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Abstract. Researchers in formal methods have recognized the need to
make formal specification analysis as automatic as possible and to pro-
vide a suite of analysis tools in a single uniform setting. Athena is a
new formal system that seamlessly integrates specification, structured
natural deduction proofs, trusted tactics, and cutting-edge off-the-shelf
tools for model generation and automated theorem proving. We use a
case study of railroad safety to illustrate all these aspects of Athena.
A formal specification of a railroad system is given in Athena’s multi-
sorted first-order logic. Automatic model generation is used abductively
to develop from scratch a policy for controlling the movement of trains
on the tracks. The safety of the policy is proved automatically. Finally,
a structured high-level proof of the policy’s correctness is presented in
Athena’s natural deduction calculus.

1 Introduction

Logic has been called “the Calculus of Computer Science” [4, 11]: just as calculus
and analysis can be used to model the behavior of continuous physical systems,
the language of mathematical logic can be used as a succinct, precise, and un-
ambiguous notation for specifying the structure and behavior of digital systems.
Once we have obtained a logical specification of a digital system in the form of
a logical formula P; A --- A P,, we can begin to ask various questions:

1. Is the specification consistent? That is, does the formula P; A --- A P, have
a model?

2. Does the specified system have a desired property P? That is, does the
specification P, A --- A P, logically imply P?

Two different techniques are used to answer these questions: model generation
and theorem proving. Model generation can be used to answer the first question
positively by exhibiting a model for P; A --- A P,,. Theorem proving can be used
to settle the second question positively by showing that the implication

PiA---AP,=P (1)

is a tautology. On the flip side, we can use theorem proving to settle the first
question negatively, by proving that the constant false follows logically from
Py A --- A Py; and we can use model generation to settle the second question
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negatively, by exhibiting a model for P, A --- A P, A =P, i.e., a countermodel
for (1). It would thus appear useful to have both of these techniques available
in a uniform setting, and indeed several researchers have made such suggestions
[12,5]. The system that we demonstrate in this paper, Athena, offers both.

Once we have concluded that our specified system indeed has a desired prop-
erty P, we are left with the task of explaining why that is; i.e., why P follows
from P; A --- A P,. One possible answer is “Because our favorite theorem prover
said so.” This may be an acceptable answer, depending on the context of the ap-
plication. But it provides no insight into our system and is of little explanatory
value. A much better alternative is to adduce a formal proof that shows how P
is derived from the specification. Such a proof should be mechanically checkable
in order to ensure its correctness. But it must also be structured [10]: it should
be given in a natural deduction format, in a formal language with a precise but
simple semantics, and should be stated at a level of abstraction roughly equiv-
alent to that of a rigorous proof in English (most importantly, the individual
proof steps should not be overly tedious). We are thus led to our third topic,
which is a major component of formal methods in its own right: the subject of
proof representation and checking.

Athena is a new system that provides all three of these capabilities: model
generation; automated theorem proving; and structured proof representation and
checking. It also provides a higher-order functional programming language, and
a proof abstraction mechanism for expressing arbitrarily complicated inference
methods in a way that guarantees soundness, akin to the tactics and tacticals
of LCF-style systems such as HOL [3] and Isabelle [13]. Proof automation is
achieved in two ways: first, through user-formulated proof methods; and second,
through the seamless integration of state-of-the-art ATPs such as Vampire [15]
and Spass [16] as primitive black boxes for general reasoning. For model genera-
tion, Athena integrates Paradox [2], a new highly efficient model finder. For proof
representation and checking, Athena uses a block-structured Fitch-style natural
deduction calculus [14] with novel syntactic constructs and a formal semantics
based on the abstraction of assumption bases [1].

In this paper we will illustrate all of these aspects of Athena with a case study.
We will develop a policy for controlling the movement of trains in a railroad
sytem and prove that the policy is sound, in the sense that it achieves a certain
notion of safety. The soundness of the policy is proved completely automatically
(in a fraction of a second), but we also provide a structured proof for it in
Athena’s natural deduction framework, which is then successfully checked (also
in less than one second).

Moreover, we show that model generation is useful not only for consistency
checking and for debugging our specifications, but also for building them. In
particular, we demonstrate an aggressive use of model generation that performs
abduction in a way that helps not only to debug a safety policy, but to build it
in the first place.

In logical deduction, reasoning proceeds from the premises to the conclusion:
we take Py, ..., P, as premises and attempt to derive the desired conclusion P
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from them. During system design, however, we are often faced with the problem
in the reverse direction: we know the desired conclusion, but we are not sure what
constraints would be required in order to ensure it. Usually we have a skeleton
system description P, A --- A P, ready; and we have a desired property P. What
we wish to know is what additional constraints @1, ..., Q.. are necessary in order
to guarantee P, i.e., such that

{Plaapn}U{Qlaan}':P

This is the problem of abduction [9,8], which proceeds from the conclusion to
premises.
The following is a simple iterative procedure for this problem:

. Set C' = {true}.

. Try to prove {P,...,P,} UC [ P; if successful, halt and output C.

. If unsuccessful, try to find a model for {P,...,P,}UC U {=-P}.

. If succesful, use the information conveyed by that model to modify C' ap-
propriately and then loop back to step 2; if unsuccessful, go to step 3.

I R

We illustrate this algorithm in Section 3. The individual steps of the algorithm
are semi-mechanical (since the corresponding problems are unsolvable), but with
the aid of highly efficient tools steps 2 and 3 can be greatly automated. The
fourth step is the one requiring the most creativity, but the minimality of the
countermodels produced in step 3 is very useful here: at every iteration through
the loop, the simplest possible countermodel is produced, and this greatly fa-
cilitates the conjecture of a general condition that weeds out the countermodel.
After a few iterations of successive refinement, we will eventually converge to an
appropriate theory.

