Steeple #2:

Godel’s First Incompleteness Theorem
(The “Parlor Trick” Theorem)

(and thereafter: Steeple #3: The “Silver Blaze” (from Sherlock Holmes) Theorem)

Selmer Bringsjord
Are Humans Rational?
Dec 5 2019
RPI
Troy NY USA

RA 1R

Rensselaer Al and' Reasoning Lab

Background Context ...

Godel’s Great Theorems (oup)

by Selmer Bringsjord

® Introduction (“The Wager”)

® Brief Preliminaries (e.g. the
propositional calculus & FOL)

® The Completeness Theorem
® The First Incompleteness Theorem

® The Second Incompleteness
Theorem

® The Speedup Theorem

® The Continuum-Hypothesis
Theorem

® TheTime-Travel Theorem
® Godel’s “God Theorem”

® Could a Machine Match Godel’s
Genius?

* ® The First Incompleteness Theorem

Godel’s Great Theorems (oup)

by Selmer Bringsjord

® Introduction (“The Wager”)

® Brief Preliminaries (e.g. the
propositional calculus & FOL)

® The Completeness Theorem

® The Second Incompleteness
Theorem

® The Speedup Theorem

® The Continuum-Hypothesis
Theorem

® TheTime-Travel Theorem
® Godel’s “God Theorem”

® Could a Machine Match Godel’s
Genius?

Godel’s Great Theorems (oup)

by Selmer Bringsjord

® Introduction (“The Wager”)

® Brief Preliminaries (e.g. the
propositional calculus & FOL)

® The Completeness Theorem

® The First Incompleteness Theorem

* ® The Second Incompleteness

Theorem
® The Speedup Theorem

® The Continuum-Hypothesis
Theorem

® TheTime-Travel Theorem
® Godel’s “God Theorem”

® Could a Machine Match Godel’s
Genius?

A corollary of the First Incompleteness Theorem: We cannot prove that mathematics is consistent.

1Y

Godel’s Great Theorems (oup)

by Selmer Bringsjord

® Introduction (“The Wager”)

® Brief Preliminaries (e.g. the
propositional calculus & FOL)

® The Completeness Theorem
® The First Incompleteness Theorem

® The Second Incompleteness
Theorem

® The Speedup Theorem

® The Continuum-Hypothesis
Theorem

® TheTime-Travel Theorem
® Godel’s “God Theorem”

® Could a Machine Match Godel’s
Genius?

Godel’s Great Theorems (oup)

by Selmer Bringsjord

® Introduction (“The Wager”)

® Brief Preliminaries (e.g. the
propositional calculus & FOL)

® The Completeness Theorem

® The First Incompleteness Theorem

*
* ® The Second Incompleteness
*

Theorem
® The Speedup Theorem

® The Continuum-Hypothesis
Theorem

® TheTime-Travel Theorem
® Godel’s “God Theorem”

® Could a Machine Match Godel’s
Genius?

Based on the Sherlock Holmes mystery “Silver Blaze”; read for next (& last) class).

Some Timeline Points

1978 Princeton NJ USA.

&_I“

\
\
)

1940 Back to SA, for good.

1936 Schlick murdered; Austria annexed

1933 Hitler comes to power.

1930 Announces (First) Incompleteness Theorem

1929 Doctoral Dissertation: Proof of Completeness Theorem

Undergrad in seminar by Schlick

1923 Vienna
1906 Brunn,Austria-Hungary

Some Timeline Points

1978 Princeton NJ USA.

&_I“

\
\
)

1940 Back to SA, for good.

1936 Schlick murdered; Austria annexed

1933 Hitler comes to power.

1930 Announces (First) Incompleteness Theorem

1929 Doctoral Dissertation: Proof of Completeness Theorem

Undergrad in seminar by Schlick

1923 Vienna
1906 Brunn,Austria-Hungary

Some Timeline Points

1978 Princeton NJ USA.

1940 Backitc; USA, for good.

1936 Schlick murdered; Austria annexed

1933 Hitler comes to power.

1930 Announces (First) Incompleteness Theorem

1929 Doctoral Dissertation: Proof of Completeness Theorem

Undergrad in seminar by Schlick

1923 Vienna
1906 Brunn, Austria-Hungary

Some Timeline Points

1978 Princeton NJ USA.

) -

1940 Backltc; USA, for good.

1936 Schlick murdered; Austria annexed

1933 Hitler comes to power.

1930 Announces (First) Incompleteness Theorem

1929 Doctoral Dissertation: Proof of Completeness Theorem

Undergrad in seminar by Schlick

1923 Vienna
1906 Brunn, Austria-Hungary

Steeple #2 (Incompleteness) ...

Goal: Put you in position
to prove Godel’s first
incompleteness theorem!

Goal: Put you in position
to prove Godel’s first
incompleteness theorem!

We have the background (if).

