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A corollary of the First Incompleteness Theorem:  We cannot prove that mathematics is consistent.
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Gödel’s Great Theorems (OUP)
by Selmer Bringsjord

• Introduction (“The Wager”)

• Brief Preliminaries (e.g. the 
propositional calculus & FOL)

• The Completeness Theorem

• The First Incompleteness Theorem 

• The Second Incompleteness 
Theorem

• The Speedup Theorem

• The Continuum-Hypothesis 
Theorem

• The Time-Travel Theorem

• Gödel’s “God Theorem”

• Could a Machine Match Gödel’s 
Genius?

Based on the Sherlock Holmes mystery “Silver Blaze”; read for next (& last) class).
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1906 Brünn, Austria-Hungary
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1933 Hitler comes to power.

1940 Back to USA, for good.

1978 Princeton NJ USA.

1930  Announces (First) Incompleteness Theorem

1936 Schlick murdered; Austria annexed 
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Steeple #2 (Incompleteness) …



Goal:  Put you in position 
to prove Gödel’s first 
incompleteness theorem!



Goal:  Put you in position 
to prove Gödel’s first 
incompleteness theorem!

We have the background (if).
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Via “Tarski’s” TheoremPure Proof-Theoretic Route

Ergo, step one:  What is LP?
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Remember …
“The (Economical) Liar” … 

L:  This sentence is false.

Suppose that T(L); then ¬T(L).

Suppose that ¬T(L) then T(L).

Contradiction!

Hence:  T(L) iff (i.e., if & only if) ¬T(L).
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 is provable; then  holds as a result of some proof, but what  
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Next, recall:
PA (Peano Arithmetic):

A1 ⇥x(0 �= s(x))
A2 ⇥x⇥y(s(x) = s(y)� x = y)
A3 ⇤x(x ⇥= 0 � ⌅y(x = s(y))
A4 �x(x + 0 = x)
A5 �x�y(x + s(y) = s(x + y))
A6 ⇥x(x� 0 = 0)
A7 ⇥x⇥y(x� s(y) = (x� y) + x)

And, every sentence that is the universal closure of an instance of

where �(x) is open w� with variable x, and perhaps others, free.
([�(0) ⇤ ⇥x(�(x) � �(s(x))] � ⇥x�(x))



Arithmetic is Part of All Things Sci/Eng/Tech!
and courtesy of Gödel:  We can’t even prove all truths of arithmetic! 

… 

PA … …

Each circle is a larger part 
of the formal sciences.
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Gödel Numbering, the Easy Way

Just realize that every entry in a dictionary is named by a number n, and by 
the same basic lexicographic ordering, every computer program, formula, etc. 
is named by a number m in a lexicographic ordering going from 1, to 2, to …
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Just realize that every entry in a dictionary is named by a number n, and by 
the same basic lexicographic ordering, every computer program, formula, etc. 
is named by a number m in a lexicographic ordering going from 1, to 2, to …

So, gimcrack is named by some positive integer k.  
Hence, I can just refer to this word as “k”.
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Gödel Numbering, the Easy Way

Just realize that every entry in a dictionary is named by a number n, and by 
the same basic lexicographic ordering, every computer program, formula, etc. 
is named by a number m in a lexicographic ordering going from 1, to 2, to …

Or, every syntactically valid computer program in 
Haskell that you will ever write can be uniquely picked 
about some number m in the lexicographic ordering of 
all syntactically valid such programs, and then we can 
just use a numeral or string “m” (or whatever) to refer 
to your program in a formal language/logic!



Suppose that elementary arithmetic (i.e., PA) is consistent (no 
contradiction can be derived in it) and program-decidable (there’s a 
program P that, given as input an arbitrary formula p, can decide 
whether or not p is in PA).

Then there is sentence g* in the language of elementary arithmetic 
which is such that:

g* can’t be proved from PA (i.e., not PA |- g*)!

And, not-g* can’t be proved from PA either (i.e., not PA |- not-g*)!

Gödel’s First Incompleteness Theorem



Suppose that elementary arithmetic (i.e., PA) is consistent (no 
contradiction can be derived in it) and program-decidable (there’s a 
program P that, given as input an arbitrary formula p, can decide 
whether or not p is in PA).

Then there is sentence g* in the language of elementary arithmetic 
which is such that:

g* can’t be proved from PA (i.e., not PA |- g*)!

And, not-g* can’t be proved from PA either (i.e., not PA |- not-g*)!

Gödel’s First Incompleteness Theorem

(Oh, and:  g* is true!)



Let q(x) be an arbitrary formula of arithmetic with one 
open variable x.  (E.g., x + 3 = 5.  And here q(2) would 
be 2 + 3 = 5.)  

