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Abstract
Gödel’s proof of his famous first incompleteness
theorem (G1) has quite understandably long been a
tantalizing target for those wanting to engineer im-
pressively intelligent computational systems. After
all, in establishing G1, Gödel did something that
by any metric must be classified as stunningly in-
telligent. We observe that it has long been under-
stood that there is some sort of analogical relation-
ship between the Liar Paradox (LP) and G1, and
that Gödel himself appreciated and exploited the
relationship. Yet the exact nature of the relation-
ship has hitherto not been uncovered, by which we
mean that the following question has not been an-
swered: Given a description of LP, and the sus-
picion that it may somehow be used by a suitably
programmed computing machine to find a proof of
the incompleteness of Peano Arithmetic, can such
a machine, provided this description as input, pro-
duce as output a complete and verifiably correct
proof of G1? In this paper, we summarize engineer-
ing that entails an affirmative answer to this ques-
tion. Our approach uses what we call analogico-
deductive reasoning (ADR), which combines ana-
logical and deductive reasoning to produce a full
deductive proof of G1 from LP. Our engineering
uses a form of ADR based on our META-R system,
and a connection between the Liar Sentence in LP
and Gödel’s Fixed Point Lemma, from which G1
follows quickly.

1 Introduction
Gödel’s proofs of his incompleteness theorems are among the
greatest intellectual achievements of the 20th century. Even
armed with the suggestion that the Liar Paradox (LP) might
somehow serve as a guide to proving the incompleteness of
Peano Arithmetic (PA),1 the level of creativity and philosoph-
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and the John Templeton Foundation.

1G1 of course applies to any axiom system meeting the stan-
dard conditions (Turing-decidability, representability, consistency),
but we tend to refer to PA for economization.

ical clarity required to actually tie the two concepts together
and produce a valid proof is staggering; it certainly should
not be controversial to claim that no computational reason-
ing system can, at present, achieve this sort of feat without
significant human assistance.

1.1 Automating the Proof of G1
Prior work devoted to producing computational systems able
to prove G1 have yielded systems that manage to prove this
theorem only when the distance between this result and the
starting point is quite small. This for example holds for the
first (and certainly seminal) foray; i.e., for [Quaife, 1988],
as explained in [Bringsjord, 1998], where it’s shown that the
proof of G1, because the set of premises includes an inge-
nious human-devised encoding scheme, is very easy—to the
point of being at the level of proofs requested from students
in introductory mathematical logic classes.

Likewise, [Amnon, 1993] is an exact parallel of the human-
devised proof given by [Kleene, 1996]. Finally, in much
more recent and truly impressive work by [Sieg and Field,
2005], there is a move to natural-deduction formats, which
we applaud—but the machine essentially begins its process-
ing at a point exceedingly close to where it needs to end up.
As Sieg and Field concede: “As axioms we take for granted
the representability and derivability conditions for the cen-
tral syntactic notions as well as the diagonal lemma for con-
structing self-referential sentences.” If one takes for granted
such things, finding a proof of G1 is effortless for a comput-
ing machine.2 In sum, while a lot of commendable work has
been done to build the foundation for our prospective work,
the daunting formal and engineering challenge of producing
a computational system able to produce G1 without clever
seeding from a human remains entirely unmet.

2 The Analogico-Deductive Approach
2.1 Conjecture Generation
The problem with the purely deductive method is simply
that it does not allow us to come close to the type of
model-based reasoning that great thinkers are known to have
used. Gödel himself has been described as having a “line

2A video demonstration of the small-distance process can be
found at http://kryten.mm.rpi.edu/GodelI abstract in Slate.mov.

http://kryten.mm.rpi.edu/GodelI_abstract_in_Slate.mov


∀ elim ✓

∃ intro ✓

¬ intro ✓

↔ elim ✓

∧ intro ✓

∀ elim ✓

→ elim ✓

→ elim ✓

¬ intro ✓

∀ elim ✓

∧ intro ✓

∀ elim ✓

↔ elim ✓

→ elim ✓
→ elim ✓

∧ intro ✓

¬ elim ✓

∀ elim ✓

∃ elim ✓

19. Proves(Φ,Fq) ↔ Proves(Φ,apply(ρ,numeral(Fq)))
{Repr}

6. Proves(Φ,apply(ρ,numeral(Fq)))
{Possibility 1,Repr}

22. Proves(Φ,iff(Fq,apply(not(ρ),numeral(Fq)))) ∧ Proves(Φ,apply(ρ,numeral(Fq)))
{4,Possibility 1,Repr}

Iff Provability 1. ∀q ((Proves(Φ,iff(q,apply(not(ρ),numeral(q)))) ∧ Proves(Φ,apply(ρ,numeral(q)))) → Proves(Φ,not(q)))
{Iff Provability 1} Assume ✓

