The Paradoxes of Time Travel

Atriya Sen

AHR?

Nov 3 2016
Let \(R = \{ x \mid x \not\in x \} \), then \(R \in R \iff R \not\in R \)

LP: A perfectly rational person can believe P and \(\neg P \) at the same time!

Is time travel impossible?
Axiomatization: The General Theory of Relativity

\[\text{GenRel} := \{ \text{AxSelf}^-, \text{AxLine}^-, \text{AxThEx}^-, \text{AxPh}^-, \text{ExEvent}^-, \text{AxSim}^- \} \cup \{ \text{AxField} \} \cup \text{CONT} \cup \text{COM}. \]

<table>
<thead>
<tr>
<th>Axiom</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AxSelf-</td>
<td>An observer (m) in his own coordinate system is motionless at the origin</td>
</tr>
<tr>
<td>AxLine-</td>
<td>In each inertial observer's worldview, the world-lines of inertial observers and photons are geodesics</td>
</tr>
<tr>
<td>AxThEx-</td>
<td>An inertial observer (m) at the origin, where he stands, sees inertial observers move in each direction with speeds < 1, and sees at least one inertial observer in each event</td>
</tr>
<tr>
<td>AxPh-</td>
<td>An inertial observer (m) at the origin, where he stands, sees photons move in each direction with speed 1, and each photon meeting (m) moves with speed 1</td>
</tr>
<tr>
<td>AxEvent-</td>
<td>If (m) observes (k) participate in an event, then (k) himself “sees” this event. Further, if (k) sees an event that (m) sees, then (k) sees all events which occur “near” this event in (m)'s worldview</td>
</tr>
<tr>
<td>AxSim-</td>
<td>Any two inertial observers see each other’s wristwatches run slow with the same ratio when they meet</td>
</tr>
<tr>
<td>AxField</td>
<td>The real numbers are a linearly ordered field in which every positive member has a square root</td>
</tr>
<tr>
<td>CONT</td>
<td>Arbitrary fields are continuous</td>
</tr>
<tr>
<td>COM</td>
<td>In each inertial observer’s worldview, the parametrically definable time-faithful curves are world-curves of (not necessarily inertial) observers; and the photon-like curves are world-lines of bodies</td>
</tr>
</tbody>
</table>

Axiomatization: The General Theory of Relativity

<table>
<thead>
<tr>
<th>Axiom</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GenRel := {AxSelf^-, AxLine^-, AxThEx^-, AxPh^-, ExEvent^-, AxSim^-} \cup {AxField} \cup \text{CONT} \cup \text{COM}</td>
<td></td>
</tr>
<tr>
<td>(\forall m \in B)[wline(_m)(m) = \tilde{t} \cap \text{Cd}(m) \land (\forall p, q \in \text{wline}(_m)(m))[p, q] \subseteq \text{wline}(_m)(m)]</td>
<td>\text{AxSelf-}: An observer (m) in his own coördinate system is motionless at the origin.</td>
</tr>
<tr>
<td>In each inertial observer’s worldview, the world-lines of inertial observers and photons are geodesics</td>
<td>\text{AxLine-}: In each inertial observer’s worldview, the world-lines of inertial observers and photons are geodesics.</td>
</tr>
<tr>
<td>An inertial observer (m) at the origin, where he stands, sees inertial observers move in each direction with speeds < 1, and sees at least one inertial observer in each event</td>
<td>\text{AxThEx-}: An inertial observer (m) at the origin, where he stands, sees inertial observers move in each direction with speeds < 1, and sees at least one inertial observer in each event.</td>
</tr>
<tr>
<td>An inertial observer (m) at the origin, where he stands, sees photons move in each direction with speed 1, and each photon meeting (m) moves with speed 1</td>
<td>\text{AxPh-}: An inertial observer (m) at the origin, where he stands, sees photons move in each direction with speed 1, and each photon meeting (m) moves with speed 1.</td>
</tr>
<tr>
<td>If (m) observes (k) participate in an event, then (k) himself “sees” this event. Further, if (k) sees an event that (m) sees, then (k) sees all events which occur “near” this event in (m)’s worldview</td>
<td>\text{AxEvent-}: If (m) observes (k) participate in an event, then (k) himself “sees” this event. Further, if (k) sees an event that (m) sees, then (k) sees all events which occur “near” this event in (m)’s worldview.</td>
</tr>
<tr>
<td>Any two inertial observers see each other’s wristwatches run slow with the same ratio when they meet</td>
<td>\text{AxSim-}: Any two inertial observers see each other’s wristwatches run slow with the same ratio when they meet.</td>
</tr>
<tr>
<td>The real numbers are a linearly ordered field in which every positive member has a square root</td>
<td>\text{AxField}: The real numbers are a linearly ordered field in which every positive member has a square root.</td>
</tr>
<tr>
<td>Arbitrary fields are continuous</td>
<td>\text{CONT}: Arbitrary fields are continuous.</td>
</tr>
<tr>
<td>In each inertial observer’s worldview, the parametrically definable time-faithful curves are world-curves of (not necessarily inertial) observers; and the photon-like curves are world-lines of bodies</td>
<td>\text{COM}: In each inertial observer’s worldview, the parametrically definable time-faithful curves are world-curves of (not necessarily inertial) observers; and the photon-like curves are world-lines of bodies.</td>
</tr>
</tbody>
</table>