The “Liar Tree”

The “Liar Tree”

The “Liar Tree”

The “Liar Tree”

4
*
A7

Gure Proof-Theoretic Routg

The “Liar Tree”

’ ~
L4 ~
yas T

Gure Proof-Theoretic Routg

The “Liar Tree”

4 ~
* ~
L d ~
A A

Gure Proof-Theoretic Routg Via “Tarski’s” Theorem

The “Liar Tree”

~
~
N

Gure Proof-Theoretic Routg Via “Tarski’s” Theorem

The “Liar Tree”

Paul Erdos

Gure Proof-Theoretic Routg Via “Tarski’s” Theorem

“The Book”

The “Liar Tree”

~
~
~

N

Gure Proof-Theoretic Routa Via “Tarski’s” Theorem

“The Book”

Ergo, step one: What is LP?

Remember ...
“The (Economical) Liar™ ...

Remember ...
“The (Economical) Liar” ...

L: This sentence is false.

Remember ...
“The (Economical) Liar™ ...

L: This sentence is false.

Suppose that T(L); then = T(L).

Remember ...
“The (Economical) Liar™ ...

L: This sentence is false.
Suppose that T(L); then = T(L).

Suppose that = T(L) then T(L).

Remember ...
“The (Economical) Liar™ ...

L: This sentence is false.
Suppose that T(L); then = T(L).
Suppose that = T(L) then T(L).

Hence: T(L) iff (i.e., if & only if) = T(L).

Remember ...
“The (Economical) Liar™ ...

L: This sentence is false.
Suppose that T(L); then = T(L).
Suppose that = T(L) then T(L).

Hence: T(L) iff (i.e., if & only if) = T(L).

Contradiction!

The ““Godelian’ Liar

The ““Godelian’ Liar

P: This sentence is unprovable.

The ““Godelian’ Liar

P: This sentence is unprovable.

Suppose that P is true. Then we can immediately deduce
that P is provable, because here is a proof: P — P is an easy
theorem, and from it and our supposition we deduce P by
modus ponens. But since what P says is that it’s unprovable,
we have deduced that P is false under our initial supposition.

The ““Godelian’ Liar

P: This sentence is unprovable.

Suppose that P is true. Then we can immediately deduce
that P is provable, because here is a proof: P — P is an easy
theorem, and from it and our supposition we deduce P by
modus ponens. But since what P says is that it’s unprovable,
we have deduced that P is false under our initial supposition.

Suppose on the other hand that P is false. Then we can
immediately deduce that P is unprovable: Suppose for reductio that
P is provable; then P holds as a result of some proof, but what P
says is that it’s unprovable; and so we have contradiction. But since
what P says is that it’s unprovable, and we have just proved that
under our supposition, we arrive at the conclusion that P is true.

The ““Godelian’ Liar

P: This sentence is unprovable.

Suppose that P is true. Then we can immediately deduce
that P is provable, because here is a proof: P — P is an easy
theorem, and from it and our supposition we deduce P by
modus ponens. But since what P says is that it’s unprovable,
we have deduced that P is false under our initial supposition.

Suppose on the other hand that P is false. Then we can
immediately deduce that P is unprovable: Suppose for reductio that
P is provable; then P holds as a result of some proof, but what P
says is that it’s unprovable; and so we have contradiction. But since
what P says is that it’s unprovable, and we have just proved that
under our supposition, we arrive at the conclusion that P is true.

T(P) iff (i.e., if & only if) = T(P) = F(P)

The ““Godelian’ Liar

P: This sentence is unprovable.

Suppose that P is true. Then we can immediately deduce
that P is provable, because here is a proof: P — P is an easy
theorem, and from it and our supposition we deduce P by
modus ponens. But since what P says is that it’s unprovable,
we have deduced that P is false under our initial supposition.

Suppose on the other hand that P is false. Then we can
immediately deduce that P is unprovable: Suppose for reductio that
P is provable; then P holds as a result of some proof, but what P
says is that it’s unprovable; and so we have contradiction. But since
what P says is that it’s unprovable, and we have just proved that
under our supposition, we arrive at the conclusion that P is true.

T(P) iff (i.e., if & only if) -T(I_’) = F(P)
Contradiction!

Next, recall:
PA (Peano Arithmetic):

Al Vz(0 # s(x))

A2 Vavy(s(z) = s(y) — = y)
A3 Vz(z #0— Jy(z = s(y))

Ad Vr(x+0=ux)

A5 VaVy(r + s(y) = s(z +y))
A6 Vz(x x 0=0)

A7 VaVy(r x s(y) = (xz X y) + z)

And, every sentence that is the universal closure of an instance of

([¢(0) AVz(o(z) — @(s(2))] — Vzo(z))

where ¢(x) is open wif with variable x, and perhaps others, free.

Arithmetic is Part of All Things Sci/Eng/Tech!

and courtesy of Godel: We can’t even prove all truths of arithmetic!

Each circle is a larger part
of the formal sciences.

Godel Numbering

Godel Numbering

Problem: How do enables a formula to refer to
other formula and itself (and also other objects like
proofs, terms etc.), in a perfectly consistent way?

Godel Numbering

Problem: How do enables a formula to refer to
other formula and itself (and also other objects like
proofs, terms etc.), in a perfectly consistent way?

Solution: Godel numbering

Godel Numbering

Problem: How do enables a formula to refer to
other formula and itself (and also other objects like
proofs, terms etc.), in a perfectly consistent way?