Fixed Point Lemma for ρ . ∃Fq Proves(Φ,iff(Fq,apply(not(ρ),numeral(Fq))))
{Fixed Point Lemma}

17. ∃Fq Proves(Φ,iff(Fq,apply(not(ρ),numeral(Fq))))
{Fixed Point Lemma}

Fixed Point Lemma. ∀q ∃Fq Proves(Φ,iff(Fq,apply(not(q),numeral(Fq))))
{Fixed Point Lemma}  Assume ✓

Iff Provability 1. (Proves(Φ,iff(Fq,apply(not(ρ),numeral(Fq)))) ∧ Proves(Φ,apply(ρ,numeral(Fq)))) → Proves(Φ,not(Fq))
{Iff Provability 1}

4. Proves(Φ,iff(Fq,apply(not(ρ),numeral(Fq))))
{4} Assume ✓

10. Proves(Φ,apply(ρ,numeral(Fq)))
{4,Iff Provability 2,Possibility 2}

Possibility 2. Proves(Φ,not(Fq))
{Possibility 2} Assume ✓

16. ¬∃Fq Proves(Φ,iff(Fq,apply(not(ρ),numeral(Fq))))
{16} Assume ✓

7. Proves(Φ,not(Fq))
{4,Iff Provability 1,Possibility 1,Repr}

Repr. ∀φ (Proves(Φ,φ) ↔ Proves(Φ,apply(ρ,numeral(φ))))
{Repr} Assume ✓

23. ¬Proves(Φ,not(Fq))
{4,Consistency,Iff Provability 2,Repr}

26. ¬Proves(Φ,not(Fq))
{4,Consistency,Iff Provability 2,Possibility 2,Repr}

8. ¬Proves(Φ,not(Fq))
{Consistency,Possibility 1}

14. ∃φ (¬Proves(Φ,φ) ∧ ¬Proves(Φ,not(φ)))
{4,Consistency,Iff Provability 1,Iff Provability 2,Repr}

13. ¬Proves(Φ,Fq) ∧ ¬Proves(Φ,not(Fq))
{4,Consistency,Iff Provability 1,Iff Provability 2,Repr}

Iff Provability 2. (Proves(Φ,iff(Fq,apply(not(ρ),numeral(Fq)))) ∧ Proves(Φ,not(Fq))) → Proves(Φ,apply(ρ,numeral(Fq)))
{Iff Provability 2}

Possibility 1. Proves(Φ,Fq)
{Possibility 1} Assume ✓

Iff Provability 2. ∀q ((Proves(Φ,iff(q,apply(not(ρ),numeral(q)))) ∧ Proves(Φ,not(q))) → Proves(Φ,apply(ρ,numeral(q))))
{Iff Provability 2} Assume ✓

25. ¬Proves(Φ,Fq)
{4,Consistency,Iff Provability 1,Repr}

21. Proves(Φ,iff(Fq,apply(not(ρ),numeral(Fq)))) ∧ Proves(Φ,not(Fq))
{4,Possibility 2}

Consistency. ∀φ (Proves(Φ,φ) → ¬Proves(Φ,not(φ)))
{Consistency} Assume ✓

12. Proves(Φ,Fq)
{4,Iff Provability 2,Possibility 2,Repr}

24. Proves(Φ,Fq) → ¬Proves(Φ,not(Fq))
{Consistency}

G1. ∃φ (¬Proves(Φ,φ) ∧ ¬Proves(Φ,not(φ)))
{Consistency,Fixed  Point Lemma,Iff Provability 1,Iff Provability 2,Repr}

Figure 1: A full deductive “short distance” proof of G1 in Slate, manually constructed. The final statement (highlighted) can
be deduced from the statements in the red boxes. Notation used here is described in Section 3.3.

of thought [which] seems to move from conjecture to con-
jecture” [Wang, 1995]. Reasoners in general are known to
conjecture through analogy when a straightforward answer
to their current problems cannot be found by other methods
[Dunbar, 1999; Bringsjord, 1998; Nersessian, 1999]. Ana-
logical reasoning as a tool for conjecture or hypothesis gen-
eration, then, can apparently offer new ideas, a strength that
is missing from purely deductive approaches.