Axiomatization:
The General Theory of Relativity

\[\text{GenRel} := \{ \text{AxSelf}^-, \text{AxLine}^-, \text{AxThEx}^-, \text{AxPh}^-, \text{ExEvent}^-, \text{AxSim}^- \} \cup \{ \text{AxField} \} \cup \text{CONT} \cup \text{COM}. \]

<table>
<thead>
<tr>
<th>Axiom</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AxSelf-</td>
<td>An observer (m) in his own coordinate system is motionless at the origin</td>
</tr>
<tr>
<td>AxLine-</td>
<td>In each inertial observer’s worldview, the world-lines of inertial observers and photons are geodesics</td>
</tr>
<tr>
<td>AxThEx-</td>
<td>An inertial observer (m) at the origin, where he stands, sees inertial observers move in each direction with speeds < 1, and sees at least one inertial observer in each event</td>
</tr>
<tr>
<td>AxPh-</td>
<td>An inertial observer (m) at the origin, where he stands, sees photons move in each direction with speed 1, and each photon meeting (m) moves with speed 1</td>
</tr>
<tr>
<td>AxEvent-</td>
<td>If (m) observes (k) participate in an event, then (k) himself “sees” this event. Further, if (k) sees an event that (m) sees, then (k) sees all events which occur “near” this event in (m)'s worldview</td>
</tr>
<tr>
<td>AxSim-</td>
<td>Any two inertial observers see each other’s wristwatches run slow with the same ratio when they meet</td>
</tr>
<tr>
<td>AxField</td>
<td>The real numbers are a linearly ordered field in which every positive member has a square root</td>
</tr>
<tr>
<td>CONT</td>
<td>Arbitrary fields are continuous</td>
</tr>
<tr>
<td>COM</td>
<td>In each inertial observer’s worldview, the parametrically definable time-faithful curves are world-curves of (not necessarily inertial) observers; and the photon-like curves are world-lines of bodies</td>
</tr>
</tbody>
</table>

Axiomatization: The General Theory of Relativity

\(\text{GenRel} := \{ \text{AxSelf}^-, \text{AxLine}^-, \text{AxThEx}^-, \text{AxPh}^-, \text{ExEvent}^-, \text{AxSim}^- \} \cup \{ \text{AxField} \} \cup \text{CONT} \cup \text{COM} \)

<table>
<thead>
<tr>
<th>Axiom</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>\text{AxSelf}^-</td>
<td>An observer (m) in his own coordinate system is motionless at the origin</td>
</tr>
<tr>
<td>\text{AxLine}^-</td>
<td>In each inertial observer’s worldview, the world-lines of inertial observers and photons are geodesics</td>
</tr>
<tr>
<td>\text{AxThEx}^-</td>
<td>An inertial observer (m) at the origin, where he stands, sees inertial observers move in each direction with speeds < 1, and sees at least one inertial observer in each event</td>
</tr>
<tr>
<td>\text{AxPh}^-</td>
<td>An inertial observer (m) at the origin, where he stands, sees photons move in each direction with speed 1, and each photon meeting (m) moves with speed 1</td>
</tr>
<tr>
<td>\text{AxEvent}^-</td>
<td>If (m) observes (k) participate in an event, then (k) himself “sees” this event. Further, if (k) sees an event that (m) sees, then (k) sees all events which occur “near” this event in (m)'s worldview</td>
</tr>
<tr>
<td>\text{AxSim}^-</td>
<td>((\forall m, k \in \text{Ob}))((\forall t, s \in \mathbb{Q}))[ev_m(\gamma_{mk}(t)) = ev_k(\gamma_{km}(s)) \Rightarrow</td>
</tr>
<tr>
<td>\text{AxField}</td>
<td>The real numbers are a linearly ordered field in which every positive member has a square root</td>
</tr>
<tr>
<td>\text{CONT}</td>
<td>Arbitrary fields are continuous</td>
</tr>
<tr>
<td>\text{COM}</td>
<td>In each inertial observer’s worldview, the parametrically definable time-faithful curves are world-curves of (not necessarily inertial) observers; and the photon-like curves are world-lines of bodies</td>
</tr>
</tbody>
</table>

