the car was indeed
behind Door #1, then the host would always open Door #2,
never Door #3.) What are the probabilities that you will win
the car if you stick versus if you switch?

This Monty Crawl problem seems very similar to the original
Monty Hall problem; the only difference is the host’s actions
when he has a choice of which door 1o open. However, the
answer now is that if you sce the host open the higher-num-
bered unselected door, then your probability of winning is 0%
if you stick, and 100% if you switch. On the other hand, if the
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MHP Defined (original)

Jones has come to a game show, and finds himself thereon selected to play a game on national TV with
the show's suave host, Full Monty. Jones is told correctly by Full that hidden behind one of three closed,
opaque doors facing the two of them is $1,000,000, while behind each of the other two is a feculent,
obstreperous llama whose value on the open market is charitably pegged at $1. Full reminds Jones that
this is a game, and a fair one, and that if Jones ends up selecting the door with $1M behind it, all that
money will indeed be his. (Jones' net worth has nearly been exhausted by his expenditures in traveling
to the show.) Full also reminds Jones that he (= Full) knows what's behind each door, fixed in place until
the game ends.

Full asks Jones to select which door he wants the contents of. Jones says, "Door |." Full then says:
"Hm. Okay. Part of this game is my revealing at this point what's behind one of the doors you didn't
choose. So ...let me show you what's behind Door 3." Door 3 opens to reveal a very unsavory llama.
Full now to Jones: "Do you want to switch to Door 2, or stay with Door 1? You'll get what's behind the
door of your choice, and our game will end." Full looks briefly into the camera, directly.

(P1.1) What should Jones do if he's rational?
(P1.2) Prove that your answer is correct. (Diagrammatic proofs are allowed.)

(P1.3) A quantitative hedge fund manager with a PhD in finance from Harvard zipped this email off to
Full before Jones made his decision re. switching or not: "Switching would be a royal waste of time (and
time is money!). Jones hasn't a doggone clue what's behind Door | or Door 2, and it's obviously a 50/50
chance to win whether he stands firm or switches. So the chap shouldn't switch!" Is the fund manager
right? Prove that your diagnosis is correct.

(P1.4) Can these answers and proofs be exclusively Bayesian in nature?



The Switching Policy Rational!

Proof: Our overarching technique will be proof by cases.

We denote the possible cases for initial distribution using a simple notation, according to which
for example ‘LLM’ means that, there is a lama behind Door 1, a llama behind Door 2, and the
million dollars behind Door 3. With this notation in hand, our three starting cases are: Case |:
MLL; Case 2: LML; Case 3: LLM. There are only three top-level cases for distribution. The
odds of picking at the start the million-dollar door is 1/3, obviously — for each case. Hence we
know that the odds of a HOLD policy winning is 1/3.

Now we proceed in a proof by sub-cases under the three cases above, to show that the overall
odds of a SWITCH policy is greater than |/3. Each sub-case is simply based on what the initial
choice by Jones is, under one of the three main cases. Here we go:

Suppose Case 3, LLM, holds, and that [this (Case 3.1) is the first of three sub-cases under Case
3] Jones picks Door |. Then FM must reveal Door 2 to reveal a [lama. Switching to Door 3
wins, guaranteed. In sub-case 3.2 suppose that J’s choice Door 2. Then FM will reveal Door |.
Again, switching to Door 3 wins, guaranteed. In the final sub-case, | initially selects Door 3
under Case 3; this is sub-case 3.3. Here, FM shows either Door | or Door 2 (as itself a random
choice). This time switching loses, guaranteed. Hence, in two of the sub-cases out of three
(2/3), winning is guaranteed (prob of ). An exactly parallel result can be deduced for Case 2 and
Case |;i.e., in each of these two, in two of the three (2/3) sub-cases winning is |. Hence the
odds of winning by following the switching policy is 2/3, which is greater than 1/3. Hence it’s
rational to be a switcher. QED