Since our goal here is a complete deductive proof of G1
using the model-based reasoning of Gödel, we must make
use of a technique that integrates analogical and hypothetico-
deductive reasoning. This technique, developed in [Licato et
al., 2012] and [Bringsjord and Licato, 2012], takes as its in-
put source and target domains, and performs analogical map-
ping and knowledge transfer in order to produce candidate
hypotheses in the target domain. On the basis of further de-
ductive reasoning and other validation techniques, these hy-
potheses are either rejected or accepted.

2.2 The Liar Paradox and G1
The scope of the work we present in this paper should now
be clear: We intend to use ADR to produce a complete and

verifiably correct proof of G1. Our source and target domains
are LP and G1, respectively. However, the transfer of knowl-
edge between the two domains is not a trivial task: Whereas
G1 is completely formal and in a domain dealing with for-
mal theories and well-formed-formulas, descriptions of LP
are often semi-formal at best, and problems which claim to
be equivalent to LP have involved objects as diverse as bar-
bers in small towns, knights, knaves, and ancient Cretans. We
reiterate here that an informal understanding of LP is to be
used as no more than a guide to the discovery of G1. Much
more creative thought is required to formulate concepts such
as Gödel numbering or primitive-recursive functions.

LP, in its simplest form, is a self-referential statement that
at first glance seems cute and unproblematic, but upon closer
scrutiny leads to an apparent contradiction. “This statement
is false” is a typical version; the problem appears when one
tries to determine if the statement is actually true or not. If
true, it’s false; if false, it’s true. Thus, a contradiction ap-
pears if we assume that all such statements must have one
and exactly one truth value. The Gödel statement, which may
be informally stated as “This statement is not provably true,”
faces a similar problem. If it is provably true, it is false, and



thus cannot be provably true; if it is provably false, then the
statement is provably true, and this implies that the reasoning
system is inconsistent.

2.3 From Conjectures to Proof Generation
Assuming then that we have an analogical reasoning sys-
tem able to surmount the difficulties of cross-domain match-
ing and translation—even when those domains differ in their
level of formality—we next tackle the problem of what to do
with the statements that are analogically transferred by the
ADR system. Our system is given two collections of state-
ments S and T from the source and target domains respec-
tively, and various pieces of domain knowledge necessary to
perform patching operations (which we will describe shortly).
T must consist at least of some axioms, and the desired goal
statement. The statements in S and T are matched analogi-
cally, and on the basis of this match, the statements in S are
analogically transferred to become S′. If the source domain is
less formal than the target domain, the transferred statements
may not be well-formed in the target domain, violating some
syntactic rule that exists in the target domain but was not de-
tected by the analogical matcher. This is achieved through the
use of what we call patching operators.

Patching operators are, by design, meant to fix issues that
should be trivial for a human reasoner familiar with the tar-
get domain. Although they are an important part of the full
automation of the proof-generation process that is our goal,
they must necessarily be very limited in their scope in order
to prevent over-zealous corrections that could negate the ben-
efits of using analogical transfer in the first place. It is not
clear at which point patching operators become more harm-
ful than beneficial; this is the topic of ongoing investigation.
Presently, we only implement two such rules:

PO1: The analogically transferred statement s′ violates some
typing constraint. As an example, consider the source statement
s ≡ Says(p), where p is some proposition. Assume the system gen-
erates the corresponding target statement s′ ≡ IsValidProof (p),
where IsValidProof is a predicate that takes a Gödel numeral as its
argument. Since p is a proposition and not a numeral, a type con-
straint is violated. A human reasoner would likely draw on domain-
specific knowledge about how to fix this sort of thing, and apply
a casting function to produce s′′ ≡ IsValidProof (numeral(p)).
Knowledge of which casting functions might perform this task are
assumed to be part of the domain.