Solution: Godel numbering

¢
¢ — P
f(z,a)

Godel Numbering

Problem: How do enables a formula to refer to
other formula and itself (and also other objects like
proofs, terms etc.), in a perfectly consistent way?

Solution: Godel numbering

¢
¢ — P
f(z,a)

Syntactic objects

Godel Numbering

Problem: How do enables a formula to refer to
other formula and itself (and also other objects like
proofs, terms etc.), in a perfectly consistent way?

Solution: Godel numbering

¢
¢ — P
f(z,a)

Syntactic objects

(formulae, terms, proofs etc)

Godel Numbering

Problem: How do enables a formula to refer to
other formula and itself (and also other objects like
proofs, terms etc.), in a perfectly consistent way?

Solution: Godel numbering

¢
¢ — Y
f(z,a)

Syntactic objects

(formulae, terms, proofs etc)

Godel Numbering

Problem: How do enables a formula to refer to
other formula and itself (and also other objects like
proofs, terms etc.), in a perfectly consistent way?

Solution: Godel numbering

¢ 323
O — Y 23432
f(x,a) 142323

Syntactic objects

(formulae, terms, proofs etc)

Godel Numbering

Problem: How do enables a formula to refer to
other formula and itself (and also other objects like
proofs, terms etc.), in a perfectly consistent way?

Solution: Godel numbering

¢ 323

O — Y 23432

f(z,a) 142323
Syntactic objects Godel number

(formulae, terms, proofs etc)

Godel Numbering

Problem: How do enables a formula to refer to
other formula and itself (and also other objects like
proofs, terms etc.), in a perfectly consistent way?

Solution: Godel numbering

¢ 323

O — Y 23432

f(z,a) 142323
Syntactic objects Godel number

(formulae, terms, proofs etc)

Godel Numbering

Problem: How do enables a formula to refer to
other formula and itself (and also other objects like
proofs, terms etc.), in a perfectly consistent way?

Solution: Godel numbering

¢ 323 |+...+1+0

O — Y 23432 I+ 4140

f(z,a) 142323 4. 4140
Syntactic objects Godel number

(formulae, terms, proofs etc)

Godel Numbering

Problem: How do enables a formula to refer to
other formula and itself (and also other objects like
proofs, terms etc.), in a perfectly consistent way?

Solution: Godel numbering

¢ 323 |+..+1+0

O — Y 23432 I+ 4140

f(z,a) 142323 4. 4140
Syntactic objects Godel number Godel numeral

(formulae, terms, proofs etc)

Godel Numbering

Problem: How do enables a formula to refer to
other formula and itself (and also other objects like
proofs, terms etc.), in a perfectly consistent way?

Solution: Godel numbering

¢ 323 |+..+1+0

O — Y 23432 I+ 4140

f(z,a) 142323 4. 4140
Syntactic objects Godel number Godel numeral

(formulae, terms, proofs etc) back to syntax

Godel Numbering

Problem: How do enables a formula to refer to
other formula and itself (and also other objects like
proofs, terms etc.), in a perfectly consistent way?

Solution: Godel numbering

¢ 323 |+..+1+0

O — Y 23432 I+ 4140

f(z,a) 142323 4. 4140
Syntactic objects Godel number Godel numeral

(formulae, terms, proofs etc) back to syntax

¢

Godel Numbering

Problem: How do enables a formula to refer to
other formula and itself (and also other objects like
proofs, terms etc.), in a perfectly consistent way?

Solution: Godel numbering

¢ 323 |+..+1+0

O — Y 23432 I+ 4140

f(z,a) 142323 4. 4140
Syntactic objects Godel number Godel numeral

(formulae, terms, proofs etc) back to syntax

¢ n®

Godel Numbering

Problem: How do enables a formula to refer to
other formula and itself (and also other objects like
proofs, terms etc.), in a perfectly consistent way?

Solution: Godel numbering

¢ 323 |+..+1+0

O — Y 23432 I+ 4140

f(z,a) 142323 4. 4140
Syntactic objects Godel number Godel numeral

(formulae, terms, proofs etc) back to syntax

0, n? A? (or just“@”)

Godel Numbering, the Easy Way

Just realize that every entry in a dictionary is named by a humber n, and by
the same basic lexicographic ordering, every computer program, formula, etc.
is named by a number m in a lexicographic ordering going from |,to 2,to ...

Oxford
English
Dictionary

Godel Numbering, the Easy Way

Just realize that every entry in a dictionary is named by a humber n, and by
the same basic lexicographic ordering, every computer program, formula, etc.
is named by a number m in a lexicographic ordering going from |,to 2,to ...

Oxford
English
Dictionary

So, gimcrack is named by some positive integer k.
Hence, | can just refer to this word as “k”.

Godel Numbering, the Easy VWay

Just realize that every entry in a dictionary is named by a number n, and by
the same basic lexicographic ordering, every computer program, formula, etc.
is named by a number m in a lexicographic ordering going from |,to 2,to ...

Godel Numbering, the Easy VWay

Just realize that every entry in a dictionary is named by a number n, and by
the same basic lexicographic ordering, every computer program, formula, etc.
is named by a number m in a lexicographic ordering going from |,to 2,to ...