2 Specification of an abstract railroad model

Our railroad model is based on an Alloy [7] case study by Daniel Jackson [6],
which was in turn inspired by a presentation on modelling San Fransisco’s BART
railway by Emmanuel Letier and Axel val Lamsweerde at a meeting of IFIP
Working Group 2.9 on Requirements Engineering in Switzerland, February 2000.
The Alloy formulation is based on Tarski’s calculus of relations, whereas our for-
mulation is given in conventional multi-sorted first-order logic and uses Athena.

We view a railroad abstractly by positing the existence of two domains Train
and Segment. That is, we assume we have a collection of trains and a collection
of track segments on the ground.

Every segment has a beginning and an end, and motion on it proceeds in
one direction only, from the beginning towards the end. Therefore, segments
are unidirectional. Of course trains may move in opposite directions on different
segments; but on any given segment trains move in one direction only. At the
end of each segment there is a gate, which may be either open or closed. Gates
will be used to control train motion.
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2.1 Railroad topology

Segments may be connected to one another, with the end of one segment attached
to the beginning of another, and it is this connectivity that creates an organized
railroad out of a mere collection of segments. We will capture this connectivity
via a binary relation succ C Segment X Segment. The intended meaning is
simple: succ(sy, s2) holds iff so is a “successor” of sy, i.e., iff the end of sy is
connected to the beginning of s3. A segment might have several successors. In
general, multiple segments might end at the same junction and fork off into
multiple successor segments. We stipulate that succ is irreflexive, so that no
segment loops back into itself.

Two segments may overlap, meaning that there is some piece of track, how-
ever small, that is shared by both segments. Segments that cross, for instance,
will be considered overlapping. We model this with a binary relation overlaps C
Segment x Segment. We shall make two useful assumptions about this relation,
reflexivity and symmetry. Clearly, both assumptions are consistent with the in-
tended physical interpretation of overlaps. We thus have three axioms so far:

(V s) =succ(s, ) (2)
(V s) overlaps(s, s) (3)
(V 51, s2) overlaps(s, s2) = overlaps(ss, S1) (4)

2.2 Capturing the state of the system

How do we formally capture a configuration (“snapshot”) of the railroad system
at a given point in time? In order to know the state of the system we need
to know at least two things. First, the distribution of the trains amongst the
segments. That is, for each train ¢ we need to know what segment ¢ is on. And
second, for each segment, we need to know whether its gate is open or closed.
For our purposes the state will be completely determined by these two pieces of
information. Accordingly, we posit a domain State, a function

seg0f : Train X State — Segment

and a relation closed C Segment X State. The interpretations are as stated
above: seg0f(t,z) denotes the segment on which ¢ is located in state z; and
closed(s,z) holds iff the gate of segment s is closed in state z.

It is useful to introduce an auxiliary relation occupied C Segment x State
such that occupied(s, z) holds iff segment s is “occupied” in state . We define
this explicitly as follows: (V s, ) occupied(s,z) < [(It) seg0f(t, x) = s].

We will model train motion as a transition relation between states:

reachable C State X State.

The idea is that reachable(z,y) (“state y is reachable from state z”) iff y is
identical to x except that some (possibly none) trains have moved to successor
segments—provided of course that they could make such a move. Specifically:



Specification, abduction, and proof 5

(V z,y) reachable(z,y) &
[(Vt) segDf(t,y) # seg0f(t, ) = succ(seglf(t, x), seglf(t,y)) A
—iclosed(seg0f(¢, z))]

That is, in going from state z to y, a train ¢ either didn’t move at all or else it
had an open gate in state x and moved to a successor segment.

This relational formulation is highly non-deterministic and allows for any
physically possible transition from one state to another,! including cases where
only one train moves, where none do, where two or three of them do, etc. This
non-determinism is desirable, since we want our model to cover as many scenarios
as possible.

2.3 Safety
We will consider a state safe iff no two trains are on overlapping segments:
(Vz)safe(r) & [(Vi1,t2) t1 # t2 = —overlaps(seg0f(t1, ), seg0f(ts, ))].

We may now ask what would be an appropriate policy for controlling train
motion that guarantees this safety criterion. We make this more precise as fol-
lows: we define a sound safety policy as a number of unary constraints on states
Ci,...,Cy such that for all states x and vy, if

1. z is safe;
2. x satisfies the constraints C,...,Cy, ie., C1(z),...,Cp(z) hold; and
3. y is reachable from =z

then y is also safe. The problem now is to come up with state constraints that
constitute a sound safety policy in the above sense.

3 Abduction via model generation

Initially we may well be at a loss in guessing what the appropriate constraints
are. We will show how an efficient model finder can provide insight on how to
proceed.

Let us start out with the most trivial state constraint possible: the constant
true. With this policy, our safety statement becomes:

V x,y . [safe(z) A reachable(xz,y) A true] = safe(y)

Athena uses a prefix s-expression syntax, so we can define this proposition as
follows:

! Modulo our simplifying assumptions, most notably, our assumption that moving
from one segment to another is instanteneous.
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(define safety-statement
(forall 7x ?y
(if (and (reachableFrom 7y 7x)
(safe 7x)
true)
(safe ?7y))))

Predictably, perhaps, this statement isn’t true, and when we try to prove
it automatically by issuing the method call (!prove safety-statement), we fail.
(Refer to the appendix for a brief review of theorem proving and model genera-
tion in Athena.)

Now let us see why this does not hold. We will try to find a countermodel
falsifying this policy, and the details of that model will spell out why this trivial
policy fails. Armed with that information, we can start developing a policy in
increments by fixing the problems that are discovered by the model finder.