PO2: The analogically transferred statement s′ violates an arity
constraint; e.g., φ ≡ (B(p) ∧ B(p)) as the source statement, and
φ′ ≡ (Proves(Φ, p′) ∧ Proves(Φ, p′)) as the target. The arities of
the predicates differ, and because B maps to Proves and p to p′, a
source statement s ≡ B(p) may transfer as s′ ≡ Proves(p′), which
is not well-formed in the target domain. This can be patched by
checking examples in which B is mapped to Proves , then replac-
ing the missing arguments. Because the system determines how to
patch these statements using the analogical mapping (using a best-
guess from the knowledge available), it requires no additional do-
main knowledge.

Patching is applied to all eligible statements in the set of
transferred statements S′. Once the patching process is com-
plete, the statements are introduced into the target domain.
Those that could not be patched enough to become well-
formed in the target domain are discarded. The remaining set
of statements, S′′, are first partially ordered based on which

statements they corresponded to in S, the original proof of
LP. For every s1, s2 ∈ S, if s2 has s1 as one of its dependen-
cies in the proof of LP, then s1 comes before s2 in the partial
ordering. It is likewise for their corresponding statements in
S′′.

In this order, each statement s ∈ S′′ is integrated into the
target domain, depending on which of the following condi-
tions are met:

1. s exactly matches or is logically equivalent to some ax-
iom a in the target domain. In this case, we discard s.

2. s logically follows from a (possibly empty) subset of the
statements in the target domain. Here, we keep s in the
target domain, as it may be useful later as a lemma.

3. Some subset A of the axioms in the target domain fol-
low from s. In this case, s is checked to see if it implies a
contradiction. If not, it is kept. Otherwise, it is discarded
because anything can follow from a contradiction and
the axioms in A would follow trivially, which would not
be helpful to our ultimate goal. Contradictions may oc-
cur from corruptions of the analogical transfer process,
which may happen with poor analogical mappings; this
fact emphasizes the importance of deductive reasoning
in any application of ADR.

4. None of the above. In this case, s is kept as an axiom.

Finally, the system checks if the goal statement of the tar-
get domain follows from the resulting statements. If so, the
resulting proof is submitted as output.

3 Simulation
The nature of this project requires bringing together many
different tools. We describe two major components: META-
R for analogical reasoning; and Slate for deductive reasoning,
and high-level proof visualization and verification.

3.1 Slate
Slate is a graphical proof-construction environment based
on natural deduction, and includes support for constructing
proofs in propositional logic, first-order logic, and several
modal logics. Slate also has the ability to automatically dis-
cover proofs via resolution, by calling ATPs; e.g., SNARK
[Stickel, 2008]. This feature allows one to utilize Slate in
a hybrid mode to construct proofs that are semi-automated.3
Proofs in Slate can be viewed as a directed acyclic graph
G = {〈F , I〉, E} with two types of nodes: formula nodes
F and inference rule nodes I. Each inference rule node
corresponds to an application of the inference rule in the
proof and has as parents the premises of the rule, and as
children the conclusion of the rule. Each formula node f
has a complex structure comprised of a unique identifier id,
the formula φ corresponding to the node, and a set of iden-
tifiers, T, corresponding to the scope under which the cur-
rent formula was derived. More concisely, each formula node
f := 〈id, φ,T〉. To prove a formula φ from a set of premises
Γ, one needs to construct a graph that has a formula node

3For an overview of an earlier version of Slate, see [Bringsjord
et al., 2008].



f = 〈id, φ,T〉 such that the identifiers in T correspond to
nodes of the form: 〈idp, γ, {}〉, where γ ∈ Γ for all idp ∈ T.
This graph-based approach avoids the usual rigid row-based
linearity of formal proofs (including those expressed in stan-
dard natural-deduction formats) in favor of more cognitively
realistic “workspaces.”

