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Proof that if there is a body b whose
wordline for observer m passes through
point p but not through q or through q
but not through p, then the events

(X]
There is a point z reachable at
the speed of light from p but
not from q for observer m.
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Theorem: NTFLIO

(deduced from SpecRel)

Proof that if there is a body b whose
wordline for observer m passes through
point p but not through q or through q
but not through p, then the events
observed by m at p and q are different.

/%

There is a point z reachable at
the speed of light from p but
not from q for observer m.
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E.g., k to represent ‘There is a king in the hand’.
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First Elements of the
Propositional Calculus

Variables to represent declarative statements.

E.g., k to represent ‘There is a king in the hand’.

And five simple Boolean connectives:

not = and A or (inclusive) V if ... then ... —» ... if and only if ...



Wason Selection Task

Suppose | claim that the following rule is true.

If a card has a vowel on one side, it has an even number on
the other side.

Which card or cards should you turn over in order to try to decide
whether the rule is true or false?
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Suppose | claim that the following rule is true.

If a card has a vowel on one side, it has an even number on
the other side.

Which card or cards should you turn over in order to try to decide
whether the rule is true or false?






Problem!

Or test. For an overview of Psychometric Al, see:
http://www.tandfonline.com/doi/pdf/10.1080/0952813X.2010.502314
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(x,m) ~ {a, argument / proof )

Today’s machine-learning
systems are
fundamentally incap

of providing the
argument/proof

https://www.darpa.mil/program/explainable-artificial-intelligence
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(x,m) ~ {a, argument / proof )

Contrarian view on animal minds in Nat. Geo.:
http://ngm.nationalgeographic.com/2008/03/animal-minds/virginia-morell-text
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Ok, so where’s the proof (or at leas the compelling argument)?

(x,m) ~ {a, argument / proof )

Contrarian view on animal minds in Nat. Geo.:
http://ngm.nationalgeographic.com/2008/03/animal-minds/virginia-morell-text
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Suppose | claim that the following rule is true.

If a card has a vowel on one side, it has an even number on
the other side.

Which card or cards should you turn over in order to try to decide
whether the rule is true or false?



Proposition |: You should flip cl!

Proof: Were you to flip cl, there are two and only two
general cases that might appear before your eyes: you find an
odd number; or else you find an even number. Well, if you
find an odd number, you can stop, because the rule in question
would then be refuted (since you have a case where the
antecedent (vowel on one side) holds, but the consequent
(even number on the other side) doesn’t. Since this might
well happen for all you know, you should flip over cl. QED



Proposition 2: You should flip c4!

Proof: Were you to flip c4, there are two and only two
general cases that might appear before your eyes: you find a
vowel; or else you find a consonant. Well, if you find a vowel,
you can stop, because the rule in question would then be
refuted (since you have a case where the antecedent (vowel
on one side) holds, but the consequent (even number on the
other side) doesn’t. Since this might well happen for all you
know, you should flip over c4. QED



Proposition 2: You should flip c4!

Proof: Were you to flip c4, there are two and only two
general cases that might appear before your eyes: you find a
vowel; or else you find a consonant. Well, if you find a vowel,
you can stop, because the rule in question would then be
refuted (since you have a case where the antecedent (vowel
on one side) holds, but the consequent (even number on the
other side) doesn’t. Since this might well happen for all you
know, you should flip over c4. QED

7 Proposition 3: You should not flip c2!

o Proposition 4: You should not flip c3!
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Given the statements

-a Vv —b
b

c—a
which one of the following statements must also be true!

C
-b
mle
h
a
none of the above




Proposition: The correct answer is —ic.

Proof: We are given that b; that’s the second statement.
Well, if b holds, then —1b doesn’t hold. The first statement tells
us that either —a or =ib. So from this and the derived
proposition that 7 b doesn’t hold we can infer —a. (If you
know P or Q, and you know not-Q, you immediately know P;
this inference rule is called disjunctive syllogism.) But from —a
and ¢ — a we can deduce that c can’t be the case;i.e., we can
deduce —c. (This last inference is sanctioned by the rule of
inference called modus tollens.) QED
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CSCI 2200: Foundations of Computer Science - Spring 2015