We start by issuing the following command:

(falsify safety-statement) (5)

This command attempts to find a model for the collection of all the propositions
in the current assumption base plus the negation of safety-theorem. Within a few
seconds, Athena informs us that a countermodel has been found, that is, a model
in which all the propositions in the assumption base are true, but safety-theorem
is false. Athena displays the model by enumerating the elements of each sort and
listing the extension of every function and predicate. In particular, command (5)
results in the following output:

A model was found.

State has 2 elements: state-1, state-2.
Segment has 2 elements: segment-1, segment-2.
Train has 2 elements: train-1, train-2.

Press enter to see the function/relation definitionms...

When the user presses enter, the extensions of the various functions and relations
are presented as follows:

succ(segment-1, segment-1) = false
succ(segment-1, segment-2) = true
succ(segment-2, segment-1) = true
succ(segment-2, segment-2) = false

segOf (train-1, state-1) = segment-1
seg0f (train-1, state-2) = segment-2
seg0f (train-2, state-1) = segment-2
seg0f (train-2, state-2) = segment-2

true

safe(state-1)
safe(state-2)

false
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t1
S1 S1
v t1 moves X
e ek
to ts 1
state-1 (safe) state-2 (unsafe)

Fig. 1. A countermodel falsifying the trivial safety constraint true.

reachableFrom(state-1, state-1) = true
reachableFrom(state-1, state-2)
reachableFrom(state-2, state-1)
reachableFrom(state-2, state-2) = true

true

true

overlaps(segment-1, segment-1) = true

overlaps(segment-1, segment-2) = false
overlaps(segment-2, segment-1) = false
overlaps(segment-2, segment-2) = true

closed(segment-1, state-1) = false

closed(segment-1, state-2) = true
closed(segment-2, state-1) = false
closed(segment-2, state-2) = false

The countermodel consists of two states, state-1 and state-2. The second
state is reachable from the first; and while the first state is safe, the second is
not. Therefore, safety-theorem is false in this model. The reason for the failure
becomes evident when we inspect the above output. There are two segments,
each of which is a successor of the other, and two trains. In state-1, train-1
is on segment-1 and train-2 on segment-2, and the gate of segment-1 is open.
Consequently, train-1 is free to move on to segment-2, and indeed in state-2
we have both trains on the second segment—a violation of our safety notion.
Graphically, the situation is depicted in Figure 1. We use small rectangular
boxes to represent trains. An open (closed) gate is indicated by the symbol /
(respectively, X).

The issue is this: when a successor of a segment s is occupied, then s ought
to have a closed gate. This is clearly violated in the countermodel, and that is
how the unsafe second state is obtained. Therefore, we formulate our first state
constraint as follows:

Ci(z) &V s1, 82 . [suce(sy, s2) A occupied(ss, z) = closed(sy, z)]
for arbitrary x. Accordingly, we redefine safety-statement to be the following

proposition: V z,y . [safe(x) A reachable(z,y) A C1(z)] = safe(y). When we
try to prove this automatically, we fail, so we revert to the model finder. Issuing
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X X
t2 1]
51 X t2 moves 51 ,2| X
v e
Mt |ss Mt |so
S3 53
state-1 (safe) state-2 (unsafe)

Fig. 2. A countermodel falsifying constraint C\.

the command (falsify safety-statement) results in the output shown in Ap-
pendix C. Once again, there are two states, where the first one is safe while the
second one is reachable from the first but unsafe. There are three segments, s1, s,
and s3, where succ(sy, s2), succ(ss, s3), and succ(ss, s1). Further, s; overlaps
both s; and s3, while sy and s3 do not overlap. And there are two trains, t;
and t,. Afer examining the extensions of these relations and functions, we see
that the first state is as depicted in the left half of Figure 2; namely, ¢; is on sa,
which has a closed gaten while 5 is on s3, whose gate is open. (Segment s; has a
closed gate in this state, although that is immaterial since s; is not occupied in
this state.) Note, in addition, that this state satisfies our constraint C;. There is
only one segment with an open gate, s3. And C allows s3 to have its gate open
because s3 does not have any occupied successors. The only successor of sz is
s1, and there are no trains on s; in this state.

Now the unsafe second state, shown in the right half of Figure 2, is obtained
from the first state when ¢, moves from s3 to s;. This is permissible because
s3 has an open gate in the first state. But the new state is unsafe because even
though s; has only one train on it, it nevertheless overlaps with s, which is
occupied by t;. This violates our notion of safety, which prescribes a state safe
iff there are no overlapping segments occupied by distinct trains. Since s; and
so are overlapping and occupied by distinct trains in the new state, the latter is
unsafe.

Thus we see that our initial constraint C; does not go far enough. It is
not enough to stipulate that a predecessor of an occupied segment must have
a closed gate; we must stipulate that a predecessor of a segment that overlaps
with an occupied segment must have its gate closed. This is a stronger condition.
It implies C, owing to our assumption that the overlaps relation is reflexive.
Accordingly, we introduce a new constraint C:

Ci(z) &V s1, 82,83 . [succ(s1, s2) A overlaps(sz, s3) A occupied(sz2, z) = closed(si, z)]
and redefine safety-statement to be the proposition
V z,y . [safe(x) A reachable(r,y) A C}(z)] = safe(y)

Unfortunately, when we attempt to prove this latest version automatically,



Specification, abduction, and proof 9

S1 S1
t2 ] : :
X S2 V' t; and t, move Vv ,_2| ,_1| X
\/ 5 — — %
t1 ]
S3 S3
state-1 (safe) state-2 (unsafe)