Or, every syntactically valid computer program in
Haskell that you will ever write can be uniquely picked
about some number m in the lexicographic ordering of
all syntactically valid such programs, and then we can
just use a numeral or string “m” (or whatever) to refer
to your program in a formal language/logic!

Godel’s First Incompleteness Theorem

Suppose that elementary arithmetic (i.e., PA) is consistent (no
contradiction can be derived in it) and program-decidable (there’s a
program P that, given as input an arbitrary formula p, can decide
whether or not p is in PA).

Then there is sentence g* in the language of elementary arithmetic
which is such that:

g* can’t be proved from PA (i.e., not PA |- g*)!

And, not-g* can’t be proved from PA either (i.e., not PA |- not-g*)!

Godel’s First Incompleteness Theorem

Suppose that elementary arithmetic (i.e., PA) is consistent (no
contradiction can be derived in it) and program-decidable (there’s a
program P that, given as input an arbitrary formula p, can decide
whether or not p is in PA).

Then there is sentence g* in the language of elementary arithmetic
which is such that:

g* can’t be proved from PA (i.e., not PA |- g*)!
And, not-g* can’t be proved from PA either (i.e., not PA |- not-g*)!

(Oh, and: g* is true!)

Proof Kernel for Theorem GI
Part I: Recipe R

Let g(x) be an arbitrary formula of arithmetic with one
open variable x. (E.g.,x + 3 = 5. And here g(2) would
be2+3=5)

Godel invented a recipe R that, given any g(x) as an

ingredient template that you are free to choose,
produces a self-referential formula g such that:

PA |- g <=>4q("g")

(i.e., a formula g that says: “| have property g!”)

Proof Kernel for Theorem GI

Part 2: Follow Recipe R, Guided by The Liar

First, for g(x) we choose a formula g* that holds of

€¢_9%

any “s” if and only if s can be proved from PA;i.e.,
PA |- ¢*("s”) iff PA |- s (1)
Next, we follow Godel’s Recipe R to build a g* such that:

PA |- g* <=>not-¢*("g™) (2)

Proof Kernel for Theorem GI

Part 2: Follow Recipe R, Guided by The Liar

First, for g(x) we choose a formula g* that holds of

€¢_9%

any “s” if and only if s can be proved from PA;i.e.,
PA |- ¢*("s”) iff PA |- s (1)
Next, we follow Godel’s Recipe R to build a g* such that:

PA |- g* <=>not-¢*("g™) (2)

g* thus says: “I’'m not true!”/“I’'m not provable.”
And so, the key question (assignment!): PA |- g*?!?

Indirect Proof
Gl: g*isn’t provable from PA; nor is the negation of g*!

Proof: Let’s follow The Liar: Suppose that g* is provable from PA;
i.e., suppose PA |- g*. Then by (1), with g* substituted for s, we have:

PA |- ¢*("g™”) iff PA |- g* ()
From our supposition and working right to left by modus ponens on
(I’) we deduce:

PA |- ¢%("g™) (3.1)
But from our supposition and the earlier (see previous slide) (2), we
can deduce by modus ponens that from PA the opposite can be
proved! l.e., we have:

PA |- not-g*(“g*”) (3.2)

But (3.1) and (3.2) together means that PA is inconsistent, since it
generates a contradiction. But we are working under the supposition that
PA is consistent. Hence by indirect proof g* is not provable from PA.

Indirect Pro
Gl: g*isn’t provable from PA{nor is the negation ofgb

Proof: Let’s follow The Liar: Suppose that g* is provable from PA;
i.e., suppose PA |- g*. Then by (1), with g* substituted for s, we have:

PA |- ¢*("g™”) iff PA |- g* ()
From our supposition and working right to left by modus ponens on
(I’) we deduce:

PA |- ¢%("g™) (3.1)
But from our supposition and the earlier (see previous slide) (2), we
can deduce by modus ponens that from PA the opposite can be
proved! l.e., we have:

PA |- not-g*(“g*”) (3.2)

But (3.1) and (3.2) together means that PA is inconsistent, since it
generates a contradiction. But we are working under the supposition that
PA is consistent. Hence by indirect proof g* is not provable from PA.

What about the second option? Can you follow The Liar to show
that supposing that the negation of g* (i.e., not-g*) is provable
from PA also leads to a contradiction, and hence can’t be?

“Silly abstract nonsense! There
aren’t any concrete examples of g*!”

Ah, but: Goodstein’s Theorem!

Ah, but: Goodstein’s Theorem!

The Goodstein Sequence goes to zero!

Pure base n representation of
a humber r

® Represent r as only sum of powers of n in
which the exponents are also powers of n etc

+29)

266 = 22(220 1 9(2* +2%) | 92°

Grow Function

Growg(n) :

1. Take the pure base k representation of n

2. Replace all k by k + 1. Compute the number obtained.

3. Subtract one from the number

Example of Grow

Grows(19)

20
19 =22° 92 4 90
33" 30 50
3 +3° +3
38%" 133 £30 1

7625597484990

Goodstein Sequence

® For any natural number m

m
Grows(m)
Grows(Grows(m))

Grows(Grows(Grows(m))),

Sample Values

Sample Values

Sample Values

Sample Values

Sample Values

Sample Values

) | 0
3 3 2 | 0
26 41 60 83 109 139 11327

(96th term)

Sample Values

2 2 I 0
3 3 3 2 I 0

11327
4 26 41 60 83 109 139 (96th term)
15 ~10!13 ~10155 | ~02185 | ~]036306 | 0695975 | 1015151337

Ah, but: Goodstein’s Theorem!