Axiomatization: The General Theory of Relativity

GenRel := \{AxSelf\,^-,\ AxLine\,^-,\ AxThEx\,^-,\ AxPh\,^-,\ ExEvent\,^-,\ AxSim\,^-\}\cup\{AxField\}\cup\{CONT\}\cup\{COM\}.

<table>
<thead>
<tr>
<th>Axiom</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AxSelf-</td>
<td>An observer m in his own coördinate system is motionless at the origin</td>
</tr>
<tr>
<td>AxLine-</td>
<td>In each inertial observer’s worldview, the world-lines of inertial observers and photons are geodesics</td>
</tr>
<tr>
<td>AxThEx-</td>
<td>An inertial observer m at the origin, where he stands, sees inertial observers move in each direction with speeds < 1, and sees at least one inertial observer in each event</td>
</tr>
<tr>
<td>AxPh-</td>
<td>An inertial observer m at the origin, where he stands, sees photons move in each direction with speed 1, and each photon meeting m moves with speed 1</td>
</tr>
<tr>
<td>AxEvent-</td>
<td>If m observes k participate in an event, then k himself “sees” this event. Further, if k sees an event that m sees, then k sees all events which occur “near” this event in m’s worldview</td>
</tr>
<tr>
<td>AxSim-</td>
<td>Any two inertial observers see each other’s wristwatches run slow with the same ratio when they meet</td>
</tr>
<tr>
<td>AxField</td>
<td>The real numbers are a linearly ordered field in which every positive member has a square root</td>
</tr>
<tr>
<td>CONT</td>
<td>Arbitrary fields are continuous</td>
</tr>
<tr>
<td>COM</td>
<td>In each inertial observer’s worldview, the parametrically definable time-faithful curves are world-curves of (not necessarily inertial) observers; and the photon-like curves are world-lines of bodies</td>
</tr>
</tbody>
</table>

Gödelian Time Travel

\[R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} + \Lambda g_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu} \]

- Inner cylinder: vertical time axis
- Outer cylinder: circular time axis; wraps around the inner cylinder
- In Gödel’s best-known actual solution, the transition between the two cylinders is gradual.
- At every instant, the world-line of the particle (red star) is oriented toward the future (remains within local light-cones).
Gödelian Time Travel

\[R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} + \Lambda g_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu} \]

- Inner cylinder: vertical time axis
- Outer cylinder: circular time axis; wraps around the inner cylinder
- In Gödel’s best-known actual solution, the transition between the two cylinders is gradual.
- At every instant, the world-line of the particle (red star) is oriented toward the future (remains within local light-cones).
Paradox 1:
By the definition of time travel

To travel in time is to traverse some temporal interval in a time that differs from the duration of that interval.

Contradiction?
Paradox 2:
Time Travel + Leibniz’ Law

Leibniz’ Law: Identical objects have all the same properties.

Leibniz’ Law (explicated): Identical objects have all the same properties at the same time.
Paradox 3:
‘Grandfather’
“This state of affairs seems to imply an absurdity. For it enables one e.g., to travel into the near past of those places where he has himself lived. There he would find a person who would be himself at some earlier period of his life. Now he could do something to this person which, by his memory, he knows has not happened to him.”

–Kurt Gödel
Free Will + Classical Physics
Free Will + Classical Physics

Am I free to punch my earlier self in the face?
Free Will + Classical Physics

Am I free to punch my earlier self in the face?

Seemingly, yes.
Free Will + Classical Physics

Am I free to punch my earlier self in the face?

Seemingly, yes.

If I do, my memory of not being punched in faulty. If I don’t, my memory is truthful.
Free Will + Classical Physics

Am I free to punch my earlier self in the face?

Seemingly, yes.

If I do, my memory of not being punched in faulty. If I don’t, my memory is truthful.