Fig. 3. A countermodel falsifying constraint C7.

we fail again. Returning to the model finder, we attempt to falsify this statement,
which succeeds via the countermodel shown in Figure 3 (the textual presentation
of this countermodel as given by Athena is shown in the appendix). As the
picture makes clear, the problem is that two trains were able to move to the
same segment simultaneously, because two distinct predecessors of the segment,
had open gates at the same time. To disallow this, we formulate the following
constraint:

Va.Cyx)e[Vs,s.s1#s2A (3 s. suce(sy, s) Asucc(sa, s)) A
—closed(s1, )] = closed(ss, )

This guarantees that, in any state, if two distinct segments have the same succes-
sor and one of them has an open gate, then the other will have a closed gate. This
is an adaptation of the traffic rule which says that an intersection should not
show a green light in two different directions. We now redefine safety-theorem
as follows:

V z,y . [safe(z) A reachable(z,y) A C](z) A C2(z)] = safe(y)

But this version is not valid either. Attempting to falsify it results in the
countermode shown in Figure 4 (we omit the textual presentation of the model
for space reasons). The problem is essentially a generalization of the situtation
depicted by the countermodel in Figure 3. This time, ¢; and ¢3 do not move to the
same segment, but to overlapping ones. This is possible because the segments
on which #; and ¢ are placed initially (namely, sy and s4) have overlapping
successors and yet both of them have open gates at the same time. We need to
prohibit this. Let us say that two distinct segments are joinable iff they have
overlapping successors. That is, for all s; and ss, joinable(sy, ss) holds iff

s1 # s2 A [3 81,8, . overlaps(s),sh) A succ(sy, s}) A succ(sa, s5)]

We then need to stipulate that of any two joinable segments, at most one has
an open gate. We express this via a new constraint C% as follows:

C%(x) & [joinable(sy, s2) A —closed(s;, =) = closed(ss, )]

Observe that C} implies Cy (since overlaps is reflexive), hence it is no longer
necessary to state Cs. Therefore, our safety statement now becomes:
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S3 53
t2[1]
S1 X t1,t2 move S1 2 X
|
v v X X

t1 to

S2 X 54 $2 X 784

state-1 (safe) state-2 (unsafe)

Fig. 4. A countermodel falsifying constraint C..

(define safety-statement
(forall 7x ?y
(if (and (reachableFrom 7y 7x)

(safe 7x)
(C1’ 7x)
(c2’ 7x))

(safe 7y))))

This time, the attempt (!prove safety-statement) succeeds—we have finally
arrived at a sound safety policy.

4 Automated theorem proving and proof representation

We have automatically verified that safety-theorem holds, and while that should
boost our confidence in our policy, it is not quite good enough. As the engineers
in charge of formulating a safety policy, we should be able to convince others
that our policy is indeed sound—we should be able to justify our policy with
a solid argument. That justification should take the form of a rigorous math-
ematical proof. However, not just any proof will do. A formal proof about a
system should serve as documentation: it should explain why the system has
this or that property. To that end, the proof should be structured, given in a
“natural-deduction” style resembling informal mathematical reasoning, and at
a high level of abstraction. Flat proofs in Hilbert-style or resolution systems do
not meet these criteria.

Athena proofs are expressed in a block-structured (“Fitch-style” [14]) natural
deduction calculus. High-level reasoning idioms that are frequently encountered
in common mathematical discourse are directly available to the user, have a
simple semantics, and help to make proofs readable and writable. Athena’s off-
the-shelf ATP technology can be used to automatically dispense with tedious
steps, focusing instead on the interesting parts of the reasoning and keeping the
proof at a high level of detail. Most interestingly, a block-structured natural
deduction format is used not only for writing proofs, but also for writing tactics
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(“methods” in Athena parlance; see Section A of the Appendix.) This is a novel
feature of Athena; all other tactic languages we are aware of are based on sequent
calculi. Tactics in this style are easier to write and remarkably useful in making
proofs more modular and abstract. As this example will illustrate, writing tactics
can pay dividends even in simple proofs.

In what follows we will present a formal Athena proof of the safety of our
policy. As our starting point, and for purposes of comparison, consider first a
rigorous proof of the result in English:

Theorem 1. For all states x and y, if (1) x is safe; (2) y is reachable from x;
and (3) x satisfies constraints C] and C4 (i.e., Ci(z) and C4(z) hold); then y
is also safe.

Proof. Pick arbitrary states x and y and assume that x is safe; y is reachable
from z; and that Cj(z) and C4(z) hold. Under these assumptions, we are to
prove that y is safe.

We will proceed by contradiction. Suppose, in particular, that y is not safe.
Then, by the definition of safety, there must be two distinct trains ¢; and ¢, on
overlapping segments in y, that is, we must have t; # t» and

overlaps(seg0f(ti,y), seg0f(t2,y)) (6)

We now ask: did either train move in the transition from state z to y, or did they
both stay on the same segment? Clearly, exactly one of these two possibilities
must be the case, i.e., we must have either

case; = [seg0f(t1,y) # seg0f(t1,z)] V [segDf(t2,y) # seglf(ta, )]
(t1 moved or t» moved); or else:
cases = [seg0f(t1,y) = segDf(t1, )] A [segDf(t2,y) = seglf(ta, )]

(neither one moved). The disjunction case; V case; holds by virtue of the law
of the excluded middle. We will now show that in either of these two cases, a
contradiction ensues.