Ah, but: Goodstein’s Theorem!

This sequence actually goes to zero!

[Astrologic:

Rational Aliens Will be on the Same “Race Track’!

PAF=TRUE,,/;

Astrologic:
Rational Aliens Will be on the Same “Race Track”!

PAF=TRUE,,/;

Could an Al Ever Match Godel here!?

Actually, thanks to AFOSR:
Gl (& GT): “Done” ...

Analogico-Deductive Generation of Godel’s First Incompleteness Theorem from
the Liar Paradox

John Licato, Naveen Sundar Govindarajulu, Selmer Bringsjord, Michael Pomeranz, Logan Gittelson

Rensselaer Polytechnic Institute
Troy, NY
{licatj,govinn,selmer,pomerm, gittel } @rpi.edu

Abstract

Godel's proof of his famous first incompleteness
theorem (G1) has quite understandably long been a
tantalizing target for those wanting to engineer im-
pressively intelligent computational systems. After
all, in establishing G1, Gdel did something that
by any metric must be classified as stunningly in-
telligent. We observe that it has long been under-
stood that there is some sort of analogical relation-
ship between the Liar Paradox (LP) and G1, and
that Godel himself appreciated and exploited the
relationship. Yet the exact nature of the relation-
ship has hitherto not been uncovered, by which we
mean that the following question has not been an-
swered: Given a description of LP, and the sus-
picion that it may somehow be used by a suitably
pmgmmmed computing machine to find a proof of
the i of Peano Ari ic, can such
a machine, provided this description as input, pro-
duce as output a complete and verifiably correct
proof of G1? In this paper, we summarize engineer-
ing that entails an affirmative answer to this ques-
tion. Our approach uses what we call analogico-
deductive reasoning (ADR), which combines ana-
logical and deductive reasoning to produce a full
deductive proof of G1 from LP. Our engi ing

2003,

should not be controversial to claim that no computational
reasoning system can, at present, achieve this sort of feat
without significant human assistance.

1.1 Automating the Proof of G1
Prior work devoted to producing computational systems able
to prove G1 have yielded systems able to prove this theorem
only when the distance between this result and the starting
point is quite small. This for example holds for the first (and
certainly seminal) foray; i.e., for , as explained
in where it's shown Lhat the proof of G1,
the set of premi i human-
devised encoding scheme, is very easy—!o the point of being
at the level of proofs requested from students in introductory

mathematical logic classes.
Likewise, [Amnon, 1993 is an exact parallel of the human-
devised proof given by . Finally, in much
more recent and truly impressive work by
there is a move to natural-deduction formats, which
we applaud—but the machine essentially begins its process-
ing at a point exceedingly close to where it needs to end up.
As Sieg and Field concede: “As axioms we take for granted
the representability and derivability conditions for the cen-
tral syntactic notions as well as the diagonal lemma for con-
structing self-referential sentences.” If one takes for granted
such things, finding a proof of G1 is effortless for a comput-

uses a form of ADR based on our META-R system,
and a connection between the Liar Sentence in LP
and Godel's Fixed Point Lemma, from which G1
follows quickly.

1 Introduction

Gadel’s proofs of his incompleteness theorems are among the
greatest intellectual achievements of the 20th century. Even
armed with the suggestion that the Liar Paradox (LP) might
somehow be useful as a guide to proving the incompleteness
of Peano Arithmetic (PA)E| the level of creativity and philo-
sophical clarity required to actually tie the two concepts to-
gether and produce a valid proof is staggering; it certainly

'G1 of course applies to any axiom system meeting the stan-
dard conditions (Turing-decidability, representability, consistency),
but we tend to refer to PA for economization.

ing hi &JI“ sum, while a lot of commendable work has
been done to build the foundation for our prospective work,
the daunting formal and engineering challenge of producing
a computational system able to produce G1 without clever
seeding from a human remains entirely unmet.

2 The Analogico-Deductive Approach

2.1 Conjecture Generation

The problem with the purely deductive method is simply
that it does not allow us to come close to the type of
model-based reasoning that great thinkers are known to have
used. Godel himself has been described as having a “line
of thought [which] seems to move from conjecture to con-
jecture” A Reasoners in general are known to
conjecture through analogy when a straightforward answer

2A video d ion of the small-di process can be

found at http://kryten.mm.rpi.edu/Godell_abstract_in_Slate.mov,

Licato, J.; Govindarajulu, N.; Bringsjord, S.; Pomeranz, M.; Gittelson, L. 2013. Analogico-

Small Steps Toward Hypercomputation via
Infinitary Machine Proof Verification and Proof Generation

Naveen Sundar Govindarajulu, John Licato, and Selmer Bringsjord
Department of Computer Science
Department of Cognitive Science
R laer Al & R ing Lab
govinn@rpi.edu e licatj@rpi.edu e selmer@rpi.edu

Rensselaer Polytechnic Institute
110 81 Street, Troy , NY 12180 USA

Abstract. After setting a context based on two general points (that humans appear to reason in infinitary
fashion, and two, that actual hypercomputers aren’t currently available to directly model and replicate such
infinitary reasoning), we set a humble engineering goal of taking initial steps toward a computing machine
that can reason in mﬁmlary fashion. The initial steps consist in our outline of automated proof-verification
and proof-di: y for indep of PA that seem to require an understanding and
use of infinitary concepts. We specifically focus on proof-discovery techniques that make use of a marriage of
analogical and deductive reasoning (which we call analogico-deductive reasoning).

