The Dangers of Inconsistency

Selmer Bringsjord
Mike Giancola

Rensselaer AI and Reasoning Lab

Are Humans Rational?
October 21, 2019
Motivation
Motivation

- AI agents utilizing automated reasoning will undoubtedly encounter inconsistencies
Motivation

• AI agents utilizing automated reasoning will undoubtedly encounter inconsistencies

• Underlying logic could be inconsistent
Motivation

• AI agents utilizing automated reasoning will undoubtedly encounter inconsistencies

• Underlying logic could be inconsistent

• Inconsistency could be inherent to the domain
Motivation

• AI agents utilizing automated reasoning will undoubtedly encounter inconsistencies
 • Underlying logic could be inconsistent
 • Inconsistency could be inherent to the domain
 • e.g. Belief Revision
Motivation

• AI agents utilizing automated reasoning will undoubtedly encounter inconsistencies

• Underlying logic could be inconsistent

• Inconsistency could be inherent to the domain

• e.g. Belief Revision
Motivation

- AI agents utilizing automated reasoning will undoubtedly encounter inconsistencies
 - Underlying logic could be inconsistent
 - Inconsistency could be inherent to the domain
 - e.g. Belief Revision
Motivation

- AI agents utilizing automated reasoning will undoubtedly encounter inconsistencies

 - Underlying logic could be inconsistent
 - Inconsistency could be inherent to the domain

 - e.g. Belief Revision

- **Goal:** Build a system which can detect inconsistencies and construct solutions
Autopilot is ON.

Pilot Flying

Pilot Monitoring

Backup Instruments
Pilot Flying

Autopilot is ON

Pilot Monitoring

Backup Instruments

Time: t_0
Pitch is too high!

Autopilot is ON

Backup Instruments

Pilot Flying

Pilot Monitoring

Time: t_1
Pitch is too high!

Autopilot is OFF

Backup Instruments

Pilot Flying

Pilot Monitoring

Time: \(t_2 \)
Pitch is too high!

Need to aim plane down!

Autopilot is OFF

Time: t_3
What Happened?

- Pitch is too high!
- Need to aim plane down!

- Autopilot is OFF
- Backup Instruments

- Pilot Flying
- Pilot Monitoring

Time: \(t_3 \)
What Happened?

• Each pilot’s display has its own set of sensors
What Happened?

- Each pilot’s display has its own set of sensors
- A faulty sensor feeding the PF’s display gave an incorrect reading
What Happened?

• Each pilot’s display has its own set of sensors

• A faulty sensor feeding the PF’s display gave an incorrect reading

• Typically, a Comparator Function continuously monitors sensor readings
What Happened?

- Each pilot’s display has its own set of sensors
- A faulty sensor feeding the PF’s display gave an incorrect reading
- Typically, a Comparator Function continuously monitors sensor readings
- This was disabled by a Declutter Function
How could an automated reasoner have helped?
How could an automated reasoner have helped?

- Instantly detect the inconsistency
How could an automated reasoner have helped?

- Instantly detect the inconsistency

- In this case, notice that Pilot 1’s sensor reading seems unusual, and that Pilot 2’s reading matches the backup instruments.
How could an automated reasoner have helped?

- Instantly detect the inconsistency
- In this case, notice that Pilot 1’s sensor reading seems unusual, and that Pilot 2’s reading matches the backup instruments.
- Find a solution
How could an automated reasoner have helped?

• Instantly detect the inconsistency

 • In this case, notice that Pilot 1’s sensor reading seems unusual, and that Pilot 2’s reading matches the backup instruments.