Gödel invented a recipe R that, given any q(x) as an 
ingredient template that you are free to choose, 
produces a self-referential formula g such that:

PA |- g <=> q(“g”)

(i.e., a formula g that says:  “I have property q!”)

Proof Kernel for Theorem GI
Part 1:  Recipe R



First, for q(x) we choose a formula q* that holds of 
any “s” if and only if s can be proved from PA; i.e., 

PA |- q*(“s”) iff PA |- s          (1)

Proof Kernel for Theorem GI
Part 2:  Follow Recipe R, Guided by The Liar

Next, we follow Gödel’s Recipe R to build a g* such that:

PA |- g* <=> not-q*(“g*”)       (2)



First, for q(x) we choose a formula q* that holds of 
any “s” if and only if s can be proved from PA; i.e., 

PA |- q*(“s”) iff PA |- s          (1)

Proof Kernel for Theorem GI
Part 2:  Follow Recipe R, Guided by The Liar

Next, we follow Gödel’s Recipe R to build a g* such that:

PA |- g* <=> not-q*(“g*”)       (2)

g* thus says:  “I’m not true!”/“I’m not provable.”  
And so, the key question (assignment!):  PA |- g*?!?



PA |- q*(“g*”) iff PA |- g*          (1’)

Indirect Proof

Proof:  Let’s follow The Liar:  Suppose that g* is provable from PA; 
i.e., suppose PA |- g*.  Then by (1), with g* substituted for s, we have:

GI:  g* isn’t provable from PA; nor is the negation of g*!

From our supposition and working right to left by modus ponens on 
(1’) we deduce:

PA |- q*(“g*”)                           (3.1)
But from our supposition and the earlier (see previous slide) (2), we 
can deduce by modus ponens that from PA the opposite can be 
proved!  I.e., we have:

PA |- not-q*(“g*”)                           (3.2)

But (3.1) and (3.2) together means that PA is inconsistent, since it 
generates a contradiction.  But we are working under the supposition that 
PA is consistent.  Hence by indirect proof g* is not provable from PA.



PA |- q*(“g*”) iff PA |- g*          (1’)

Indirect Proof

Proof:  Let’s follow The Liar:  Suppose that g* is provable from PA; 
i.e., suppose PA |- g*.  Then by (1), with g* substituted for s, we have:

GI:  g* isn’t provable from PA; nor is the negation of g*!

From our supposition and working right to left by modus ponens on 
(1’) we deduce:

PA |- q*(“g*”)                           (3.1)
But from our supposition and the earlier (see previous slide) (2), we 
can deduce by modus ponens that from PA the opposite can be 
proved!  I.e., we have:

PA |- not-q*(“g*”)                           (3.2)

But (3.1) and (3.2) together means that PA is inconsistent, since it 
generates a contradiction.  But we are working under the supposition that 
PA is consistent.  Hence by indirect proof g* is not provable from PA.

What about the second option?  Can you follow The Liar to show 
that supposing that the negation of g* (i.e., not-g*) is provable 
from PA also leads to a contradiction, and hence can’t be?



“Silly abstract nonsense!  There 
aren’t any concrete examples of g*!”



Ah, but:  Goodstein’s Theorem!



Ah, but:  Goodstein’s Theorem!

The Goodstein Sequence goes to zero!



Pure base n representation of 
a number r

• Represent r as only sum of powers of n in 
which the exponents are also powers of n etc



Grow Function



Example of Grow



Goodstein Sequence
• For any natural number m
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(96th term)
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Sample Values
m

2 2 2 1 0

3 3 3 3 2 1 0

4 4 26 41 60 83 109 139 ... 11327 
(96th term)

...

5 15 ~1013 ~10155 ~102185 ~1036306 10695975 1015151337 ...



Ah, but:  Goodstein’s Theorem!



Ah, but:  Goodstein’s Theorem!

This sequence actually goes to zero!
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?

Astrologic:  
Rational Aliens Will be on the Same “Race Track”!
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Astrologic:  
Rational Aliens Will be on the Same “Race Track”!



Could an AI Ever Match Gödel here?



Actually, thanks to AFOSR:
GI (& GT):  “Done” ...
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• Collection of semiformal statements
• Syntax not rigorously defined
• Represents intuitive understanding of problem 

domain

Continuum of Results

s = “This statement is a lie”
There is a statement that is 

neither true nor false.
...

G1
• Completely formal statements
• Syntax very rigorously defined
• Purely mathematical objects: numbers, formal 

theories, etc.

s = ?
∃φ∈LA ¬(PA |⎯ φ) ∧ ¬(PA |⎯ ¬φ)

...
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• Semiformal statements (but more formal than L)
• Syntax somewhat rigorously defined
• Somewhat intuitive; deals with stories of 
reasoners and utterances made by inhabitants of an 

island

s = ¬Bs
∃p ¬Bp ∧ ¬B¬p

...
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