Consider cases first, i.e., assume

seg0f(t1,y) = seg0f(t;, ) (7)
seg0f(t2,y) = seg0f(t2, ) (8)

Then, from (7), (8), and (6), we conclude
overlaps(seg0f(t;,z), seg0f(ts, x)) 9)

i.e., that the segments of ¢; and ty in state x overlap. But ¢; and ¢ are distinct
trains, so that would mean that state z is unsafe: that it has two distinct trains on
overlapping segments. This is a contradiction, since we have explicitly assumed
that z is safe.
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Consider now case;, where at least one of the trains has moved in the tran-
sition from z to y. Without loss of generality, assume that ¢; moved, so that

seg0f(t1,y) # seglf(ty,x) (10)

From this, along with the hypothesis that y is reachable from x and the definition

of reachability, we conclude that the segment of #; in y is a successor of the
segment of ¢; in x; and that the segment of ¢; in z had an open gate:

succ(seg0f(t1,x), seg0f(t1,y)) (11)

—closed(seg0f(t1, ), x) (12)

We now perform a case analysis depending on whether or not ¢, moved as
well. Clearly, there are only two cases: either it did move or it did not:

1. Suppose first that, like ¢, t2 also moved, so that:

seg0f(t2,y) # seg0f(t2,x) (13)

As before, this entails (in tandem with the reachability of y from z) the
following;:

succ(seg0f(t2, x), seglf(ta, y)) (14)

~closed(seg0f (2, ), x) (15)

Hence, pictorially, the transition from z to y can be represented as follows:

tl t2

State © State y

But this means that the segments seg0£ (¢, z) and seg0£f(t2, x) are joinable:
(a) they are distinct (if they were identical, then z would be unsafe, since
t1 # t2 and overlaps is reflexive, contrary to our assumption); and (b) they
have overlapping successors (from (6), (11), and (14)). Therefore, as shown
in the left side of the above picture, state 2 has two joinable segments with
simultaneously open gates—a condition that is explicitly prohibited by C%,
which is supposedly observed in . Hence a contradiction.
2. By contrast, suppose that ¢t did not move during this state transition:

seg0f(t2,y) = seg0f(t2, ) (16)
In that case, (6) entails
overlaps(seg0f(t1,y), seg0f(t2,x)) (17)

Graphically, we have:
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to t1 to

State x State y

It is clear that this case violates constraint C] in state z: seg0f (1, z), the
segment of ¢; in z, is the predecessor of a segment that overlaps with an
occupied segment, namely, seg0£(t2, ). Therefore, according to Cf, it should
have its gate closed—but it does not, a contradiction.

This concludes the case analysis of whether ¢t moved, on the assumption that
t; has moved. A symmetric argument can be given on the assumption that ¢,
has moved. o

This is a perfectly rigorous proof, with one exception: the phrase “without
any loss of generality” is vague. Nevertheless, it is a frequent mathematical
colloquialism. Typically, it means that there is a finite number of cases to consider
ci,...,¢, and it does not really make a difference which ¢; we analyze because
the reasoning for one of them can be readily applied to the others. This is
reiterated by the closing remark that “a symmetric argument can be given on
the assumption that ¢t5 moved.”

These colloquialisms can be given more precise meaning with the help of
algorithmic notions. What we really are saying above is that any proof for a
particular ¢; can be abstracted (over a number of appropriate parameters) into
a general proof algorithm that can be just as well applied to the other cases.
That is, we are claiming that there is a tactic that will produce the desired
conclusion in any given case. In the Athena proof of the safety result, shown in
Figure 5, we formulate such a method M that is capable of performing the correct
analysis on a variable input assumption of which train has moved first. Treating
both cases then becomes simply a matter of invoking (!M t1 t2) first and then
transposing the arguments and invoking (!M t2 t1) for the second case.

Observe that lexical scoping is important in giving free identifiers such as hyp
within the body of M the appropriate denotation.
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(safety-result BY
(pick-any x y
(assume-let ((hyp (and (safe x)
(reachableFrom y x)
(C1A x)
(C24 x))))
('by-contradiction
(assume (not (safe y))
(dlet ((P ('derive (exists ?tl1 7t2
(and (not (= 7tl 7t2))
(overlaps (segOf ?tl y) (segOf 7t2 y))))
[(not (safe y)) safe-definition])))
(pick-witnesses t1 t2 P
(dlet ((t-property (and (not (= t1 t2))
(overlaps (segOf t1 y) (segOf t2 y))))
(t-distinct (!derive (not (= t1 t2)) [t-propertyl))
(t-overlapping ('derive (overlaps (segOf tl y) (segOf t2 y)) [t-propertyl))
(one-has-moved (!derive (or (not (= (segOf tl y) (segOf ti x)))
(not (= (segDf t2 y) (segOf t2 x))))
[hyp safe-definition t-propertyl))
(M (method (rl1l r2)
(assume-let ((hypl (not (= (segOf rl y) (segDf rl x)))))
(dlet ((P1 (!'derive (succ (segDf rl x) (segOf rl y))
[hypl reachableFrom-definition hypl))
(P2 ('derive (not (closed (segODf rl x) x))
[hypl reachableFrom-definition hypl))
(c1 (assume-let ((casel (not (= (segOf r2 y) (segOf r2 x)))))
(dlet ((P3 (!derive (succ (segOf r2 x) (segOf r2 y))
[casel reachableFrom-definition hypl))
(P4 (!derive (not (closed (segOf r2 x) x))
[casel reachableFrom-definition hypl))
(P5 (!derive (not (= (segOf rl x) (segDf r2 x)))
[hyp t-distinct safe-definition
(reflexive overlaps)]))
(P6 (!derive (joinable (segOf rl x) (segODf r2 x))
[P3 P1 t-overlapping P5
joinable-definition
(symmetric overlaps)1)))
(!derive false [C2A-definition P2 P4 P6 hypl))))
(c2 (assume-let ((case2 (= (segOf r2 y) (segOf r2 x))))
(dlet ((P7 ('derive (occupied (segOf r2 x) x)
[case2 occupied-definition]))
(P8 (!derive (overlaps (segOf rl y) (segOf r2 x))
[case2 t-overlapping
(symmetric overlaps)])))
('derive false [P7 P8 P2 hyp P1 ClA-definition
(symmetric overlaps)1)))))
('by-cases c1 c2 [1)))))
(say-tl-moves ((if (not (= (segOf t1 y) (segOf tl1 x))) false) BY (!M t1 t2)))
(say-t2-moves ((if (not (= (segOf t2 y) (segOf t2 x))) false) BY (!M t2 t1)))
('by-cases say-tl-moves say-t2-moves [one-has-moved])))))))))