A Context: Infinitary Reasoning, Hyper p ion, and Humble Engineering

Bringsjord has repeatedly pointed out the obvious fact that the behavior of formal scientists, taken at face value,
involve various infinitary structures and reasoning. (We say “at face value” to simply indicate we don’t presup-
pose some view that denies the reality of infinite entities routinely involved in the formal sci) For 1
in (Bringsjord & van Heuveln 2003), Bringsjord himself operates as such a scientist in presenting an infinitary
paradox which to his knowledge has yet to be solved. And he has argued that apparently infinitary behavior consti-
tutes a grave challenge to Al and the Church-Turing Thesis (e.g., see Bringsjord & Arkoudas 2006, Bringsjord &
Zenzen 2003). More gt Ily, Bringsjord conj that every h duced proof of a theorem independent
of Peano Arithmetic (PA) will make use of infinitary structures and reasomng, when these structures are taken at
face valuemWe have ourselves designed logico-computational logics for handling infinitary reasoning (e.g., see
the of the infinitized wi puzzle: Arkoudas & Bringsjord 2005), but this work simply falls back on
the human ability to carry out induction on the natural numbers: it doesn’t dissect and explain this ability. Finally,
it must be admmed by all that v.here is slmply no sy ic hensive model or fi k anywhere in the
formal/comp h to ding human k ge and intelligence that provides a theory about
how humans are able to engage with infinitary structures. This is revealed perhaps most clearly when one studies
the fruit produced by the part of formal Al devoted to producing discovery systems: such fruit is embarrassingly
finitary (e.g., see Shilliday 2009).

Given this context, we are interested in exploring how one might give a machine the ability to reason in
infinitary fashion. We are not saying that we in fact have figured out how to give such ability to a computing
machine. Our objective here is much more humble and limited: it is to push forward in the attempt to engineer a
computing machme !ha! has the ability to reason in infinitary fashion. Ultimately, if such an attempt is to succeed,
the puting in ion will bly be capable of outright hypercomputation. But the fact is that
from an engineering perspective, we don’t know how to create and harness a hypercomputer. So what we must first
try to do, as explained in (Bringsjord & Zenzen 2003), is pursue engineering that initiates the attempt to engineer
a hypercomputer, and takes the first few steps. In the present paper, the engineering is aimed specifically at giving
a computing machine the ability to, in a limited but well-defined sense, reason in infinitary fashion. Even more
specifically, our engineering is aimed at building a machine capable of at least providing a strong case for a result
which, in the human sphere, has hitherto required use of infinitary techniques.

! A weaker conjecture along the same line has been ventured by Isaacson, and is elegantly discussed by Smith (2007).

Govindarajulu, N.; Licato, J.; Bringsjord, S. 2013. Small Steps Toward Hypercomputation via

Deductive Generation of Godel's First Incompleteness Theorem from the Liar Paradox. Infinitary Machine Proof Verification and Proof Generation. In Proceedings of UCNC 2013. Pdf

In Proceedings of IJCAI 2013. Pdf

http://kryten.mm.rpi.edu/ADR_2_GTheorem_from_LP.pdf
http://link.springer.com/chapter/10.1007/978-3-642-39074-6_11

Analogico-Deductive Generation of Godel’s First Incompleteness Theorem from
the Liar Paradox

(John Licato, Naveen Sundar Govindarajulu, Selmer Bringsjord, Michael Pomeranz, Logan Gittelson)
R - -

Troy, NY
{licatj,govinn,selmer,pomerm, gittel } @rpi.edu

Abstract

Godel's proof of his famous first incompleteness
theorem (G1) has quite understandably long been a
tantalizing target for those wanting to engineer im-
pressively intelligent computational systems. After
all, in establishing G1, Gdel did something that
by any metric must be classified as stunningly in-
telligent. We observe that it has long been under-
stood that there is some sort of analogical relation-
ship between the Liar Paradox (LP) and G1, and
that Godel himself appreciated and exploited the
relationship. Yet the exact nature of the relation-
ship has hitherto not been uncovered, by which we
mean that the following question has not been an-
swered: Given a description of LP, and the sus-
picion that it may somehow be used by a suitably
pmgmmmed computing machine to find a proof of
the i of Peano Ari ic, can such
a machine, provided this description as input, pro-
duce as output a complete and verifiably correct
proof of G1? In this paper, we summarize engineer-
ing that entails an affirmative answer to this ques-
tion. Our approach uses what we call analogico-
deductive reasoning (ADR), which combines ana-
logical and deductive reasoning to produce a full
deductive proof of G1 from LP. Our engi ing

2003,

should not be controversial to claim that no computational
reasoning system can, at present, achieve this sort of feat
without significant human assistance.