3.2 META-R

At present, there are many excellent analogical reasoning
systems in the literature, such as SME [Falkenhainer et al.,
1989], LISA [Hummel and Holyoak, 2003], and too many
others to mention here. However, most if not all of these sys-
tems currently do not have the expressive power to represent
arbitraily complex multiply quantified formulas in first-order
logic without contrived modifications. To meet the present
challenge, such formulas must be represented in a manner
that does not compromise the representation and reasoning
used by Gödel (and other relevant thinkers). Furthermore, the
definition of an optimal analogical match often differs from
author to author. It seems to be universally agreed, nonethe-
less, that analogical matching involves some combination of
heuristics, some of which may be highly domain-specific.
These heuristics are often encoded into the matching algo-
rithm itself. However, because we may be dealing with two
domains that differ greatly in their level of formality, it is not
clear what combination of heuristics would work best.

To answer this concern, the analogical matcher we chose
to implement is Modifiable Engine for Tree-based Analog-
ical Reasoning (META-R), based on the Flexible Heuris-
tic Matcher (FHM) system described originally by Stephen
Owen 1990. It is a blackboard-like system; such are known
to perform well in unfamiliar domains where the search space
may be rather large (as in tree matching, which we use here)
and where there is a need to combine multiple lines of rea-
soning [Jagannathan et al., 1989].

META-R takes as input two forests T1, T2 of labeled nodes,
and a labeling function ` : (T1 ∪ T2) → LBL where LBL is
the set of all unique labels in both domains. META-R outputs
a node mappingM ⊆ T1×T2; and L, a mapping between the
labels of T1 and the labels of T2. META-R has a set of match-
ing rules (in blackboard terminology, these are experts) that
are grouped into three levels, where rules on the same level
have the same weight. META-R starts at the root nodes of the
input forests and works its way down by asking the rules at
the first level which descendants of the current nodes should
be mapped to each other, giving precedence to the current
nodes’ children. If any unambiguous suggestions are made
(meaning that more rules clearly suggest some pairing over
another), those pairings are stored, and the children of the re-
cently paired nodes are added to the ‘to-do’ queue. If a pair
of nodes remains unpaired due to ambiguous suggestions, it
is placed at the end of the queue and the decision as to how to
pair them is deferred. When next those nodes are up for con-
sideration, the next level of rules is consulted, and this process
repeats until either all nodes are paired or some nodes exhaust
all possible rules. The final level of rules consists of those we
have created based on LP-rounding and bipartite matching

(described shortly).4 Where an assessment of match qual-
ity between two forests is needed, we adopt Owen’s measure,
which is simply a weighted combination of three percentages,
each meant to reflect how well the match follows one of the
three primary heuristics Owen identifies.

This is of course only a quick and incomplete summary
of how META-R works, and we must keep it that way due to
space; our intent is to express some of the strengths of META-
R that make it a suitable choice for our present needs. Firstly,
the analogical mapping problem differs from many tree- or
graph-mapping problems, in that it does not only involve find-
ing a node mapping, but a label mapping which likely is only
partially available to the algorithm when it starts. Choices
about which nodes are to be paired with each other in one
part of the forest may affect decisions about which pairings
are optimal to make in other parts of the forest, due to heuris-
tics that attempt to ensure that nodes of certain labels map
consistently across both domains. For example, consider the
trees T1 = ((a∨b)∧(b∨a)) and T2 = ((x∨y)∧(x∨y)). Many
naı̈ve tree matching algorithms might pair (a, x), (b, y) in one
part, and (b, x), (a, y) in the other (and the fact that choices
made at one part of the tree or forest changes which choices
are optimal in the other makes the solution space much more
difficult to search than matching problems that start out with
knowledge about optimal label matchings). In META-R, the
tiered structure of the matching rules addresses this concern.
The matching rules on the first level tend to check the current
state of the mapping, in order to ensure consistency with de-
cisions that have already been made. The later levels’ rules
tend to be more computationally intensive and able to operate
independently of the current state of the mapping. In other
words, if the algorithm is performing pairing at one part of
the tree, and more information is needed before it can make
a decision, it is often able to focus on another part of the tree
first, where the best pairing choices may be more obvious.