Fig. 5. Athena proof of the safety result
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A Athena primer

Athena maintains a global set of propositions called the assumption base. We
can think of the elements of the assumption base as our premises—propositions
that we regard as true. Initially the system starts with the empty assumption
base. Every time an axiom is asserted or a theorem is proved or a definition of
a new symbol is introduced, the corresponding proposition is inserted into the
assumption base. We can list the elements of the assumption base at any point
in time with the nullary function get-assumption-base, which returns a list of
all and only the propositions that are in the current assumption base.
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Models are generated by the unary function find-model, which takes a list
of propositions Pi,..., P, and attempts to build a finite model that satisfies
every P;. The unary function falsify attempts to invalidate a given proposi-
tion P in the context of the current assumption base. That is, (falsify P) at-
temtps to build a model that satisfies every proposition in the assumption base
but falsifies P. Accordingly, (falsify P) can be understood as a shorthand for
(find-model (add (not P) (get-assumption-base))), where add is a “consing”
function that prepends a given element to a given list.

Inference in Athena is performed mainly through the application of methods.
A method can be thought of as a special type of function. There are two main
differences between methods and “normal” functions. First, methods only return
propositions, whereas a regular function can return a number or a string or a
record or a file, or indeed any data value of any type. Secondly, if and when
a method returns a proposition, that proposition is guaranteed to be a logical
consequence of the assumption base. This soundness property is ensured by the
formal semantics of Athena. So methods are proposition-producing functions
that are constrained to play inside a sandbox, so to speak, in such a way that
they can only generate results that follow logically from the assumption base.

Syntactically, method applications are of the form (!E E; --- E,). The excla-
mation mark indicates that F is a method. FE; - -- E, are the arguments to that
method. By contrast, the general form of a function call is (E E;--- E,), with
no exclamation mark. Scheme and other Lisp variants have the same syntax for
function calls.

Athena has various built-in primitive methods, mostly introduction and elim-
ination rules for the various logical connectives. For instance, left-and is a unary
method that detaches the left component of a conjunction. Suppose, for instance,
that some conjunction (and P Q) is in the current assumption base. Then the
method call (!left-and (and P Q)) will result in the proposition P. A corre-
sponding method right-and would produce Q. Note that (and P Q) must be in
the assumption base for the method call (!1left-and (and P Q)) to succeed; oth-
erwise we will get an error message. This is to ensure soundness. Soundness in
Athena means that if a proof derives some conclusion P in assumption base /3,
then P must follow logically from (. If we don’t demand that the argument
supplied to left-and be in the assumption base, soundness would be lost. For
instance, the application (!left-and (and false true)) would derive the con-
clusion false from the empty assumption base.

The binary method both is an introduction rule for conjunctions. The call
('both P Q) resultsin the conclusion (and P Q), provided that both P and Q are in
the assumption base (it is an error if either of them is not). The binary method
uspec is an elimination rule for universal generalizations. For example, let P
be the proposition (forall ?x (isMale (father ?x))). If P is in the assumption
base, then (tuspec P joe) will result in the conclusion (isMale (father joe)).

Multiple inference steps can be put together with dbegin (“deductive be-
gin”). For any two proofs Dy and D-, the construction (dbegin D; D-) is a new
composite proof that performs D; and D> sequentially. First, D is evaluated in
the current assumption base 8, producing some conclusion P;. Then P; is added
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to the assumption base and we continue with the second proof Dy. Thus Ds is
evaluated in S U {P;}. The result of Dy becomes the result of the entire dbegin.
This allows for lemma formation: the conclusion of D; (P;) serves as a lemma
inside D». More than two deductions can appear inside a dbegin. For n > 2, the
semantics of (dbegin D, ---D,) are given by desugaring to the n = 2 case. For
instance, (dbegin D1 D> Ds3) is defined as (dbegin D; (dbegin D> Ds)). For
instance, suppose that (and P Q) is in the assumption base. Then the following
proof will derive the conclusion (and Q P) (a semicolon ; starts a comment that
extends to the end of the line):

(dbegin (!left-and (and P Q)) ; this will derive P
(!right-and (and P Q)) ; this will get Q
('both Q P)) ; and finally, this will get (and Q P)

The BY construct can enhance proof readability. Any proof D that produces
a conclusion P can also be written as (P BY D). This form uses P as an anno-
tation: it declares that the result of D is P. Accordingly, to evaluate (P BY D)
we first evaluate D and then check to make sure that the result is P. If it is,
we return it as the result; if it is not, we raise an error. For instance, the above
proof can also be written as:

(dbegin (P BY (!left-and (and P Q)))
(Q BY (!right-and (and P Q)))
((and Q P) BY (!'both Q P)))

Note that the comments are no longer necessary.