No contradiction.
Free Will + Classical Physics

Am I free to punch my earlier self in the face?

Seemingly, yes.

If I do, my memory of not being punched in faulty. If I don’t, my memory is truthful.

No contradiction.

But no.
Free Will + Classical Physics

Am I free to punch my earlier self in the face?

Seemingly, yes.

If I do, my memory of not being punched in faulty. If I don’t, my memory is truthful.

No contradiction.

But no.

My action was determined from the creation of the universe!
(Underlying graphic extracted from (Deutsch & Lockwood, 1994), modified & animated by S Bringsjord.)
TIME TRAVELER GREET GRANDFATHER

DISASTROUS DINNER

NO WEDDING

NO CHILDREN

NO GRANDCHILDREN

TIME MACHINE AND TIME TRAVELER

GRANDFATHER MEETS CHARMING LADY

GRANDFATHER DRESSES FOR DINNER

DELIGHTFUL DINNER

WEDDING

BIRTH OF DAUGHTER

BIRTH OF GRANDDAUGHTER (TIME TRAVELER)

NO TIME TRAVELER

(Underlying graphic extracted from (Deutsch & Lockwood, 1994), modified & animated by S Bringsjord.)
(Underlying graphic extracted from (Deutsch & Lockwood, 1994), modified & animated by S Bringsjord.)
Autonomy & Consistency

Autonomy principle: It is possible to create in our immediate environment any configuration of matter that physics permits locally without worrying about the rest of the universe.

Consistency principle: Only configurations of matter that are self-consistent globally can occur locally.

Consistency requires the autonomy principle to fail in the presence of CTCs!

(According to classical physics)
Paradox 4: ‘Looping Painter’
The year is 2056. The novels of Arthur are venerated, making him the greatest novelist of the current and previous century, at least.
The year is 2056. The novels of Arthur are venerated, making him the greatest novelist of the current and previous century, at least.

Critic Chris sets off in 2058 on the assignment to interview the great novelist, masterpieces in hand.
The year is 2056. The novels of Arthur are venerated, making him the greatest novelist of the current and previous century, at least.

Critic Chris sets off in 2058 on the assignment to interview the great novelist, masterpieces in hand.
The year is 2056. The novels of Arthur are venerated, making him the greatest novelist of the current and previous century, at least.

Critic Chris sets off in 2058 on the assignment to interview the great novelist, masterpieces in hand.
The year is 2056. The novels of Arthur are venerated, making him the greatest novelist of the current and previous century, at least.

Critic Chris sets off in 2058 on the assignment to interview the great novelist, masterpieces in hand.
The year is 2056. The novels of Arthur are venerated, making him the greatest novelist of the current and previous century, at least.

Critic Chris sets off in 2058 on the assignment to interview the great novelist, masterpieces in hand.
The year is 2056. The novels of Arthur are venerated, making him the greatest novelist of the current and previous century, at least.

Critic Chris sets off in 2058 on the assignment to interview the great novelist, masterpieces in hand.
The year is 2056. The novels of Arthur are venerated, making him the greatest novelist of the current and previous century, at least.

Critic Chris sets off in 2058 on the assignment to interview the great novelist, masterpieces in hand.

© Selmer Bringsjord
The year is 2056. The novels of Arthur are venerated, making him the greatest novelist of the current and previous century, at least.

Critic Chris sets off in 2058 on the assignment to interview the great novelist, masterpieces in hand.
The year is 2056. The novels of Arthur are venerated, making him the greatest novelist of the current and previous century, at least.

Critic Chris sets off in 2058 on the assignment to interview the great novelist, masterpieces in hand.
The year is 2056. The novels of Arthur are venerated, making him the greatest novelist of the current and previous century, at least.

Critic Chris sets off in 2058 on the assignment to interview the great novelist, masterpieces in hand.

Chris interviews the fifth-rate, conceited novelist Arthur in 1958
Critic Chris sets off in 2058 on the assignment to interview the great novelist, masterpieces in hand.

Chris interviews the fifth-rate, conceited novelist Arthur in 1958.

The year is 2056. The novels of Arthur are venerated, making him the greatest novelist of the current and previous century, at least.

Chris is stunned to see the logorrhea — and must quickly return to his present. He leaves the masterpieces.

Critic Chris sets off in 2058 on the assignment to interview the great novelist, masterpieces in hand.
Critic Chris sets off in 2058 on the assignment to interview the great novelist, masterpieces in hand.