• Find a solution

 • In this case, send sensor readings from Pilot 2’s sensors to Pilot 1’s display, ignoring faulty data
A Solution in OSCAR
A Solution in OSCAR
Problem #1
This is a solution to the airplane crash scenario
Given premises:
~(ReadsNormal iru1) justification = 1.0
(ReadsNormal iru2) justification = 1.0
(MatchesBackup iru2) justification = 1.0
(all i1)(all i2) (((~(ReadsNormal i1) & (ReadsNormal i2)) & (MatchesBackup i2)) -> NormalAttitude) justification = 0.9
Ultimate epistemic interests:
NormalAttitude interest = 0.9

FORWARDS PRIMA FACIE REASONS
PF-REASON_1.1: ~(ReadsNormal iru1) ||-> ~NormalAttitude strength = 0.6

================================ ULTIMATE EPISTEMIC INTERESTS ======================
Interest in NormalAttitude
is answered affirmatively by node 14

Elapsed time = 0.022 sec

===
ARGUMENT #1
This is an undefeated argument of strength 0.9 for:
NORMALATTITUDE
which is of ultimate interest.
3. (MatchesBackup iru2) GIVEN
1. ~(ReadsNormal iru1) GIVEN
4. (all i1)(all i2)(((~(ReadsNormal i1) & (ReadsNormal i2)) & (MatchesBackup i2)) -> NormalAttitude) GIVEN
7. (all i2)(((ReadsNormal x0) & (ReadsNormal x1)) & (MatchesBackup x1)) -> NormalAttitude) UI from { 4 }
8. (((~(ReadsNormal x0) & (ReadsNormal x1)) & (MatchesBackup x1)) -> NormalAttitude) UIP from { 7 }
9. (~(ReadsNormal x0) & (ReadsNormal x1)) -> (MatchesBackup x1) -> NormalAttitude) exportation from { 8 }
11. (~(ReadsNormal x0) -> (ReadsNormal x1) -> (MatchesBackup x1) -> NormalAttitude)) exportation from { 9 }
12. (NormalAttitude) -> (MatchesBackup x1) -> NormalAttitude) modus-ponens1 from { 11, 1 }
2. (ReadsNormal iru2) GIVEN
13. (MatchesBackup iru2) -> NormalAttitude modus-ponens1 from { 12, 2 }
14. NormalAttitude modus-ponens1 from { 13, 3 }

Argument #2 support defeaters for this argument.
This argument supports defeaters for { link 5 for node 6 } thereby providing defeaters for argument #2

===
ARGUMENT #2
This is a defeated argument for:
~
(all i1)
(all i2)
(~(ReadsNormal x1)) (ReadsNormal x2) (MatchesBackup x2))
NORMALATTITUDE))

1. ~(ReadsNormal iru1) GIVEN
6. NormalAttitude PF-REASON_1.1 from { 1 }
15. ~(all i1)(all i2)(((~(ReadsNormal i1) & (ReadsNormal i2)) & (MatchesBackup i2)) -> NormalAttitude) INVERSION_FROM_CONTRADICTORY_NODES_14_AND_6 from { 6 }
2. (ReadsNormal iru2) GIVEN
4. (all i1)(all i2)(((~(ReadsNormal i1) & (ReadsNormal i2)) & (MatchesBackup i2)) -> NormalAttitude) GIVEN
7. (all i2)(((ReadsNormal x0) & (ReadsNormal x1)) & (MatchesBackup x1)) -> NormalAttitude) UI from { 4 }
8. (((~(ReadsNormal x0) & (ReadsNormal x1)) & (MatchesBackup x1)) -> NormalAttitude) UIP from { 7 }
9. (~(ReadsNormal x0) & (ReadsNormal x1)) -> (MatchesBackup x1) -> NormalAttitude) exportation from { 8 }
11. (~(ReadsNormal x0) -> (ReadsNormal x1) -> (MatchesBackup x1) -> NormalAttitude)) exportation from { 9 }
12. (NormalAttitude) -> (MatchesBackup x1) -> NormalAttitude) modus-ponens1 from { 11, 1 }
13. (MatchesBackup iru2) -> NormalAttitude modus-ponens1 from { 12, 2 }
3. (MatchesBackup iru2) GIVEN
14. NormalAttitude modus-ponens1 from { 13, 3 }

Arguments #1, #2 support defeaters for this argument.
This argument supports defeaters for { link 4 for node 4 } thereby providing defeaters for arguments #1, #2

===
For More...

- Software to run OSCAR

- For files to run example from today, email me: mike.j.giancola@gmail.com.