Secondly, the choice of matching rules is not fixed by the
algorithm. This gives us great flexibility to adopt some of
the latest advances in matching algorithms without having
to re-code the underlying program, two examples of which
we have implemented and will summarize next. We start by
defining two L-graphs L1, L2 for T1, T2 respectively, where
an L-graph Li simply consists of the original forest Ti plus
one node for each unique label in the corresponding forest
(these are called the ‘label nodes’). For every node n ∈ Ti, an
edge in Li exists between n and its corresponding label node
(note that this can destroy tree properties in the L-graph). We
then define a linear program which attempts to find a subset of
(L1 ∪T1)× (L2 ∪T2) which minimizes a linear combination
of four penalties:

• Structural Consistency: How well the structures of the original
forests are preserved. If two nodes are mapped to each other
but their parents are not, a penalty of one is added. This allows
an approximate adherence to the structure-mapping theory of
analogy [Gentner, 1983].

• Label Consistency: The linear program’s constraints are de-
fined such that label nodes can only be mapped to other label

4Owen’s original FHM split and examined all possible combina-
tions of child pairs.



nodes, so that a label matching is chosen. A penalty is added
for every node pairing which violates that label matching.

• One-to-one Consistency: A penalty is added for nodes that are
in more than one pairing, and nodes that are in no pairings.

• Semantic and Pragmatic Constraints: Penalties can be used
to encourage certain nodes or labels to be mapped together
[Holyoak and Thagard, 1989]. We also penalize for what
Owen calls the identical symbols heuristic, which states that
nodes that have the same or highly similar labels should be
paired.

We then perform LP-rounding (using a threshold of 50%),
and the resulting pairings are returned as suggestions. This
performs quite well on small input sizes (up to 50 nodes per
side), but seems to break down on larger data sets.

In addition to the LP-rounding rule, we have a bipartite
matching rule based on Riesen and Bunke’s (2009) algorithm
for approximate graph edit distance [Riesen and Bunke, 2009;
Bunke and Riesen, 2009]. Graph edit distance is one of the
most widely used measures of graph dissimilarity [Gao et al.,
2010; Bunke and Riesen, 2009], so our matching rule oper-
ates on the assumption that a matching which minimizes the
dissimilarity between two L-graphs corresponds to an opti-
mal analogical match between the original forests. The al-
gorithm essentially works by constructing a table that allows
us to encode the same penalties as with our linear program,
and applying the Kuhn-Munkres algorithm [Kuhn, 1955] to
minimize the total penalty.

3.3 An Analogy to Reasoners: Smullyan’s Island
It may be useful at this point to provide a high-level summary
of the operations of the ADR system we have described:

1. The system accepts input; viz., a source domain S consisting
of at least one full proof, domain-specific knowledge about the
objects and predicates in that domain, and a target domain T
consisting of a partial proof, domain-specific knowledge about
the objects and predicates in that domain, and knowledge of
some casting functions.

2. META-R performs analogical matching between S and T , and
transfers a set of statements from source to target as S′.

3. S′ is repaired using patching operators, and unfixable state-
ments are dropped, to produce the set S′′.

4. The statements in S′′ are integrated into T in order, some state-
ments becoming part of the partial proof in T .

5. If there is a goal statement in T , further deductive reasoning is
applied to see if it follows from some combination of the new
and old statements.

With this roadmap in place, we describe the particulars of
the domains in question. We intend to demonstrate our sys-
tem going from a semi-formal presentation of LP to a fully
deductive proof of G1, using a semiformal version of LP de-
scribed by Smullyan 1987. His version involves an island on
which there exists a perfect reasoner. She can hold beliefs:
writtenBp for some proposition p. She can also reason about
her beliefs; for example, the statement BBp means that she
believes that she believes the proposition p. There is a very
particular set of inference rules that she follows in order to
produce new beliefs, of which she may not necessarily be
aware (her reasoning process is automatic). For example, one

such rule is ∀x(Bx→ BBx), which is not a valid FOL state-
ment: if B is treated here as a predicate symbol then it can
not be nested within itself. But if the logic is interpreted as
semiformal and not entirely rigorous, then such details can be
ignored as the intentions are clear.