General Information
Instructor: Stacy Patterson
Teaching Assistants
Ashwin Bahulkar
Lingxun Hu
Md. Ridwan Al Igbal
Jai Wadhwani
Web site: http://www.cs.rpi.edu/~sep/csci2200

sep@cs.rpi.edu

bahula@rpi.edu
hul5@rpi.edu
igbalm@rpi.edu
wadhwj@rpi.edu

518-276-2054

Textbook: Kenneth H. Rosen, Discrete Mathematics and Its Applications, 7th ed., McGraw Hill, 2012
Lectures: MR 10:00am — 11:50 pm, Russell Sage Laboratory 3303

Recitations:
Section 01
Section 02
Section 03
Section 04

Course Description

W 10:00am — 10:50am
W 11:00am — 11:50am
W 12:00pm —12:50pm
W 4:00pm — 4:50pm

Troy Building 2012
Troy Building 2012
Troy Building 2018
Walker Laboratory 5113

This course introduces important mathematical and theoretical tools for computer science, including
topics from logic, number theory, set theory, combinatorics, and probability theory. The course then
proceeds to automata theory, the Turing Machine model of computation, and notions of computational
complexity. The course will emphasize formal reasoning and proof techniques.

Upon successful completion of this course, each student:
* is able to formulate mathematical proofs using logic

* is able to apply mathematical tools such as induction and recursion
« can recall key definitions from set theory

* is able to formulate combinatorial arguments

* s able to distinguish between various computational models

* is able to think critically on the difficulties of key questions in foundations of computer science

« can recall key facts regarding finite automata and Turing machines.

Pre-requisites: Intro to Calculus (MATH-1010 or MATH-1500); CSCI-1100 (CS 1) or CSCI-1200 (Data

Structures)

Recitation

Attendance at recitation is not required. Attendance will be taken at recitation, and students who

attend regularly will get priority in office hours.

Schedule

An up-to-date schedule will be maintained on the course web site

Homework

There will be 9 homework assignments. The lowest homework grade will be dropped. Homework is due
at the beginning of class on the date indicated on the homework assignment. You may turn in an
assignment at the beginning of following class for a 50% penalty. No homework will be accepted after
that time without a letter from the Student Experience office.

See also e.g. http://www.cs.rpi.edu/~magdon/courses/focs.html
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But we'll instead go with ...




1/ The Foundations: Logic and Proofs

EXAMPLE 3  State which rule of inference is the basis of the following argument: “It is below freezing

EXAMPLE 4

TABLE 1 Rules of Inference.

Rule of Inference Tautology Name
P (pAp—>q)—>q Modus ponens
P—q

7
-q (—=gAr(p—q)——-p Modus tollens
P—rq

- Sp
P—>q (p=>g@)Al@—=>r)—>(p—r) Hypothetical syllogism
97T

P
rvy (pvg)An—-p)—gq Disjunctive syllogism
-p

- q
p p—=(pVvg) Addition

L pVg
pAg (pAg)—p Simplification

i
r (P A (@) = (pArg) Conjunction
q

L PAg
PvVg (pv@A(mpvr)—(gvr) Resolution
-pVvr

L qVvr

Therefore, it is either below freezing or raining now.”

Solution: Let p be the proposition “It is below freezing now™ and ¢ the proposition “Tt is ra

now.” Then this argument is of the form

P
S.pVg

This is an argument that uses the addition rule.

State which rule of inference is the basis of the following argument: “It is below freezing

raining now. Therefore, it is below freezing now.”

Solution: Let p be the proposition “It is below freezing now,” and let ¢ be the proposition

raining now.” This argument is of the form

PAg
%

This argument uses the simplification rule.




1 / The Foundations: Logic and Proofs

TABLE 1 Rules of Inference.

Rule of Inference Tautology Name

P (pA(p—>q))—>q Modus ponens
P—>q

q

“g (=g Ai(p—q)) — —p Modus tollens

Pp—>q
.. Sp

pP—>q (p=>g)n@g—>r)—>(p—r) Hypothetical syllogism
g—r

P

PvV4q (pvg)A—-p)—q Disjunctive syllogism

p p—=(pveg Addition

pAg (prg)—p Simplification

r ((p)A(@)— (pArgq) Conjunction

L PAg

pVvy (pvg)A(—mpVvr)— (gvr) Resolution
—-p\/r

L qvr

EXAMPLE 3 State which rule of inference is the basis of the following argument: “It is below freezing
Therefore, it is either below freezing or raining now.”

Solution: Let p be the proposition “Itis below freezing now” and ¢ the proposition “It is ra
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TABLE 1 Rules of Inference.