The year is 2056. The novels of Arthur are venerated, making him the greatest novelist of the current and previous century, at least.

Chris interviews the fifth-rate, conceited novelist Arthur in 1958.

Chris is stunned to see the logorrhea — and must quickly return to his present. He leaves the masterpieces.

‘Looping Painter’ / The Paradox of Proust

Critic Chris sets off in 2058 on the assignment to interview the great novelist, masterpieces in hand.
Critic Chris sets off in 2058 on the assignment to interview the great novelist, masterpieces in hand.

Chris interviews the fifth-rate, conceited novelist Arthur in 1958.

The year is 2056. The novels of Arthur are venerated, making him the greatest novelist of the current and previous century, at least.

Chris is stunned to see the logorrhea — and must quickly return to his present. He leaves the masterpieces.

Critic Chris sets off in 2058 on the assignment to interview the great novelist, masterpieces in hand.
‘Looping Painter’ / The Paradox of Proust

The year is 2056. The novels of Arthur are venerated, making him the greatest novelist of the current and previous century, at least.

Critic Chris sets off in 2058 on the assignment to interview the great novelist, masterpieces in hand.

Chris interviews the fifth-rate, conceited novelist Arthur in 1958.

Chris is stunned to see the logorrhea — and must quickly return to his present. He leaves the masterpieces.
Critic Chris sets off in 2058 on the assignment to interview the great novelist, masterpieces in hand.

The year is 2056. The novels of Arthur are venerated, making him the greatest novelist of the current and previous century, at least.

Chris is stunned to see the logorrhea — and must quickly return to his present. He leaves the masterpieces.

Critic Chris sets off in 2058 on the assignment to interview the great novelist, masterpieces in hand.

© Selmer Bringsjord
Critic Chris sets off in 2058 on the assignment to interview the great novelist, masterpieces in hand.

Chris interviews the fifth-rate, conceited novelist Arthur in 1958.

The year is 2056. The novels of Arthur are venerated, making him the greatest novelist of the current and previous century, at least.

Chris is stunned to see the logorrhea — and must quickly return to his present. He leaves the masterpieces.

Arthur spends the rest of his career copying and publishing the masterpieces brought from the future by Chris.

Critic Chris sets off in 2058 on the assignment to interview the great novelist, masterpieces in hand.

© Selmer Bringsjord
Critic Chris sets off in 2058 on the assignment to interview the great novelist, masterpieces in hand.

The year is 2056. The novels of Arthur are venerated, making him the greatest novelist of the current and previous century, at least.

Chris interviews the fifth-rate, conceited novelist Arthur in 1958.

Chris is stunned to see the logorrhea — and must quickly return to his present. He leaves the masterpieces.

Arthur spends the rest of his career copying and publishing the masterpieces brought from the future by Chris.

Critic Chris sets off in 2058 on the assignment to interview the great novelist, masterpieces in hand.
Critic Chris sets off in 2058 on the assignment to interview the great novelist, masterpieces in hand.

Chris interviews the fifth-rate, conceited novelist Arthur in 1958.

Arthur spends the rest of his career copying and publishing the masterpieces brought from the future by Chris.

Chris is stunned to see the logorrhea — and must quickly return to his present. He leaves the masterpieces.

The year is 2056. The novels of Arthur are venerated, making him the greatest novelist of the current and previous century, at least.

Critic Chris sets off in 2058 on the assignment to interview the great novelist, masterpieces in hand.

© Selmer Bringsjord
Chris interviews the fifth-rate, conceited novelist Arthur in 1958.

Christ is stunned to see the logorrhea — and must quickly return to his present. He leaves the masterpieces.

Arthur spends the rest of his career copying and publishing the masterpieces brought from the future by Chris.

The year is 2056. The novels of Arthur are venerated, making him the greatest novelist of the current and previous century, at least.

Critic Chris sets off in 2058 on the assignment to interview the great novelist, masterpieces in hand.
Critic Chris sets off in 2058 on the assignment to interview the great novelist, masterpieces in hand.

The year is 2056. The novels of Arthur are venerated, making him the greatest novelist of the current and previous century, at least.

Chris is stunned to see the logorrhea — and must quickly return to his present. He leaves the masterpieces.

Arthur spends the rest of his career copying and publishing the masterpieces brought from the future by Chris.

Critic Chris sets off in 2058 on the assignment to interview the great novelist, masterpieces in hand.
Critic Chris sets off in 2058 on the assignment to interview the great novelist, masterpieces in hand.