A more flexible version of dbegin is dlet. The proof (dlet ((I D;)) D-) is
similar to (dbegin D; D»): first we evaluate D1, then we add its conclusion to the
assumption base and proceed to evaluate Ds; the conclusion of the D becomes
the conclusion of the entire dlet. The difference is that within D, the identifier
I will refer to the conclusion of D;. So dlet performs naming in addition to proof
composition. Here too we can use desugaring to generalize this construct to mul-
tiple pairs of identifier-proofs: (dlet ((Iy D;) --- (I, D,)) D). For instance,
(dlet ((I1 D1) (I D»)) D) is defined as

(dlet ((I; D)) (dlet ((I» D2)) D)).
Using dlet we can express our earlier example as:

(dlet ((left-part (!left-and (and P Q)))
(right-part (!right-and (and P Q))))
(!both right-part left-part))

Finally we come to hypothetical (or “conditional”) proofs. Hypothetical proofs
are used to establish conditionals of the form P = (). They work as follows: we
take P as a working assumption and proceed to derive @; if and when we are
done, we discharge P and conclude P = ). To take a simple example, consider
the tautology (P A Q) = (Q A P). In traditional Fitch style, a proof of this tau-
tology would be of the following form:
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1.l PAQ

2.| P 1, left A-elimination

3.| @ 1, right A-elimination

4./ QNP 3, 2, A-introduction
5 PAQ=QAP 1—4, =-introduction

Lines 2 through 4 are within the scope of the assumption P A @ in line 1 and
constitute a subordinate proof. The notion of assumption scope (and correspond-
ing nested subordinate proofs) is the hallmark of natural deduction. In Fitch
systems the scope of an assumption A is indicated graphically by a perpendicu-
lar line extending from A all the way down to the end of the subordinate proof;
a horizontal line is also drawn underneath A. Subordinate proofs within the
scope of an assumption A are free to use A as given. Note that line 5 discharges
the assumption of line 1, pulling the scope back out one level, and derives the
conditional PA Q = Q A P.

In Athena, hypothetical proofs are of the form (assume A D). Here A is the
hypothesis and D is the subordinate proof that represents the scope of A. We
also refer to D as the body of the hypothetical proof. The semantics of such
proofs are simple: to evaluate (assume A D) in an assumption base 3, we add A
to the assumption base and evaluate the body D in the augmented assumption
base § U {A}; if and when the evaluation of D produces a conclusion B, we
return the conditional A = B as the final result.

For instance, the conditional (if (and P Q) (and Q P)) can be derived by
the following proof (in any assumption base):

(assume (and P Q)
(dbegin (!left-and (and P Q))
(!right-and (and P Q))
('both Q P)))

The hypothesis of this assume is (and P Q). The body of the assume is the dbegin
deduction, which constitutes the scope of the hypothesis (and P Q). Therefore,
the proposition (and P Q) can be freely used within that scope as a premise (e.g.,
supplied as an argument to left-and). Note that there is no need to explictly
discharge the hypothesis. Athena will do the discharge automatically when it
has finished evaluating the assume.

Oftentimes the hypothesis of a conditional deduction is a large proposition,
so we would rather give it a short name and refer to it by that. We can do this
with a dlet, e.g.:

(dlet ((I ---)) (assume I D)) (18)

where - - is the hypothesis to be named I. This is such a convenient construct
that Athena has a built-in mechanism for it: (assume-let ((I ---)) D). This
not only postulates the hypothesis --- but also gives it the name I, by which
the body D can then refer to it. So this assume-let is just syntax sugar for (18).

When we inspect the above deduction it becomes clear that the particular
identities of P and Q are immaterial. The proof will work properly no matter what
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propositions P and Q are. This suggests the possibility of parametric abstraction.
Just as we can abstract a computation such as (* a a) over a and formulate a
squaring procedure (lambda (a) (* a a)) which can then be applied to infinitely
many arguments, we are likewise able to abstract a proof D over one or more
parameters I - - - I,, and formulate a method (method (I;---I,) D) which can
then be applied to any given arguments as if it were a primitive built-in method.
For instance, we can abstract the foregoing hypothetical proof into a general
method named, say, commute-and:

(define commute-and
(method (P Q)
(assume (and P Q)
(dbegin (!left-and (and P Q))
('right-and (and P Q))
('both Q P)))))

We can now apply this method to any arguments. E.g., (! commute-and true false)
will derive the conditional (if (and true false) (and false true))

A.1 Reasoning with quantifiers

Athena has one introduction and one elimination mechanism for each of the two
quantifiers, so there are four mechanisms altogether for quantifier reasoning. Two
of them (uspec and egen) are primitive methods; the other two are native syntax
forms. We describe them below.

Universal quantifier introduction Universally quantified propositions are
derived with deductions of the form (pick-any I D). These are meant to model
the way in which human mathematicians establish universal generalizations. For
instance, to prove that every prime integer is odd, we might say

Consider any integer n and suppose that n is prime. Then D. (19)

where D is some deduction with free occurrences of n which establishes that n
is odd. It is essential here that the name n should denote an arbitrary object,
ie.,

(assume-let ((hyp (and (P x) (Q x))))
(pick-any y
(dlet ((lemma ((and (P y) (Q y)) BY (luspec hyp y))))
((P y) BY (!left-and lemma)))))

Universal quantifier elimination Use the primitive method uspec (“universal
specialization”)

Existential quantifier introduction Use the primitive method egen (“exis-
tential generalization”)
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Existential quantifier elimination Use a deduction of the form

(pick-witness I E D)

A.2 Automated reasoning

Automated theorem proving in Athena is done via the primitive binary method
derive, which takes a proposition P (the goal) and a list of premises Py, ..., P,.
The call ('derive P [P ---P,]) will attempt to prove the goal P from the
premises Py, ..., P,, provided that the latter are in the current assumption base
(if they are not, an error will be reported). If this succeds within a preset time
limit (60 seconds by default), P is returned as a theorem; otherwise the call fails.