MEP Defined

Jones has come to a game show, and finds himself thereon selected to play a game on national TV with the
show's suave host, Full Monty. Jones is familiar with the game from watching prior shows, and has had plenty of
time to develop a strategy for the game, to be applied if he’s lucky enough to get the chance to play — and he
has been lucky. Jones is told correctly by Full that hidden behind one of three closed, opaque doors facing the
two of them is $1,000,000, while behind each of the other two is a feculent, obstreperous llama whose value on
the open market is charitably pegged at $1. Full reminds Jones that this is a game, and a fair one, and that if
Jones ends up selecting the door with $1M behind it, all that money will indeed be his. (Jones' net worth has
nearly been exhausted by his expenditures in traveling to the show.)

But, sometimes a disguised mad professor of probability is in the audience, and when he’s present, he jumps up
and shouts out which number, |, 2, or 3, his (genuine) random number generator has just generated, and the
door number he shouts out immediately thereafter opens. If the door the contestant has initially picked springs
open as a result of this, the result is declared UNDEFINED, and the game must start over after the professor
has been escorted out. Also, if the door that springs open reveals the $1M, the result is UNDEFINED and
everything must be reset after the prof is removed. But, if one of the other two doors opens, the contestant is
allowed to switch by Full Monty. Jones can of course also stay with his initial selection. All of this was explained
to Jones before he came on the show, so the challenge to Jones is to have a two-part strategy: one for when
things go smoothly and normally, and one just in case the prof snuck in and does his disruption.

Full asks Jones to select which door he wants the contents of. Jones says, "Door |." Full then says: "Okay.
Now let’s op—*

Suddenly the mad professor jumps up and shouts out “2!” and immediately thereafter Door 2 opens to reveal a
llama.

(P2.1) What should Jones’s policy be, and, following it, what should he now do, assuming he's rational?

(P2.2) Prove that your answer is correct. (Diagrammatic proofs are allowed.)
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Linda: Less Is More

The best-known and most controversial of our
experiments involved a fictitious lady called Linda.
Amos and I made up the Linda problem to provide
conclusive evidence of the role of heuristics in judg-
ment and of their incompatibility with logic. This is
how we described Linda:

Linda is thirty-one years old, single, outspo-
ken, and very bright. She majored in philoso-
phy. As a student, she was deeply concerned
with issues of discrimination and social jus-
tice, and also participated in antinuclear
demonstrations.

The audiences who heard this description in the

14



By the way, as mentioned, the “crisis” roiling around priming:

https://replicationindex.wordpress.com/2017/02/02/
reconstruction-of-a-train-wreck-how-priming-research-
went-of-the-rails/#comment- 454

Kahneman: “... | placed too much faith in underpowered studies ..."”


https://replicationindex.wordpress.com/2017/02/02/reconstruction-of-a-train-wreck-how-priming-research-went-of-the-rails/#comment-1454
https://replicationindex.wordpress.com/2017/02/02/reconstruction-of-a-train-wreck-how-priming-research-went-of-the-rails/#comment-1454
https://replicationindex.wordpress.com/2017/02/02/reconstruction-of-a-train-wreck-how-priming-research-went-of-the-rails/#comment-1454

1980s always laughed because they immediately
knew that Linda had attended the University of Cal-
ifornia at Berkeley, which was famous at the time
for its radical, politically engaged students. In one
of our experiments we presented participants with
a list of eight possible scenarios for Linda. As in the
Tom W problem, some ranked the scenarios by rep-
resentativeness, others by probability. The Linda
problem is similar, but with a twist.

Linda is a teacher in elementary school.
Linda works in a bookstore and takes yoga

classes. L3

Linda is active in the feminist movement.
Linda is a psychiatric social worker.

Linda is a member of the League of Women
Voters.

Linda is a bank teller.

Linda is an insurance salesperson.

Linda is a bank teller and is active in the femi-
nist movement.