1.1 Automating the Proof of G1
Prior work devoted to producing computational systems able
to prove G1 have yielded systems able to prove this theorem
only when the distance between this result and the starting
point is quite small. This for example holds for the first (and
certainly seminal) foray; i.e., for , as explained
in where it's shown Lhat the proof of G1,
the set of premi i human-
devised encoding scheme, is very easy—!o the point of being
at the level of proofs requested from students in introductory

mathematical logic classes.
Likewise, [Amnon, 1993 is an exact parallel of the human-
devised proof given by . Finally, in much
more recent and truly impressive work by
there is a move to natural-deduction formats, which
we applaud—but the machine essentially begins its process-
ing at a point exceedingly close to where it needs to end up.
As Sieg and Field concede: “As axioms we take for granted
the representability and derivability conditions for the cen-
tral syntactic notions as well as the diagonal lemma for con-
structing self-referential sentences.” If one takes for granted
such things, finding a proof of G1 is effortless for a comput-

uses a form of ADR based on our META-R system,
and a connection between the Liar Sentence in LP
and Godel's Fixed Point Lemma, from which G1
follows quickly.

1 Introduction

Gadel’s proofs of his incompleteness theorems are among the
greatest intellectual achievements of the 20th century. Even
armed with the suggestion that the Liar Paradox (LP) might
somehow be useful as a guide to proving the incompleteness
of Peano Arithmetic (PA)E| the level of creativity and philo-
sophical clarity required to actually tie the two concepts to-
gether and produce a valid proof is staggering; it certainly

'G1 of course applies to any axiom system meeting the stan-
dard conditions (Turing-decidability, representability, consistency),
but we tend to refer to PA for economization.

ing hi &JI“ sum, while a lot of commendable work has
been done to build the foundation for our prospective work,
the daunting formal and engineering challenge of producing
a computational system able to produce G1 without clever
seeding from a human remains entirely unmet.

2 The Analogico-Deductive Approach

2.1 Conjecture Generation

The problem with the purely deductive method is simply
that it does not allow us to come close to the type of
model-based reasoning that great thinkers are known to have
used. Godel himself has been described as having a “line
of thought [which] seems to move from conjecture to con-
jecture” A Reasoners in general are known to
conjecture through analogy when a straightforward answer

2A video d ion of the small-di process can be

found at http://kryten.mm.rpi.edu/Godell_abstract_in_Slate.mov,

Licato, J.; Govindarajulu, N.; Bringsjord, S.; Pomeranz, M.; Gittelson, L. 2013. Analogico-

Small Steps Toward Hypercomputation via
Infinitary Machine Proof Verification and Proof Generation

Naveen Sundar Govindarajulu, John Licato, and Selmer Bringsjord
Department of Computer Science
Department of Cognitive Science
R laer Al & R ing Lab
govinn@rpi.edu e licatj@rpi.edu e selmer@rpi.edu

Rensselaer Polytechnic Institute
110 81 Street, Troy , NY 12180 USA

Abstract. After setting a context based on two general points (that humans appear to reason in infinitary
fashion, and two, that actual hypercomputers aren’t currently available to directly model and replicate such
infinitary reasoning), we set a humble engineering goal of taking initial steps toward a computing machine
that can reason in mﬁmlary fashion. The initial steps consist in our outline of automated proof-verification
and proof-di: y for indep of PA that seem to require an understanding and
use of infinitary concepts. We specifically focus on proof-discovery techniques that make use of a marriage of
analogical and deductive reasoning (which we call analogico-deductive reasoning).

A Context: Infinitary Reasoning, Hyper p ion, and Humble Engineering

Bringsjord has repeatedly pointed out the obvious fact that the behavior of formal scientists, taken at face value,
involve various infinitary structures and reasoning. (We say “at face value” to simply indicate we don’t presup-
pose some view that denies the reality of infinite entities routinely involved in the formal sci) For 1
in (Bringsjord & van Heuveln 2003), Bringsjord himself operates as such a scientist in presenting an infinitary
paradox which to his knowledge has yet to be solved. And he has argued that apparently infinitary behavior consti-
tutes a grave challenge to Al and the Church-Turing Thesis (e.g., see Bringsjord & Arkoudas 2006, Bringsjord &
Zenzen 2003). More gt Ily, Bringsjord conj that every h duced proof of a theorem independent
of Peano Arithmetic (PA) will make use of infinitary structures and reasomng, when these structures are taken at
face valuemWe have ourselves designed logico-computational logics for handling infinitary reasoning (e.g., see
the of the infinitized wi puzzle: Arkoudas & Bringsjord 2005), but this work simply falls back on
the human ability to carry out induction on the natural numbers: it doesn’t dissect and explain this ability. Finally,
it must be admmed by all that v.here is slmply no sy ic hensive model or fi k anywhere in the
formal/comp h to ding human k ge and intelligence that provides a theory about
how humans are able to engage with infinitary structures. This is revealed perhaps most clearly when one studies
the fruit produced by the part of formal Al devoted to producing discovery systems: such fruit is embarrassingly
finitary (e.g., see Shilliday 2009).