Every day she produces exactly one new belief from her
current set of beliefs and inference rules, such that every sin-
gle belief she has and can possibly have is assigned a number
corresponding to the day on which that belief was produced.
This is denoted Bnp, where n is the number corresponding
to the day that the belief p was discovered. Smullyan then
supposes that the following statements are true:

C1a She believes all tautologies.
C1b ∀x,y(Bx ∧B(x→ y))→ By
C2 ∀n,p(Bnp→ BBnp) ∧ (¬Bnp→ B¬Bnp)
C3 ∀n,pB(Bnp→ Bp)
SCon ∀pBp→ ¬B¬p
SωCon ¬∃p(BBp ∧ ∀nB¬Bnp)
D ∀pBp↔ ∃nBnp
Smullyan then asks us to suppose that a native of the island

comes to our ideal reasoner and declares: “You will never be-
lieve that I am a knight.” A knight is someone who always
tells the truth, as opposed to knaves, who only lie (the inhab-
itants of the island are all either knights or knaves). Since our
ideal reasoner believes the rules of the island, she is led to
believe that the native is a knight (k) if and only if what the
native said (¬Bk) is true:

S B(k ↔ ¬Bk)

From this and the premises listed above, Smullyan proves
the goal statement G:

G ∃p(¬Bp ∧ ¬B¬p)
G can be informally understood as saying there exists a

proposition that she will both never believe is true and never
believe is false: for her, the statement is undecidable!

We ran our simulation using Smullyan’s version of LP ex-
actly as described above. G1 was intentionally kept as sparse
as possible, consisting only of meta-theoretic knowledge that
one familiar with syntactic study of formal arithmetic theo-
ries might be expected to know. In the meta-language, the
terms of the language stand for arithmetic theories, formulae
and numerals standing for object-level proofs, terms, and for-
mulae. All the syntactic objects used in Figure 1 and Figure
2 belong to the meta-language. In both the figures, the con-
stant symbol Φ stands for the particular first-order arithmetic
theory we are interested in, namely Peano Arithmetic. The
following statements were included:

D′ ∀q(Proves(Φ, q)↔ ∃nPrf (n,numeral(q)))

S′Con ∀qProves(Φ, q)→ ¬Proves(Φ,¬q)

S′ωCon

¬∃q(Proves(Φ, apply(ρ,numeral(q)))

∧∀nProves(Φ,not(prf (n,numeral(q)))))

G′ ∃φ(¬Proves(Φ, φ) ∧ ¬Proves(Φ,not(φ)))

The above statements constitute a partial first-order axiom-
atization of the metatheory. Predicate symbols are capital-
ized, and function symbols are lower-cased. Proves(Φ, p)
holds when p is a theorem of Φ. If q is a well-formed formula
and numeral(q) is its Gödel numeral, apply(ρ,numeral(q))



FOL ⊢ !

FOL ⊢ !

D'. !q (Proves(Φ,q) " #n Prf(n,numeral(q)))
{D'} Assume !

C2a'. !n,q (Prf(n,numeral(q)) $ Proves(Φ,prf(n,numeral(q))))
{C2a'}  Assume !

C2b'. !n,q (¬Prf(n,numeral(q)) $ Proves(Φ,not(prf(n,numeral(q)))))
{C2b'} Assume !

C3'. !n,q Proves(Φ,if(prf(n,numeral(q)),apply(ρ,numeral(q))))
{C3'} Assume !

C1b'. !x,y ((Proves(Φ,x) % Proves(Φ,if(x,y))) $ Proves(Φ,y))
{C1b'} Assume !

Scon'. !q (Proves(Φ,q) $ ¬Proves(Φ,not(q)))
{Scon'} Assume !

Representability of provability. !q (Proves(Φ,apply(ρ,numeral(q))) " Proves(Φ,q))
{Representability of provability} Assume !

Fixed Point Lemma. !q #Fq Proves(Φ,iff(Fq,apply(q,numeral(Fq))))
{Fixed Point Lemma}  Assume !

not extraction. !q,r (Proves(Φ,iff(q,apply(not(r),numeral(q)))) " Proves(Φ,iff(q,not(apply(r,numeral(q))))))
{not extraction} Assume !

iff expansion. !q,r,s (Proves(q,iff(r,not(s))) " (Proves(q,if(r,not(s))) % Proves(q,if(not(s),r)) % Proves(q,if(not(r),s)) % Proves(q,if(s,not(r)))))
{iff expansion} Assume !

Sωcon'. ¬#q (Proves(Φ,apply(ρ,numeral(q))) % !n Proves(Φ,not(prf(n,numeral(q)))))
{Sωcon'} Assume !