Rule of Inference Tautology Name

P (pA(p—>q))—>q Modus ponens
P—>q

q

“g (=g A (p—=q)) = —p Modus tollens
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.. Sp

P—q ((p—=>q)rlg—>r)—>(p-—>r) Hypothetical syllogism
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pAg (prg)—p Simplification

r ((p)A(@)— (pArgq) Conjunction
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EXAMPLE 3 State which rule of inference is the basis of the following argument: “It is below freezing
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Solution: Let p be the proposition “Itis below freezing now” and ¢ the proposition “It is ra
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Explosion Rule!

pA—p
q

Easy peasy to prove in Rosen:

Premise

Simplification using (1)

Addition using (2)

Simplification using (1)

Disjunctive Syllogism using (3) and (4)



EXAMPLE 6 Show that the premises “It is not sunny this afternoon and it is colder than yesterday,” “We will
go swimming only if it is sunny,” “If we do not go swimming, then we will take a canoe trip,”
and “If we take a canoe trip, then we will be home by sunset” lead to the conclusion “We will

be home by sunset.”

Extra S Solution: Let p be the proposition “It is sunny this afternoon,” g the proposition “It is colder
Examples @ than yesterday,” r the proposition “We will go swimming,” s the proposition “We will take a
canoe trip,” and ¢ the proposition “We will be home by sunset.” Then the premises become
-“pAq,r — p,—r — s, and s — t. The conclusion is simply 7. We need to give a valid

argument with premises =-p A g, r — p, -r — s, and s — t and conclusion ¢.
We construct an argument to show that our premises lead to the desired conclusion as

follows.

Step Reason

l: mpAg Premise

2. —p Simplification using (1)
3.r—>p Premise

4. =r Modus tollens using (2) and (3)
5. = r > s Premise

6. s Modus ponens using (4) and (5)
7. s >t Premise

8.t Modus ponens using (6) and (7)

Note that we could have used a truth table to show that whenever each of the four hypotheses
1s true, the conclusion is also true. However, because we are working with five propositional
variables, p, g, r, s, and ¢, such a truth table would have 32 rows. <
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Given the statements
_I_IC
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which one of the following statements must also be true?
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all of the above
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Given the statements
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Given the statements
Homework |: Prove that the

pinle > C . i "
answer to this problem is indeed “all
c—a y o .
of the above,” using tools provided
Tavb : :
to you in the present slide deck.
(d v e) » d A\ e

which one of the following statements must also be true?

mle
e

h

-2

all of the above




Homework | Solution

Proposition: The answer is “all of the above.”

Proof: We know from the rule of inference explosion that
everything follows from a contradiction, so we simply need to
find a contradiction in the given statements. We do so as
follows. We already have ~d by DeMorgan’s Law, as indicated
on the previous slide. On that slide, we also have ¢ from the
first statement. This, combined with the second given, yields by
modus ponens a in one step. Next, by disjunctive syllogism we
have b from a and ~a v b. Another use of modus ponens with
b and b => d gives d,and we have our contradiction. QED



“NYS 27

Which one of the following statements is logically equivalent to the

following statement: “If you are not part of the solution, then you
are part of the problem.”

If you are part of the solution, then you are not part of the problem.
If you are not part of the problem, then you are part of the solution.
If you are part of the problem, then you are not part of the solution.

If you are not part of the problem, then you are not part of the
solution.
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Which one of the following statements is logically equivalent to the

following statement: “If you are not part of the solution, then you
are part of the problem.”

If you are part of the solution, then you are not part of the problem.
If you are not part of the problem, then you are part of the solution.
If you are part of the problem, then you are not part of the solution.

If you are not part of the problem, then you are not part of the
solution.



Homework 2: Prove that the
answer to this problem is indeed the

“NYS 2” second option, using tools provided
to you in the present slide deck.

Which one of the following statements is logically equivalent to the
following statement: “If you are not part of the solution, then you
are part of the problem.”

If you are part of the solution, then you are not part of the problem.
If you are not part of the problem, then you are part of the solution.

If you are part of the problem, then you are not part of the solution.

If you are not part of the problem, then you are not part of the
solution.



Homework 2 Solution

Proposition: The answer is the second option.