The problem shows its age in several ways. The
League of Women Voters is no longer as prominent
as it was, and the idea of a feminist “movement”
sounds quaint, a testimonial to the change in the
status of women over the last thirty years. Even in
the Facebook era, however, it is still easy to guess
the almost perfect consensus of judgments: Linda is
a very good fit for an active feminist, a fairly good
fit for someone who works in a bookstore and takes
yoga classes—and a very poor fit for a bank teller or
an insurance salesperson.

Now focus on the critical items in the list: Does
Linda look more like a bank teller, or more like a
bank teller who is active in the feminist movement?
Everyone agrees that Linda fits the idea of a “femi-
nist bank teller” better than she fits the stereotype

16



of bank tellers. The stereotypical bank teller is not a
feminist activist, and adding that detail to the
description makes for a more coherent story.

The twist comes in the judgments of likelihood,
because there is a logical relation between the two
scenarios. Think in terms of Venn diagrams. The
set of feminist bank tellers is wholly included in the
set of bank tellers, as every feminist bank teller is a
bank teller. Therefore the probability that Linda is a
feminist bank teller must be lower than the proba-
bility of her being a bank teller. When you specify a
possible event in greater detail you can only lower
its probability. The problem therefore sets up a
conflict between the intuition of representativeness
and the logic of probability.

Our initial experiment was between-subjects.
Each participant saw a set of seven outcomes that
included only one of the critical items (“bank tell-
er” or “feminist bank teller”). Some ranked the out-

comes by resemblance, others by likelihood. As in
the case of Tom W, the average rankings by resem-
blance and by likelihood were identical; “feminist
bank teller” ranked higher than “bank teller” in
both.

Then we took the experiment further, using a
within-subject design. We made up the question-
naire as you saw it, with “bank teller” in the sixth
position in the list and “feminist bank teller” as the
last item. We were convinced that subjects would
notice the relation between the two outcomes, and
that their rankings would be consistent with logic.
Indeed, we were so certain of this that we did not
think it worthwhile to conduct a special experi-
ment. My assistant was running another experi-
ment in the lab, and she asked the subjects to
complete the new Linda questionnaire while sign-
ing out, just before they got paid.

About ten questionnaires had accumulated in a



tray on my assistant’s desk before I casually glanced
at them and found that all the subjects had ranked
“feminist bank teller” as more probable than “bank
teller.” I was so surprised that I still retain a “flash-
bulb memory” of the gray color of the metal desk
and of where everyone was when I made that dis-
covery. I quickly called Amos in great excitement to
tell him what we had found: we'had pitted logic
against representativeness, and representativeness
had won!

In the language of this book, we had observed a
failure of System 2: our participants had a fair
opportunity to detect the relevance of the logical
rule, since both outcomes were included in the
same ranking. They did not take advantage of that
opportunity. When we extended the experiment,
we found that 89% of the undergraduates in our
sample violated the logic of probability. We were
convinced that statistically sophisticated respon-

dents would do better, so we administered the
same questionnaire to doctoral students in the deci-
sion-science program of the Stanford Graduate
School of Business, all of whom had taken several
advanced courses in probability, statistics, and deci-
sion theory. We were surprised again: 85% of these
respondents also ranked “feminist bank teller” as
more likely than “bank teller.”

In what we later described as “increasingly des-
perate” attempts to eliminate the error, we intro-
duced large groups of people to Linda and asked
them this simple question:

Which alternative is more probable?

Linda is a bank teller.

Linda is a bank teller and is active in the femi-
nist movement.

This stark version of the problem made Linda



famous in some circles, and it earned us years of
controversy. About 85% to 90% of undergraduates
at several major universities chose the second
option, contrary to logic. Remarkably, the sinners
seemed to have no shame. When I asked my large
undergraduate class in some indignation, “Do you
realize that you have violated an elementary logical
rule?” someone in the back row shouted, “So
what?” and a graduate student who made the same
error explained herself by saying, “I thought you
just asked for my opinion.”

The word fallacy is used, in general, when people
fail to apply a logical rule that is obviously relevant.
Amos and I introduced the idea of a conjunction fal-
lacy, which people commit when they judge a con-
junction of two events (here, bank teller and
feminist) to be more probable than one of the
events (bank teller) in a direct comparison.