The unary method prove attempts to derive a goal P from the entire as-
sumption base. Therefore, ('prove P) can be viewed as an abbreviation for the
call ('derive P (get-assumption-base)).

B Athena formalization of the railroad model

The Athena model of the railroad system is presented in its entirety in Figure 6.

C Second countermodel

The following is Athena’s verbatim presentation of the countermodel depicted
in Figure 2:

A model was found.

State has 2 elements: state-1, state-2.
Segment has 3 elements: segment-1, segment-2, segment-3.
Train has 2 elements: train-1, train-2.

Press enter to see the function/relation definitionms...

succ(segment-1, segment-1) = false
succ(segment-1, segment-2) = false
succ(segment-1, segment-3) = true
succ(segment-2, segment-1) = true
succ(segment-2, segment-2) = false
succ(segment-2, segment-3) = false
succ(segment-3, segment-1) = false
succ(segment-3, segment-2) = true
succ(segment-3, segment-3) = false

seg0f (train-1, state-1) = segment-1
seg0f (train-1, state-2) = segment-1
seg0f (train-2, state-1) = segment-3
seg0f (train-2, state-2) = segment-2
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(load-file "util.ath")

(domains Train Segment State)

(declare segOf (-> (Train State) Segment))

(declare succ overlaps (-> (Segment Segment) Boolean))

(declare closed (-> (Segment State) Boolean))

(assert (reflexive overlaps) (symmetric overlaps) (intransitive succ))

(define-symbol occupied
(forall 7s 7?x
(iff (occupied ?s ?x)
(exists 7t (= (segOf ?t ?x) ?s)))))

(define-symbol safe
(forall ?x
(iff (safe ?x)
(forall ?t1 ?t2
(if (not (= 7t1 7t2))
(not (overlaps (segOf 7tl ?x) (segDf 7t2 ?x))))))))

(define—symbol reachableFrom
(forall 7x 7y
(iff (reachableFrom ?y 7x)
(forall 7t
(if (not (= (segOf 7t 7x) (segDf 7t 7y)))
(and (succ (segDf 7t 7x) (segDf 7t ?y))
(not (closed (segDf 7t ?x) ?x))))))))

(define-symbol joinable
(forall ?s1 ?s2
(iff (joinable 7sl1 7s2)
(and (not (= ?s1 ?s2))
(exists ?sl’ 782’
(and (overlaps ?sl’ ?s2’)
(succ ?s1 ?s1?)
(succ ?s2 ?s22))))))))

(define-symbol C1’
(forall ?x
(iff (C1A ?x)
(forall ?sl 7s2 7s3
(if (and (succ 7sl 7s2)
(overlaps ?s2 ?s3)
(occupied ?s3 ?x))
(closed ?s1 ?x))))))

(define-symbol C2’
(forall ?x
(iff (C2A 7?x)
(forall 7sl ?7s2
(if (and (joinable ?sl ?s2)
(not (closed ?s1 ?x)))
(closed ?s2 ?x))))))

Fig. 6. The railroad model in Athena.
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safe(state-1) = true
safe(state-2)

false

reachableFrom(state-1, state-1) = true
reachableFrom(state-1, state-2)
reachableFrom(state-2, state-1)
reachableFrom(state-2, state-2) = true

false

true

overlaps(segment-1, segment-1) = true
overlaps(segment-1, segment-2) = true
overlaps(segment-1, segment-3) = false
overlaps(segment-2, segment-1) = true
overlaps(segment-2, segment-2) = true
overlaps(segment-2, segment-3) = true
overlaps(segment-3, segment-1) = false
overlaps(segment-3, segment-2) = true
overlaps(segment-3, segment-3) = true

closed(segment-1, state-1) = true
closed(segment-1, state-2) = true
closed(segment-2, state-1) = true
closed(segment-2, state-2) = true
closed(segment-3, state-1) = false
closed(segment-3, state-2) = true

D Third countermodel

The following is Athena’s verbatim presentation of the countermodel depicted
in Figure 3:

succ(segment-1, segment-1) = false
succ(segment-1, segment-2) = true
succ(segment-1, segment-3) = false
succ(segment-2, segment-1) = true
succ(segment-2, segment-2) = false
succ(segment-2, segment-3) = true
succ(segment-3, segment-1) = false
succ(segment-3, segment-2) = true
succ(segment-3, segment-3) = false

seg0f (train-1, state-1) = segment-3
seg0f (train-1, state-2) segment-2
seg0f (train-2, state-1) = segment-1
seg0f (train-2, state-2) = segment-2

safe(state-1) true

safe(state-2)

false



reachableFrom(state-1,
reachableFrom(state-1,
reachableFrom(state-2,
reachableFrom(state-2,

overlaps(segment-1,
overlaps(segment-1,
overlaps(segment-1,
overlaps (segment-2,
overlaps(segment-2,
overlaps(segment-2,
overlaps (segment-3,
overlaps (segment-3,
overlaps (segment-3,

closed(segment-1,
closed (segment-1,
closed(segment-2,
closed (segment-2,
closed(segment-3,
closed(segment-3,

state-1)
state-2)
state-1)
state-2)
state-1)
state-2)
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state-1) = true
state-2)
state-1)
state-2) = true

true

true

segment-1) = true
segment-2) = false
segment-3) = false
segment-1) = false
segment-2) = true
segment-3) = false
segment-1) = false
segment-2) = false
segment-3) = true

false
true
true
false
false
true
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