Proof: From a conditional P => Q it can be immediately
deduced that ~Q => ~P (and vice versa) by the rule of
inference contrapositive, and contrapositive applied to the given
statement yield the second option in one step. Now we
obtain contrapositive itself. Suppose that a given conditional P
=> Q holds, and suppose as well that ~Q holds. We are done
when we can deduce ~P from what we now have to work
with, and what’s available to us in the present slide deck. The
rule of inference modus tollens allows us to infer ~P in one

step from P => Q and ~Q. QED
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The Original King-Ace

Suppose that the following premise is true:
If there is a king in the hand, then there is an ace
in the hand, or else if there isn’t a king in the hand,

then there is an ace.

What can you infer from this premise!?
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The Original King-Ace

Suppose that the following premise is true:
If there is a king in the hand, then there is an ace
in the hand, or else if there isn’t a king in the hand,

then there is an ace.

What can you infer from this premise!?

NO!— TFhere-isan-ace inthe hand—NO!

In fact, what you can infer is that there isn’t an ace in the hand!



King-Ace 2

Suppose that the following premise is true:

If there is a king in the hand, then there is an ace
in the hand; or if there isn’t a king in the hand,
then there is an ace; but not both of these if-then
statements are true.

What can you infer from this premise!?
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Suppose that the following premise is true:

If there is a king in the hand, then there is an ace
in the hand; or if there isn’t a king in the hand,
then there is an ace; but not both of these if-then
statements are true.

What can you infer from this premise!?
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King-Ace 2

Suppose that the following premise is true:

If there is a king in the hand, then there is an ace
in the hand; or if there isn’t a king in the hand,
then there is an ace; but not both of these if-then
statements are true.

What can you infer from this premise!?

NO!—There-is-an-ace-inthe-hand—NO!

In fact, what you can infer is that there isn’t an ace in the hand!



King-Ace Solved

Proposition: There is not an ace in the hand.

Proof: We know that at least one of the if-thens (i.e., at least one of the
conditionals) is false. We know this because we are told that either
the first if-then holds, or the second if-then holds, but not both.

So we have two cases to consider, viz., that K — A is false, and (the other
case) that =K — A is false. (— is the same as the arrow we have used.)

Take first the first case; accordingly, suppose that K —= A is false. Then it
follows that K is true (since, when a conditional is false, its antecedent
holds but its consequent doesn’t), and A is false; i.e., 7A.

Now consider the second case, which consists in 7K — A being false.
Here, in a direct parallel, we know =K and, once again, since the
consequent of the conditional must be false, 7A.

In both of our two cases, which are exhaustive, there is no ace in the
hand. The proposition is established. QED



Klng-Ace SOIVed Homework 3: Study to understand.

Proposition: There is not an ace in the hand.

Proof: We know that at least one of the if-thens (i.e., at least one of the
conditionals) is false. We know this because we are told that either
the first if-then holds, or the second if-then holds, but not both.

So we have two cases to consider, viz., that K — A is false, and (the other
case) that =K — A is false. (— is the same as the arrow we have used.)

Take first the first case; accordingly, suppose that K —= A is false. Then it
follows that K is true (since, when a conditional is false, its antecedent
holds but its consequent doesn’t), and A is false; i.e., 7A.

Now consider the second case, which consists in 7K — A being false.
Here, in a direct parallel, we know =K and, once again, since the
consequent of the conditional must be false, 7A.

In both of our two cases, which are exhaustive, there is no ace in the
hand. The proposition is established. QED
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“Show-me-the-$” Problem (Al Version)

If one of the following assertions is true then so is the other:

(1) If there is an apple in the cup then there is a battery in the

cup; and, if there is a battery in the cup then there is an apple in
the cup.

(2) There is an apple in the cup.

Which is more likely to be in the cup, if either: the apple or the
battery?




“Show-me-the-$” Problem (Al Version)

If one of the following assertions is true then so is the other:

(1) If there is an apple in the cup then there is a battery in the
cup; and, if there is a battery in the cup then there is an apple in
the cup.

(2) There is an apple in the cup.

Which is more likely to be in the cup, if either: the apple or the
battery?

Now class, here’s a robot. Notice the cup next to it. The robot has been
programmed in a simple way: the code consists of three conditional statements:
(1) If the answer to the problem above is “apple,’ place only an apple in the empty
cup. (2) If the answer to the above problem is “battery,” place only a battery in the
empty cup. (3) If the answer is that neither is more likely to be in the cup, leave
the cup empty. Earlier, this code was executed and the robot performed
accordingly (having before this assimilated and solved the above problem). So: Tell
me, assuming that the code all worked perfectly, what’s in the cup, if anything! If
you’re right, and can prove that you are, here’s a $20 for you, on the spot.