Chris interviews the fifth-rate, conceited novelist Arthur in 1958.

The year is 2056. The novels of Arthur are venerated, making him the greatest novelist of the current and previous century, at least.

Chris is stunned to see the logorrhea — and must quickly return to his present. He leaves the masterpieces.

Arthur spends the rest of his career copying and publishing the masterpieces brought from the future by Chris.

Critic Chris sets off in 2058 on the assignment to interview the great novelist, masterpieces in hand.

© Selmer Bringsjord
The Quantum Multiverse
Quantum Reality

If you set up identical experiments on identical particles that have been set up identically, you will generally not get identical results!

Instead regularity is found in the statistical distribution of the results - the probability of finding the electron at any particular location.

The evolution of the probability wave is given by Schrödinger equation.

\[i\hbar \frac{\partial}{\partial t} \Psi(r, t) = \left(-\frac{\hbar^2}{2\mu} \nabla^2 + V(r, t) \right) \Psi(r, t) \]
To Collapse or Not to Collapse?
To Collapse or Not to Collapse?

Wave functions are (highly) spiked for macroscopic objects, for which QM tends to NM. They are spread out for microscopic objects.
To Collapse or Not to Collapse?

Wave functions are (highly) spiked for macroscopic objects, for which QM tends to NM. They are spread out for microscopic objects.

Copenhagen interpretation: Wave functions *collapse* upon observation. The larger a wave is at a particular location, the larger the change of it collapsing to *that* location.
To Collapse or Not to Collapse?

Wave functions are (highly) spiked for macroscopic objects, for which QM tends to NM. They are spread out for microscopic objects.

Copenhagen interpretation: Wave functions *collapse* upon observation. The larger a wave is at a particular location, the larger the change of it collapsing to *that* location.

But: The collapse can’t possibly emerge from the equation!
To Collapse or Not to Collapse?

Wave functions are (highly) spiked for macroscopic objects, for which QM tends to NM. They are spread out for microscopic objects.

Copenhagen interpretation: Wave functions collapse upon observation. The larger a wave is at a particular location, the larger the change of it collapsing to that location.

But: The collapse can’t possibly emerge from the equation!

Einstein: Will a side-long glance from a mouse suffice?
To Collapse or Not to Collapse?

Wave functions are (highly) spiked for macroscopic objects, for which QM tends to NM. They are spread out for microscopic objects.

Copenhagen interpretation: Wave functions *collapse* upon observation. The larger a wave is at a particular location, the larger the change of it collapsing to *that* location.

But: The collapse can’t possibly emerge from the equation!

Einstein: Will a side-long glance from a mouse suffice?

This is the *quantum measurement problem.*
Linearity
Linearity & Measurement

What happens when measuring / observing probability waves with multiple spikes?

Bohr: Our equation must then not apply to the act of measurement, since it involves macroscopic bodies.

Everett (1957) was not convinced!
Everett’s Many Worlds
Everett’s Many Worlds

Measuring a complex wave function doesn’t result in a meter & mind simultaneously registering two locations.
Everett’s Many Worlds

Measuring a complex wave function doesn’t result in a meter & mind simultaneously registering two locations.

It results in two meters & two minds, each registering a unique location!
Everett’s Many Worlds

Measuring a complex wave function doesn’t result in a meter & mind simultaneously registering two locations.

It results in two meters & two minds, each registering a unique location!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Everett’s Many Worlds

Measuring a complex wave function doesn’t result in a meter & mind simultaneously registering two locations.

It results in two meters & two minds, each registering a unique location!

Anything that is possible is realized in it’s own universe.
Everett’s Many Worlds

Measuring a complex wave function doesn’t result in a meter & mind simultaneously registering two locations.

It results in two meters & two minds, each registering a unique location!

Anything that is *possible* is *realized* in it’s *own* universe.

This is the *quantum multiverse theory*.
Time Travel Paradoxes

+ QM
Many Worlds + Paradox 3

In a space-time with CTCs, parallel universes would be connected.

The grandparents marry in one universe, and don’t in another.

Quantum mechanics, even in the presence of CTCs, conforms to the autonomy principle.
Many Worlds + Paradox 4

The universe where the critic comes from is one in which the artist did learn to paint/write well.

If the paintings carried back are plagiarized, we are in an alternate universe.

But now this is no paradox, since the paintings were caused by genuine creative effort, in another universe.
Thanks!