S'. #k (Proves(Φ,if(k,not(apply(ρ,numeral(k))))) % Proves(Φ,if(not(k),apply(ρ,numeral(k)))) % Proves(Φ,if(apply(ρ,numeral(k)),not(k))) % Proves(Φ,if(not(apply(ρ,numeral(k))),k)))
{Fixed Point Lemma,Representability of provability,iff expansion,not extraction}

G. #φ (¬Proves(Φ,φ) % ¬Proves(Φ,not(φ)))
{C1b',C2a',C2b',C3',D',Fixed Point Lemma,Representability of provability,Scon',Sωcon',iff expansion,not extraction}

Figure 2: A full proof of G1 in Slate, generated through ADR. Note that S′ is an expanded version of what actually follows
from the analogical transfer of S; this was done for better presentability of this image.

stands for formula with the unary property ρ applied to the
Gödel numeral of the formula q (this might also be writ-
ten: ρ(pqq)). Prf (n,m), borrowed from [Smith, 2007]
is a meta-theoretic relation symbol shadowing the object-
theoretic Prf(n,m) from Smith. Prf(n,m) holds just when
n is the numeral for the Peano-Arithmetic proof of the state-
ment for which m is the numeral. The term representing
Prf(n,m) in the metalanguage is prf (n,m).

3.4 Results
META-R correctly matched SCon, SωCon, D and G with
S′
Con, S′

ωCon, D′ and G′, respectively. From these, it
matched the Bn operator with the Prf predicate and its func-
tion version prf , and the B operator with both the Proves
predicate and the apply function. Because no mechanism
was in place to allow the system to understand that one
was to be used only as a predicate and the other as a func-
tion symbol, during the translation step formulas such as
∀n,qProves(Φ, prf (n,numeral(q)) → Proves(Φ, q)) were
generated. However, because no patching operator exists that
could cast that statement into a well-formed one, it was dis-
carded.

The resulting proof, tidied up and presented in Slate, is
pictured in Figure 2. Note that two boxes are taken from the
manually constructed proof in Figure 1 (Fixed Point Lemma
and Representability of Provability, though the latter is not
pictured in Figure 1). There are also two boxes included in
order to allow for trivial syntactic transformations. The re-
sulting proof is comparable to the one in Figure 1, though
clearly missing some of the intermediate steps.

4 Conclusion
Analogy-assisted automated theorem proving is a rich topic
about which much has been published; for economy we just

mention a few directly relevant papers here. [Forbus et al.,
2002] is an early paper discussing the potential of integrat-
ing analogical reasoning and first-principles reasoning. Our
method of cross-domain knowledge transfer is similar to that
in [Klenk and Forbus, 2009]. Our paper might be considered
an implementation of their work, applied to the realm of G1.
Melis 1995 is another major contributor to this field. Her sys-
tem involves analogy and proof-planning through the use of
operators known as methods. Because the present application
of analogical matching did not involve the analogical trans-
fer of all intermediate steps in a proof as large as Figure 1,
we did not run into many of the problems that Melis’ work is
designed to circumvent; however, in future work such tech-
niques will likely need to be adopted.

4.1 Future Work
Though the present work has attempted to bridge the gap be-
tween analogical and deductive reasoning in a way that re-
sembles human-level thought, we are careful not to overstate
our claims. Much more work is needed before the process
which we have automated here, designed for the domains of
LP and G1, can be effortlessly applied to other problems. We
will next attempt to apply the lessons learned here to the well-
known Tarski’s Theorem, which invokes similar concepts and
for which Smullyan’s analogies may also be useful.

Regarding META-R development, further testing is needed
to determine to what degree the use of our LP-rounding and
bipartite matching rules are sufficient alternatives to Owen’s
original approach, which branches through all possible com-
binations. In our experience, however, the difference has not
been noticeable. As far as we know, ours is the only existing
FHM-based implementation currently in use, and we hope to
continue its development and make it available to researchers
interested in experimenting with analogical matching.



Finally, we will explore another method of proving G1 that
we suspect will produce interesting results. This has been
aptly called the “Master Argument” by Smith 2007; it actu-
ally matches the route that Gödel himself regarded to be the
most perspicuous one to incompleteness, and uses Tarski’s
Theorem, which in point of fact Gödel proved before Tarski.
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