As in the Miiller-Lyer illusion, the fallacy

remains attractive even when you recognize it for
what it is. The naturalist Stephen Jay Gould
described his own struggle with the Linda problem.
He knew the correct answer, of course, and yet, he
wrote, “a little homunculus in my head continues
to jump up and down, shouting at me—‘but she
can’t just be a bank teller; read the description.””
The little homunculus is of course Gould’s System
1 speaking to him in insistent tones. (The two-sys-
tem terminology had not yet been introduced when
he wrote.)

The correct answer to the short version of the
Linda problem was the majority response in only
one of our studies: 64% of a group of graduate stu-
dents in the social sciences at Stanford and at
Berkeley correctly judged “feminist bank teller” to
be less probable than “bank teller.” In the original
version with eight outcomes (shown above), only
15% of a similar group of graduate students had
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Kolmogorov’s Axioms of Probability
(= his probability calculus, viewed propositionally)

K1 V(0 <p(¢) <1).

Each formula in the propositional calculus has a probability between 0 and 1, inclusive.
K2 If + ¢, then p(¢) = 1.

All formulas that are deductively provable without remaining suppositions are certain.

K3 If {¢} F ¢, then p(¢) < p(v).

A formula that can be used to prove another has a probability less than or equal to the proved one.

K4 1If {¢,9} F 6 A =6, then p(¢p V) = p(d) + p(¥).

Two inconsistent formulas, disjoined, have a probability equal to the sum of the probability of each.
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Kolmogorov’s Axioms of Probability
(= his probability calculus, viewed propositionally)

K1 V(0 <p(¢) <1).

Each formula in the propositional calculus has a probability between 0 and 1, inclusive.
K2 If + ¢, then p(¢) = 1.

All formulas that are deductively provable without remaining suppositions are certain.

K3 If {¢} F ¢, then p(¢) < p(v).

A formula that can be used to prove another has a probability less than or equal to the proved one.

K4 1If {¢,9} F 6 A =6, then p(¢p V) = p(d) + p(¥).

Two inconsistent formulas, disjoined, have a probability equal to the sum of the probability of each.

So why is Kahneman right that System-2
cognition tells us that (B and F) cannot be
more probable than B???

Because from a conjunction ¢ A ¢ of two formulas one can always prove ¢ (and v as well).

Hence by K3 it can never be the case that a conjunction is more probable than either of its conjuncts.

Hence it can never be the case that ‘Linda is a bank teller and Linda is
in the feminist movement’ is more probable than ‘Linda is a bank teller’
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But now given that the die will show an odd number when
it’s rolled, what is the probability that it will show a 5 after
being rolled. Kolmogorov says 1/3:
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E.g., consider a fair die. The probability that after it’s rolled
it shows a 5 is (by the “urn technique” we’ve studied) 1/6.

But now given that the die will show an odd number when
it’s rolled, what is the probability that it will show a 5 after
being rolled. Kolmogorov says 1/3:

, provided p(v) > 0

p(¢l) =

1

3

5 A odd
p(Will be a 5.[Will be odd.) = = (p (O(fd) ) _
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Re. K4

E.g., consider a fair die again. The set composed of
the two propositions The die will be odd and The die
will be even leads deductively to a contradiction. So
K4 “predicts” that the probability of the disjunction of
these two propositions is the sum of the probability
of each independently. Does the prediction pan out?
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Assume, again, that the areas of the regions in the diagram
represent the probabilities of the formulae they correspond to.
Here, the population of Fs is assumed to be smaller than that of Bs.

Very well. Then why is it true that: p(B) > p(BAF)
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“Narratological” Probability

During college, math major Bruno was a

J stellar athlete, graduating Phi Beta Kappa
from Princeton, where he received the Most

Dedicated Athlete in his graduating class.

A: Bruno is a trauma surgeon.

B: In leisure time, to relax,
Bruno plays competitive tennis.

Which is more probable [as a heading-toward-3D-
picture of a person]? A alone or A and B together?
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