Given this context, we are interested in exploring how one might give a machine the ability to reason in
infinitary fashion. We are not saying that we in fact have figured out how to give such ability to a computing
machine. Our objective here is much more humble and limited: it is to push forward in the attempt to engineer a
computing machme !ha! has the ability to reason in infinitary fashion. Ultimately, if such an attempt is to succeed,
the puting in ion will bly be capable of outright hypercomputation. But the fact is that
from an engineering perspective, we don’t know how to create and harness a hypercomputer. So what we must first
try to do, as explained in (Bringsjord & Zenzen 2003), is pursue engineering that initiates the attempt to engineer
a hypercomputer, and takes the first few steps. In the present paper, the engineering is aimed specifically at giving
a computing machine the ability to, in a limited but well-defined sense, reason in infinitary fashion. Even more
specifically, our engineering is aimed at building a machine capable of at least providing a strong case for a result
which, in the human sphere, has hitherto required use of infinitary techniques.

! A weaker conjecture along the same line has been ventured by Isaacson, and is elegantly discussed by Smith (2007).

Govindarajulu, N.; Licato, J.; Bringsjord, S. 2013. Small Steps Toward Hypercomputation via

Deductive Generation of Godel's First Incompleteness Theorem from the Liar Paradox. Infinitary Machine Proof Verification and Proof Generation. In Proceedings of UCNC 2013. Pdf

In Proceedings of IJCAI 2013. Pdf

http://kryten.mm.rpi.edu/ADR_2_GTheorem_from_LP.pdf
http://link.springer.com/chapter/10.1007/978-3-642-39074-6_11

Continuum of Results

Liar Paradox (L) s = “This statement is a lie”
. Collection of semiformal statements There is a statement that is
: Syntax not rigorously defined neither true nor false.
* Represents intuitive understanding of problem

domain

Gl s =
. Completely formal statements HCPELA _|(PA |_ (p) A —.(PA |_ —-(P)

. Syntax very rigorously defined
* Purely mathematical objects: numbers, formal
theories, etc.

Continuum of Results

Liar Paradox (L) s = “This statement is a lie”
. Collection of semiformal statements There is a statement that is
: Syntax not rigorously defined neither true nor false.
* Represents intuitive understanding of problem

domain

Gl s =
. Completely formal statements acpeLA _|(PA |_ (p) A —.(PA |_ _Icp)

. Syntax very rigorously defined
* Purely mathematical objects: numbers, formal
theories, etc.

Continuum of Results

Liar Paradox (|_) s = “This statement is a lie”

. Collection of semiformal statements There is a statement that is
. Syntax not rigorously defined neither true nor false.
* Represents intuitive understanding of problem

domain

S

. Semi s = -1Bs
emiformal statements (but more formal than L)
. Syntax somewhat rigorously defined HP —|BP A _'B_'P
. Somewhat intuitive; deals with stories of
reasoners and utterances made by inhabitants of an
island

Gl s =1
. Completely formal statements HCPELA _|(PA |__ (p) A —,(PA |__ _Icp)

. Syntax very rigorously defined
* Purely mathematical objects: numbers, formal
theories, etc.

Continuum of Results

Liar Paradox (|_) s = “This statement is a lie”
. Collection of semiformal statements There is a statement that is

. Syntax not rigorously defined neither true nor false.
* Represents intuitive understapding of problem

S

. s = Bs
* Semiformal statements (but more formal than L)
. Syntax somewhat rigorously defined HP —|BP A —|B_,P
. Somewhat intuitive; deals with stories of

reasoners and utterances made by inhabitants of an

Gl s =1
. Completely formal statements HCPELA _|(PA |_ (p) A —,(PA |_ _Icp)

. Syntax very rigorously defined
* Purely mathematical objects: numbers, formal
theories, etc.

¢ Semiformal statements

reasoners and utter

Continuum of Results

Liar Paradox (L)

Collection of semiformal statements
Syntax not rigorously defined
Represents intyitive understapding of problem

more formal than L)
rously defined

Is with stories of
inhabitants of an

Syntax somewha
Somewhat intuitive

Gl

Completely formal statements
Syntax very rigorously defined
Purely mathematical objects: numbers, formal
theories, etc.

s = “This statement is a lie”
There is a statement that is
neither true nor false.

s =

Jeer. 7(PA |- @) A 7(PA |- -@)

¢ Semiformal statements

reasoners and utter

Continuum of Results

Liar Paradox (L)

Collection of semiformal statements
Syntax not rigorously defined
Represents intyitive understapding of problem

€€

more formal than L)
rously defined

Is with stories of
inhabitants of an

Syntax somewha
Somewhat intuitive

Gl

Completely formal statements
Syntax very rigorously defined
Purely mathematical objects: numbers, formal
theories, etc.

s = “This statement is a lie”
There is a statement that is
neither true nor false.

s =

Joer. 7(PA |- @) A 7(PA |- -)

slutten

